Electronic devices can have narrow operating voltage and/or current requirements and may not be able to tolerate wide voltage swings or power surges. Existing power supplies often assume a regulated or predictable source of power such as that supplied by the household mains or a battery. In some applications, the power source to a power supply circuit may be unpredictable and may include wide voltage swings and surges. In applications where the power source includes a highly resonant wireless power source, for example, power source characteristics may quickly change due to changes in coupling, positioning of devices and/or movement of devices and extraneous objects resulting in voltage fluctuations and/or surges. Components of existing power supplies, such as switches, diodes, rectifiers, and the like may fail or overheat during the fluctuations and may be unable to provide a reliable output power to the electronic device.
In general, in a first aspect, the disclosure features asynchronous rectifiers that include an input terminal for receiving an oscillating energy signal, at least one rectifying element connected in series with the input terminal, at least one shorting element connected in parallel with the input terminal to provide an bypass path around the at least one rectifying element for the oscillating energy signal, and including at least one switching element configured to selectively activate the bypass path, and a feedback loop configured to detect an electrical parameter at an output of the rectifying element and to generate, based on the detected electrical parameter, a control signal for the at least one shorting element to selectively activate the bypass path.
Embodiments of the rectifiers can include any one or more of the following features.
The electrical parameter can include a voltage. The feedback loop can be configured to generate the control signal to activate the bypass path when a detected voltage at the output of the rectifying element is equal to or greater than an upper bound threshold value. The feedback loop can include a comparator configured to generate the control signal to activate the bypass path when the upper bound threshold value is reached. The comparator can include a resistor connecting an output of the comparator to an input of the comparator, where a resistance value of the resistor determines hysteresis of the feedback loop.
The shorting element can include a diode. The rectifying element can include at least one diode.
The rectifiers can include a synchronizing element configured to synchronize activation of the bypass path with the oscillating energy signal so that the shorting element is operated using zero voltage switching. The rectifiers can include a LCL impedance matching network connected to the input terminal.
Embodiments of the rectifiers can also include any of the other features disclosed herein, including features disclosed in connection with different embodiments, in any combination as appropriate.
In another aspect, the disclosure features methods for rectifying and regulating voltage received from a resonator by an electronic device that includes an asynchronous rectifier, the methods including detecting a voltage equal to or greater than an upper voltage threshold at an output of the rectifier, activating a shorting element to decrease the voltage at the output of the rectifier, monitoring energy demands of the electronic device, monitoring energy delivered to the resonator by a source, predicting an adjustment to the upper voltage threshold based on a difference between the energy demands of the electronic device and the energy delivered to the resonator, and adjusting the upper voltage threshold based on the prediction.
Embodiments of the methods can include any one or more of the following features.
The methods can include adjusting the upper voltage to maintain a frequency of activation/deactivation of the shorting element of at most 10% (e.g., at most 1%) of a frequency of an oscillating energy signal delivered to the resonator.
The methods can include detecting a voltage equal to or lower than a lower voltage threshold at the output of the rectifier, and deactivating the shorting element to increase the voltage at the output of the rectifier. The methods can include predicting an adjustment to the lower voltage threshold based on the difference between the energy demands of the electronic device and the energy delivered to the resonator, and adjusting the lower threshold based on the prediction. The methods can include adjusting the lower voltage threshold to maintain a frequency of activation/deactivation of the shorting element of at most 10% (e.g., at most 1%) of a frequency of an oscillating energy signal delivered to the resonator.
Embodiments of the methods can also include any of the other features or steps disclosed herein, including features and steps disclosed in connection with different embodiments, in any combination as appropriate.
In a further aspect, the disclosure features resonator coils for wireless energy transfer that include an electrical conductor having a first end and a second end, where the first end is shaped to spiral inwards in a first direction forming a first set of conductor loops, and the second end is shaped to spiral inwards in a second direction forming a second set of conductor loops.
Embodiments of the resonators coils can include any one or more of the following features.
The first direction and the second direction can be the same direction. The conductor loops of the first set of conductor loops can be off center from one another. The conductor loops of the second set of conductor loops can be off center from one another.
Spacings between portions of adjacent conductor loops in the first set can be greater for portions nearer to the second set of conductor loops than for other portions. Spacings between portions of adjacent conductor loops in the second set can be greater for portions nearer to the first set of conductor loops than for other portions. A width of the electrical conductor can vary in proportion to the spacings between portions of adjacent conductor loops in the first and second sets.
Embodiments of the resonator coils can also include any of the other features disclosed herein, including features disclosed in combination with different embodiments, in any combination as appropriate.
In another aspect, the disclosure features wireless energy transfer sources that include at least two source resonators electrically connected in parallel and configured so that during operation, the at least two source resonators can each transfer energy wirelessly via an oscillating magnetic field to a device resonator, and a power source coupled to a first tunable element and to each of the at least two source resonators, and configured so that during operation, the power source provides a supply of electrical current, where each of the at least two source resonators has a nominal impedance when a device resonator is not positioned on or near any of the at least two source resonators, the nominal impedances of each of the at least two source resonators varying by 10% or less from one another, and where the at least two source resonators are configured so that during operation of the wireless energy transfer source, when a device resonator is positioned on or near a first one of the at least two source resonators: (a) the impedance of the first source resonator is reduced such that the reduced impedance of the first source resonator is smaller than the nominal impedances of each of the other resonators by a factor of 2 or more; and (b) the first source resonator draws electrical current from the power source.
Embodiments of the sources can include any one or more of the following features.
The tunable element can include at least one of a tunable capacitor, a tunable inductor, and a tunable resistor. The sources can include power and control circuitry configured to control the tunable element. A second one of the at least two source resonators can draw current from the power source when the device resonator is positioned on or near both the first and second resonators.
The at least two source resonators can each include an S-shaped coil, and the at least two resonators can be nested within one another. Each of the S-shaped coils can be printed on a first layer of a circuit board and returning traces of the S-shaped coils can be printed on a second layer of the circuit board. The device resonator can include an S-shaped coil.
The device resonator can be part of a phone or a laptop. The source resonator can be integrated into a surface of a table or desk.
Each of the at least two source resonators can include a tunable capacitor. The power and control circuitry can be configured to tune the tunable capacitor in response to the presence of a lossy object.
The tunable capacitor can include a bank of capacitors and wherein a capacitance of the bank of capacitors is controlled by a switch. Each of the at least two source resonators can include a tunable inductor. An inductance of each tunable inductor can be changed to adjust the impedance of each corresponding one of the at least two source resonators.
The at least two source resonators can be overlapped such that coupling between them is reduced, relative to the coupling that would result if the source resonators were positioned adjacent one another. Each of the at least two source resonators can have a quality factor Q>100.
Embodiments of the sources can also include any of the other features disclosed herein, including features disclosed in combination with different embodiments, in any combination as appropriate.
In a further aspect, the disclosure features methods for tuning a wireless power source, the methods including driving at least two source resonators with a power source coupled to a first tunable element and to each of the at least two source resonators, where the power source is configured to provide an electrical current supply, and in response to the positioning of a device resonator on or near a first one of the at least two source resonators, supplying electrical current to the first source resonator to wirelessly transfer power from the first resonator to the device resonator, where the positioning of the device resonator on or near the first source resonator reduces an impedance of the first source resonator by a factor of at least two relative to impedances of each of the other source resonators.
Embodiments of the methods can include any of the features disclosed herein, including features disclosed in combination with different embodiments, in any combination as appropriate.
In another aspect, the disclosure features wireless energy transfer systems that include a source featuring at least two source resonators electrically connected in parallel and a driving circuit coupled to a first tunable element and to each of the at least two source resonators, the driving circuit configured to provide a current supply, and a device that includes at least one device resonator coupled to a load, where the source is configured to transfer wireless energy via an oscillating magnetic field to the at least one device resonator, where a first one of the at least two source resonators draws current from the driving circuit when the device resonator is positioned on or near the first of the at least two source resonators, and where other resonators of the at least two source resonators are detuned when the device resonator is positioned on or near the first source resonator.
Embodiments of the systems can include any one or more of the following features.
The device can include at least two device resonators. Energy captured by the at least two device resonators can be electrically combined to deliver power to the load.
Embodiments of the systems can also include any of the other features disclosed herein, including features disclosed in combination with different embodiments, in any combination as appropriate.
In a further aspect, the disclosure features sources for wireless energy transfer that include: a first S-shaped conductor in a plane, the first S-shaped conductor featuring a first top half and a first bottom half; and a second S-shaped conductor in the plane, the second S-shaped conductor featuring a second top and a second bottom half, where the first top half has a smaller area than the second top half, where the first bottom half has a greater area than the second bottom half, and where the first and second S-shaped conductors are nested into one another without overlapping.
Embodiments of the sources can include any one or more of the following features.
The first and second S-shaped conductors can be disposed in a first layer of a printed circuit board. A first return trace belonging to the first S-shaped conductor and a second return trace belonging to the second S-shaped conductor can be in a second plane. A first return trace belonging to the first S-shaped conductor and a second return trace belonging to the second S-shaped conductor can be disposed in a second layer of the printed circuit board.
Each of the S-shaped conductors can be coupled to and driven by an amplifier. The S-shaped conductors can be coupled to and driven by a single amplifier.
Embodiments of the sources can also include any of the other features disclosed herein, including features disclosed in combination with different embodiments, in any combination as appropriate.
In another aspect, the disclosure features receivers for wireless energy transfer that include: an electronic device having a bottom surface, a first side surface, and second side surface, where a first edge corresponds to a location where the bottom surface and the first side surface intersect and a second edge corresponds to a location where the bottom surface and the second side surface intersect; a piece of magnetic material disposed on the bottom surface of the electronic device; and a device resonator coil disposed on the at least one piece of magnetic material, where the first and second edges are positioned opposite to each other, and where the piece of magnetic material extends from under the device resonator to the first edge.
Embodiments of the receivers can include any one or more of the following features.
The piece of magnetic material can extend to the second edge. The receivers can include a second piece of magnetic material disposed on the first side surface. The receivers can include a third piece of magnetic material disposed on the second side surface. The electronic device can be one of a laptop, a notebook computer, a smartphone, and a tablet.
Embodiments of the receivers can also include any of the other features disclosed herein, including features disclosed in combination with different embodiments, in any combination as appropriate.
A further understanding of the nature and advantages of various embodiments may be realized by reference to the following figures. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Wireless energy transfer systems described herein may be implemented using a wide variety of resonators and resonant objects. As those skilled in the art will recognize, important considerations for resonator-based power transfer include resonator quality factor and resonator coupling. Extensive discussion of such issues, e.g., coupled mode theory (CMT), coupling coefficients and factors, quality factors (also referred to as Q-factors), and impedance matching is provided, for example, in U.S. patent application Ser. No. 13/428,142, published on Jul. 19, 2012 as US 2012/0184338, in U.S. patent application Ser. No. 13/567,893, published on Feb. 7, 2013 as US 2013/0033118, and in U.S. patent application Ser. No. 14/059,094, published on Apr. 24, 2014 as US 2014/0111019. The entire contents of each of these applications are incorporated by reference herein.
Electronic devices may rely on electronic circuits such as rectifiers, AC to DC converters, and other power electronics to condition, monitor, maintain, and/or modify the characteristics of the voltage and/or current used to power the electronic device. Power electronics may take as input electrical energy from a power source with voltage/current characteristics that may not be compatible with the requirements of the electronic device and modify the voltage and/or current characteristics to meet the requirements of the electronic device. In some cases, the power source may be a mains connection or a battery providing a substantially stable input. For example, a power mains may provide 120 VAC input which may be rectified and converted to 5 VDC for some electronic devices.
In some applications, the power source may be highly variable. Power electronics receiving power via highly resonant wireless energy transfer, for example, may be required to condition or modify received voltages and/or currents because those voltages or currents may change by 10%, 50%, 100% or more and in some cases may appear as power surges. The power electronics used in existing devices may not be capable of providing a stable output to an electronic device from such a highly variable power source.
In the devices disclosed herein, power electronics circuits may include an asynchronous rectifier. An asynchronous rectifier may be part of an efficient and cost effective circuit for monitoring and modifying a variable power input to an electronic device. The asynchronous rectifier circuit may be configured and/or controlled to provide a substantially stable voltage/current output despite changing input voltage and/or current characteristics. The asynchronous rectifier may provide efficient rectification and/or regulation even in converting power wirelessly transmitted using high operating frequencies (e.g., 6.78 MHz) without requiring precise timing for switches, as in traditional synchronous designs.
The asynchronous rectifiers disclosed herein may include a feedback loop that monitors the output of the rectifier and adjusts the operation of one or more components of the rectifier. Adjusting the operation of the one or more components of the rectifier may affect the output characteristics of the rectifier. The output of the rectifier may be configured to maintain a specific voltage and/or current at the output such as 3 VDC, 5 VDC, or more, or others.
In exemplary embodiments, the output of the rectifier may be adjustable or variable. The output of the rectifier may be set to different operating points such as different output voltages and/or currents. The output may be set to a first operating point for a first duration of time and to a second operating point for a second duration of time. The output of the rectifier may maintain the first operating point or the second operating point during variations of input power to the rectifier.
In exemplary embodiments, the rectifier may include a clamping circuit to prevent voltage and/or current surges that may occur at the input of the rectifier to propagate to the output.
In exemplary embodiments, the power electronics may be configured to rectify and regulate the oscillating electrical energy 110 received from the resonator 102. The oscillating voltage and/or current may be rectified to generate a DC voltage or an approximately DC voltage. The DC output may be further regulated or conditioned to output a desired voltage and/or current and/or multiple voltages/currents (including AC voltages and currents).
During operation of the asynchronous rectifier, the rectifying diode D1 may normally conduct during the positive phase of the oscillating energy source providing a positive (rectified) voltage at the output of the diode D1. Additional elements 210 such as capacitors, inductors, and other elements, may be used to reduce the ripple of the rectified voltage/current and provide a substantially DC voltage (VDC) to the electronic device. The peak voltage at the output of the rectifying diode D1 may depend on the power demands of the electronic device, the peak voltage of the oscillating energy source 208, and the like. Unless further controlled, the peak voltage at the output of the rectifying diode D1 may be proportional to the peak voltage of the oscillating energy source 208 and may exceed the voltage constraints of the electronic device receiving energy from the rectifier 200.
The peak voltage at the output of the rectifying diode D1 may be controlled by the shorting element 212. The shorting element 212 may selectively provide an alternative path for the current from the oscillating energy source 208 such that the current bypasses the rectifying diode D1. The alternative conducting path through the shorting element 212 may be activated based on the voltage at the output of the rectifying diode D1 or the VDC output from the rectifier to the electronic device. The shorting element may be selected to have low losses (Rds,on for FET) since during the shorting time period, all transferred power may be dissipated in the resonator and shorting element. The switching element may include one or more MOSFETs, FETs, bipolar junction transistors (BJTs) or other switch and/or relay and/or transistor types and may be selected based on the performance characteristics and/or cost requirements for an application.
In exemplary embodiments, the shorting element may be normally deactivated under normal or acceptable operating conditions. Then the shorting element may be activated when the voltage at the output of the rectifying diode D1 reaches an upper bound threshold value. When the upper bound threshold value is reached the shorting element 212 may be activated to prevent additional energy from the oscillating energy source 208 from passing through the diode D1. If, during this time, the voltage at the output of the rectifying diode decreases due to changing energy demands of the electronic device and/or other circuitry, and reaches a lower bound threshold value, the shorting element may be deactivated allowing more energy to flow through the rectifying diode which may allow the voltage at the output of the rectifying diode D1 to increase. The cycle of activating and deactivating the shorting element may be controlled by elements of the feedback loop 218 of the asynchronous rectifier to maintain the voltage at the output of the rectifying diode between the upper bound threshold value and lower bound threshold value.
In exemplary embodiments, the shorting element may be normally activated and may be deactivated when the output voltage reaches a minimum threshold value and reactivated when the voltage reaches a maximum threshold value. In exemplary embodiments, the shorting element may be activated and deactivated for predetermined amounts of time, periodically, and/or in response to set of triggers such as threshold crossings, temperature measurements, control signals, communication signals and the like.
Activation and deactivation of the shorting element 212 may be controlled via a feedback loop that takes as input the voltage and/or current at the output of the rectifier diode D1 and/or the output VDC to the electronic device. The feedback loop may include elements or modules or units that provide reference voltage and/or current readings 202 at the output of rectifier diode D1 and/or other parts of the circuit such as the VDC output. The reference readings may be used by the switching control unit 204 to determine when to activate/deactivate the shorting element. The output of the switching control unit 204 may be a signal such as a binary on/off signal to activate/deactivate the shorting element 212. The signal may be buffered by drivers 206 that provide the correct voltages and switching characteristics for the particular switching elements of the shorting element 212.
The feedback loop may comprise sensing and reference circuitry 202, a switching control unit 204, and drivers 206 and may include digital and/or analog circuitry. In exemplary embodiments, digital logic may be preferred over analog circuits to define upper/lower bound thresholds and activation/deactivation timers. Digital logic such as microprocessors, gate arrays, field-programmable gate arrays (FPGAs), and the like may be used to reconfigurably adjust operating points and thresholds. In exemplary embodiments, analog circuitry may be preferred. Analog circuitry may provide for faster response times and/or shorter delays between changes in rectified voltage and adjustment of the shorting element. In exemplary embodiments, a combination of digital and analog circuitry may be used.
The maximum voltage VRECT may be defined using the values of the resistors and the Zener voltage VZ:
where VOUT is the voltage at the output of the comparator 214.
When the maximum voltage VRECT,max is reached, the comparator 214 triggers the activation of switch S1. Once switch S1 is activated, the energy from the oscillating energy source 208 will bypass the rectifying diode D1. During the activation of the switch S1, the voltage VRECT may decrease. As the voltage decreases below the VRECT,max threshold, the comparator may trigger to deactivate switch S1.
The lower bound voltage of VRECT that will cause the comparator 214 to deactivate the switch S1 may be determined by exploiting the hysteresis property of the comparator 214. The lower bound may be selected by defining the value of the RHYST resistor. The larger the value of the resistor, the greater the hysteresis effect. The greater the hysteresis effect, the larger the difference between the lower bound and upper bound voltages on the VRECT.
The difference between the lower bound threshold and upper bound threshold may result in a ripple in the VRECT voltage. For some applications, the magnitude of the ripple may be an important factor. The magnitude of the ripple may affect the frequency at which the switch S1 is turned on/off. In exemplary embodiments, the switching frequency of S1 may be proportional to the losses of the rectifier. In exemplary embodiments, the value of the RHYST resistor may be selected to provide acceptable tradeoffs between the magnitude of the ripple and switching losses associated with switch S1.
In exemplary embodiments, the ripple at the output VDC may be reduced by additional components 210 which may include capacitors and/or inductors.
In exemplary embodiments, one or more of the resistors may be a variable resistor and may be an electronically adjustable resistor. The values of the resistors may be adjusted to change the operating point of the rectifier. The resistor values may be adjusted to change the maximum voltage, the hysteresis, the magnitude of the ripple and the like. In exemplary embodiments, the values may be adjusted based on the operating conditions of the electronic device, characteristics of the oscillating energy supply, and the like. For example, the value of the RHYST resistor may be adjusted based on the peak voltage of the oscillating energy source. The value of RHYST may be increased as the peak voltage of the oscillating energy source decreases.
In exemplary embodiments, a voltage reference for the comparator may be generated by an alternate circuit, DC-to-DC converters, a microprocessor with suitable analog-to-digital and digital-to-analog interfaces, or a battery instead or in addition to the resistor network described herein. In some embodiments, an electronic device may include a battery. The output voltage of the battery may be used as a reference voltage.
In exemplary embodiments, the analog circuits shown in
In exemplary embodiments, the functionality of the switching control element 204 may be implemented using a microprocessor and/or other digital and analog logic components. For example, similar functionality to the comparator may be implemented using analog to digital converters and a microprocessor. Analog to digital converters may be used to sample the voltage of the output of the rectifying diode D1 and digitize the readings. The readings may be monitored and analyzed by a microcontroller. The readings may be monitored to determine if an upper/lower bound voltage threshold has been reached. When a threshold is reached, a control signal for the shorting circuitry may be generated by the microcontroller. In exemplary embodiments, the microcontroller and/or digital logic may track the frequency, timing, and/or other characteristics of the rectified voltage and may adjust the upper/lower bound thresholds. For example, when the upper/lower bound threshold values are reached at a frequency that is within a magnitude of the frequency of the oscillating energy source, the microcontroller may adjust the upper and/or lower bound threshold values to decrease the frequency.
In exemplary embodiments, the activation/deactivation of the shorting element 212 may be lower than the frequency of the oscillating energy source 208. In exemplary embodiments, the activation/deactivation of the shorting element 212 may be triggered primarily based on the upper/lower bound voltage thresholds. In exemplary embodiments, the activation/deactivation of the shorting element 212 may be synchronized with the oscillating energy source 208 to provide zero voltage/current switching at the shorting element 212. Switch S1, for example, may be activated/deactivated during zero voltage/current conditions of the oscillating energy source 208.
The foregoing descriptions of
The foregoing descriptions of
In exemplary embodiments, an asynchronous rectifier may be directly coupled to an oscillating energy source. In exemplary embodiments, the oscillating energy source may include a magnetic resonator that is part of a wireless energy transfer system. The magnetic resonator may receive energy from another source via oscillating magnetic fields. In exemplary embodiments, the resonator may be coupled to the asynchronous rectifier via a matching network. The matching network connecting the resonator and the asynchronous rectifier may be configured with the operation of the rectifier in mind. The asynchronous rectifier may have different impedance characteristics depending on the activation/deactivation of the shorting element. Changes in the impedance of the asynchronous rectifier may affect the performance of the resonator and affect the efficiency of wireless energy transfer.
In exemplary embodiments, impedance matching network 402 may be configured to minimize losses when the shorting element is activated. When the shorting element is activated no power is going to the electronic device at the VDC output, and the effective efficiency during this time may be zero.
As discussed above, the desired impedance characteristics to ensure efficient wireless power transfer may be achieved by impedance matching network 402. In exemplary embodiments, the elements of the impedance network X1 406 and X3 404 may provide an inductance and may include components such as inductors. Element X2 408 may provide a capacitance and may include components such as capacitors. In embodiments, the elements of the impedance matching network 402 may be selected to maximize the impedance RIN,SHORT, via the following equation:
while satisfying
Desktop Applications
In exemplary embodiments, the asynchronous rectifier designs and methods described herein may be applied to wireless energy transfer in a variety of applications, including desktop applications.
A wireless energy transfer system for desktop applications may power or charge a plurality of electronic devices at the same time. The system may include one or more wireless energy sources to transfer energy to one or more wireless energy receivers or devices. Energy may be transferred to devices positioned on a desk, table, shelf, lab bench, or other surface. Electronic devices such as laptops, smartphones, tablets, computer peripherals, and the like positioned on or near the surface may wirelessly receive energy from an energy source below, near, or on top of the surface. A source may include one or more magnetic resonators that, during operation, couple and transmit power via an oscillating magnetic field to one or more electronic device magnetic resonators. The power transmitted may be sufficient and/or efficient enough to directly power or recharge electronic devices.
Wireless power transfer on desktops, tabletops, and in similar environments can be challenging using conventional methods due to the large combination of arrangements or use cases that may result. For example, a laptop, mouse, phone, and monitor may need to be powered or charged at the same time. The physical arrangement of the electronics on a wirelessly powered desktop or area may determine the efficiency of power transfer. The position, materials, distance of one device may affect the energy delivery to all the devices. The position of one device may change the power input to one or more devices. As devices are repositioned, their coupling with the source may change, affecting the efficiency and power input to the other devices.
In exemplary embodiments, the asynchronous rectifier described herein may be used to rectify and regulate the electrical energy received by the magnetic resonators of the electronic devices in a wireless power transfer system. In exemplary embodiments, the asynchronous rectifier may be configured to provide constant voltage/current to the electronic devices even when the power input to the resonators is changing and may have a wide variance. By using the asynchronous rectifiers disclosed herein, the power input variance to the electronic devices can be reduced. Reduced power variance may result in more efficient energy transfer and in less energy lost in regulating and rectifying components.
In exemplary embodiments, the power input variations in a desktop wireless energy transfer system may be reduced through appropriate resonator designs. In desktop applications, the design of resonators may take into account lossy environments, varying proximity of one or more devices to one or more sources, human interfacing including user safety, mobility of the system or the system's parts, and similar criteria. In exemplary embodiments, resonator design may vary according to the number of devices requiring power as well as the types of devices. In further exemplary embodiments, resonator designs may balance positional tolerance (maintaining a level of efficiency over varying positions) with achieving high efficiency at a single position or orientation.
In exemplary embodiments, one or more tunable capacitors may be part of a resonator and/or an impedance matching network. One or more tunable capacitors may be part of a source, a device, and/or a repeater in a wireless energy transfer system. Capacitance may be tuned, for example, in response to varying proximity of one or more devices to one or more sources, lossy environments, human interfacing including user safety, and/or mobility of the system or the system's parts. For example, a capacitance in a source may be tuned in response to the positioning of a device relative to the source. In another example, a capacitance in a source may be tuned in response to a lossy object, such as a metallic object, being brought near the wireless energy transfer system. In an exemplary embodiment, a tunable capacitor may include a bank of capacitors, where the capacitance of the bank is controlled by a switch. In some exemplary embodiments, a relay may be used to tune the capacitance. A switch or relay or similar component may be activated in response to a current or voltage measurement and may be controlled via a microcontroller. For example, current measurements may be taken at two points of the source-side impedance matching circuitry. In exemplary embodiments, the phase difference between the two current measurements may serve as a control signal for a relay (or switch or comparable component). The number of capacitors in a bank may be determined, for example, by cost, spatial constraints, power requirements, and/or degree of tunability. In exemplary embodiments, a tunable capacitor may be an augmentation to a fixed capacitance and may serve as a “fine-tuning” mechanism for tuning purposes. In exemplary embodiments, wireless desktop configurations may include a single device resonator in each device and a single source resonator.
A desktop configuration with one source resonator coil 602 and one device resonator coil 606 attached to a device 604 is shown in
In exemplary embodiments, the coupling k between the source coil 602 and device coil 606 may be affected by relative position of the device coil 606 with respect to the device 604. Device resonator coil 606 may be positioned in the middle of the device 604 as shown in
Wireless desktop configurations may include devices with more than one device resonator coil. Multiple device resonator coils may be positioned on or around a device. Multiple resonator coils may be selectively used and/or used in combination depending on their coupling, orientation, and/or position relative to the source resonator coil. In exemplary embodiments, devices with multiple device resonator coils may improve coupling with the source resonator coil and reduce or eliminate poor coupling due to null regions under various use-case scenarios and positions/orientations.
An exemplary desktop configuration with one source resonator coil 902 and two device resonator coils 904, 906 is shown in
In exemplary embodiments, in wireless desktop configurations that include more than one device or source resonator coil, the multiple resonator coils may be positioned side by side to cover an area. In some embodiments, adjacent resonator coils may be positioned to overlap one another. For example, two source resonator coils may be placed such that coupling between them is minimized, i.e. they are in each other's dead spots. Such configurations are described further, for example, in U.S. Patent Application Publication No. 2013/0175874, the entire contents of which are incorporated herein by reference. The source resonator coils may be driven 90 degrees out of phase or driven at different times or with different phases with respect to each other to achieve spatially uniform coupling or more uniform magnetic field density between the source resonators and the device.
The design of a resonator coil may also impact the overall efficiency of power transfer in a wireless power transfer system. Design parameters of a device resonator coil may include size, shape, thickness, number of turns, density of the turns, span size, number of coils, and the like.
Resonators for use in desktop applications can, in some embodiments, include two sets of loops formed by one contiguous conductor. The two sets of loops can be positioned side by side and may spiral inwards in the same direction. Each loop in each set of loops can be positioned substantially off-center from other loops in the set, each inner loop of each set of conductor loops can be positioned off-center from the outer loop away from the second set of loops.
For example,
In general, the resonator coil may be “anti-symmetric” along its length 1314. That is, the left side of the resonator coil may be similar to the right side of the coil but rotated 180 degrees. The span of the coil may be similar along the outermost edges, but more spread out in the center. The thickness of the coil may vary along its length; traces along the outer edges can be thinner, while traces in the middle region of the coil can be thicker. The density of the coil traces at the outer edge of the resonator coil can vary compared to the inner area of the resonator coil, to allow for generation of a more uniform magnetic field over the overall area of the resonator coil.
In exemplary embodiments, the resonator coil loops may have a rectangular shape as shown in
In exemplary embodiments, the resonator coils shown in
In exemplary embodiments for use in desktop configurations, for example, metallic materials with good electrical conductivity such as aluminum, copper, gold, and the like may be used to shield a resonator coil. Sheets of an electrical conductor material may be placed under, near, or over a resonator coil to shape and/or minimize loss of the magnetic field near lossy materials. The size of the sheet of the conductor may be larger than the size of the resonator coils. The sheets of conductor may be positioned between a device and a device resonator coil.
In exemplary embodiments, magnetic material such as ferrite may be used to shield the coil from metallic components of devices and sources, and electronics or other lossy materials. Sheets, tiles, pieces, and other fragments of magnetic material may be positioned between the resonator coils and lossy materials. In exemplary embodiments, the magnetic material may be shaped or configured with flaps or edges that overhang and/or wrap around the device coil.
In exemplary embodiments, greater coil-to-coil coupling efficiencies may be gained using a combination of methods.
In exemplary embodiments, magnetic material may be used to shape magnetic fields to preserve or increase wireless power coupling efficiency.
In exemplary embodiments, the width of a bridge made of magnetic material may also affect efficiency of energy transfer.
In exemplary embodiments, the shape of magnetic material may be varied to realize certain performance and/or system parameters such as energy transfer efficiency, resonator weight, resonator cost, and the like. For example,
In a wireless energy transfer system, highly conducting and/or metallic materials such as aluminum and/or copper may be used for shielding a resonator to attain high efficiency and coupling and to preserve the high quality factor of the magnetic resonators. In exemplary embodiments, these materials may be placed under, near, or over a resonator coil to shape and minimize loss of the magnetic field near lossy materials, such as other metals.
In exemplary embodiments, one or more amplifiers may be used to drive one or more source resonators. The use of more than one amplifier may be advantageous for actively tuning resonator circuits and detecting resonator coils that are being used for power transfer. An additional advantage of using more than one amplifier may be to provide protection against the back driving of current.
In some embodiments, “automatic tuning” can occur when a device is positioned on or near a source that has inductors 2808, 2812, 2816 in parallel. A device may be able to charge by “detuning” the inductor that it is closer to. For example, in
In other embodiments, the device may be able to charge by “tuning” the inductor that it is closer to. For example, the inductors 2808, 2812, 2816 can each be driven by a power source (e.g., amplifier 2802). These inductors have impedances Z1, Z2, and Z3, respectively, and can be considered “detuned” in the absence of a device placed in proximity to the inductors. However, when a device is positioned on or near one of the inductors, mutual coupling between the device and the inductor can modify the impedance of the source resonator represented by the inductor, which “tunes” the inductor. For example, referring to
In general, impedance characteristics of source 2800 are controlled through appropriate selection of various parameters of resonator (e.g., inductor) coils, including the size, shape, thickness, number of turns, and density of turns. In some embodiments, inductors 2808, 2812, and 2816 are designed so that, in the absence of a device positioned in proximity to any of the inductors, the impedances Z1, Z2, and Z3 vary by 10% or less (e.g., 5% or less, 1% or less).
In certain embodiments, inductors 2808, 2812, and 2816 are designed so that when a device is positioned on top of, or near to, a particular one of the inductors, the impedance of that inductor is significantly reduced, thereby causing wireless power transfer between the resonator represented by that inductor and the device, in strong preference to wireless power transfer from the resonators represented by the other inductors. Continuing the example from above, in some embodiments, after a device is positioned on or near inductor 2812, the impedance Z2 is reduced so that the impedances Z1 and Z3 of inductors 2808 and 2816 are each larger than Z2 by a factor of 2 or more (e.g., by a factor of 5 or more, by a factor of 10 or more).
The source shown in
For illustrative purposes, the foregoing description focuses on the use of devices, components, and methods in desktop wireless power transfer applications, e.g., power transfer to electronic devices such as laptops, smartphones, and other mobile electronic devices that are commonly placed on desktops, tabletops, and other user work surfaces.
More generally, however, it should be understood that devices that can receive power using the devices, components, and methods disclosed herein can include a wide range of electrical devices, and are not limited to those devices described for illustrative purposes herein. In general, any portable electronic device, such as a cell phone, keyboard, mouse, radio, camera, mobile handset, headset, watch, headphones, dongles, multifunction cards, food and drink accessories, and the like, and any workspace electronic devices such as printers, clocks, lamps, headphones, external drives, projectors, digital photo frames, additional displays, and the like, can receive power wirelessly using the devices, components, and methods disclosed herein.
In this disclosure, certain circuit components such as capacitors, inductors, resistors, diodes, and switches are referred to as circuit “components” or “elements.” The disclosure also refers to series and parallel combinations of these components or elements as elements, networks, topologies, circuits, and the like. Further, combinations of capacitors, diodes, transistors, and/or switches are described. More generally, however, where a single component or a specific network of components is described herein, it should be understood that alternative embodiments may include networks for elements, alternative networks, and/or the like.
The embodiments described herein merely serve to illustrate, but not limit, the features of the disclosure. Other embodiments are also within the scope of the disclosure, which is determined by the claims.
This application claims priority to U.S. Provisional Patent Application No. 62/015,078, filed on Jun. 20, 2014, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
645576 | Tesla | Mar 1900 | A |
649621 | Tesla | May 1900 | A |
787412 | Tesla | Apr 1905 | A |
1119732 | Tesla | Dec 1914 | A |
2133494 | Waters | Oct 1938 | A |
3517350 | Beaver | Jun 1970 | A |
3535543 | Dailey | Oct 1970 | A |
3780425 | Penn et al. | Dec 1973 | A |
3871176 | Schukei | Mar 1975 | A |
4088999 | Fletcher et al. | May 1978 | A |
4095998 | Hanson | Jun 1978 | A |
4180795 | Matsuda et al. | Dec 1979 | A |
4280129 | Wells | Jul 1981 | A |
4450431 | Hochstein | May 1984 | A |
4588978 | Allen | May 1986 | A |
5027709 | Slagle | Jul 1991 | A |
5033295 | Schmid et al. | Jul 1991 | A |
5034658 | Hiering et al. | Jul 1991 | A |
5053774 | Schuermann et al. | Oct 1991 | A |
5070293 | Ishii et al. | Dec 1991 | A |
5118997 | El-Hamamsy | Jun 1992 | A |
5216402 | Carosa | Jun 1993 | A |
5229652 | Hough | Jul 1993 | A |
5287112 | Schuermann | Feb 1994 | A |
5341083 | Klontz et al. | Aug 1994 | A |
5367242 | Hulman | Nov 1994 | A |
5374930 | Schuermann | Dec 1994 | A |
5408209 | Tanzer et al. | Apr 1995 | A |
5437057 | Richley et al. | Jul 1995 | A |
5455467 | Young et al. | Oct 1995 | A |
5493691 | Barrett | Feb 1996 | A |
5522856 | Reineman | Jun 1996 | A |
5528113 | Boys et al. | Jun 1996 | A |
5541604 | Meier | Jul 1996 | A |
5550452 | Shirai et al. | Aug 1996 | A |
5565763 | Arrendale et al. | Oct 1996 | A |
5630835 | Brownlee | May 1997 | A |
5697956 | Bornzin | Dec 1997 | A |
5703461 | Minoshima et al. | Dec 1997 | A |
5703573 | Fujimoto et al. | Dec 1997 | A |
5710413 | King et al. | Jan 1998 | A |
5742471 | Barbee, Jr. et al. | Apr 1998 | A |
5821728 | Sshwind | Oct 1998 | A |
5821731 | Kuki et al. | Oct 1998 | A |
5864323 | Berthon | Jan 1999 | A |
5898579 | Boys et al. | Apr 1999 | A |
5903134 | Takeuchi | May 1999 | A |
5923544 | Urano | Jul 1999 | A |
5940509 | Jovanovich et al. | Aug 1999 | A |
5957956 | Kroll et al. | Sep 1999 | A |
5959245 | Moe et al. | Sep 1999 | A |
5986895 | Stewart et al. | Nov 1999 | A |
5993996 | Firsich | Nov 1999 | A |
5999308 | Nelson et al. | Dec 1999 | A |
6012659 | Nakazawa et al. | Jan 2000 | A |
6047214 | Mueller et al. | Apr 2000 | A |
6066163 | John | May 2000 | A |
6067473 | Greeninger et al. | May 2000 | A |
6108579 | Snell et al. | Aug 2000 | A |
6127799 | Krishnan | Oct 2000 | A |
6176433 | Uesaka et al. | Jan 2001 | B1 |
6184651 | Fernandez et al. | Feb 2001 | B1 |
6207887 | Bass et al. | Mar 2001 | B1 |
6232841 | Bartlett et al. | May 2001 | B1 |
6238387 | Miller, III | May 2001 | B1 |
6252762 | Amatucci | Jun 2001 | B1 |
6436299 | Baarman et al. | Aug 2002 | B1 |
6450946 | Forsell | Sep 2002 | B1 |
6452465 | Brown et al. | Sep 2002 | B1 |
6459218 | Boys et al. | Oct 2002 | B2 |
6473028 | Luc | Oct 2002 | B1 |
6483202 | Boys | Nov 2002 | B1 |
6515878 | Meins et al. | Feb 2003 | B1 |
6535133 | Gohara | Mar 2003 | B2 |
6561975 | Pool et al. | May 2003 | B1 |
6563425 | Nicholson et al. | May 2003 | B2 |
6597076 | Scheible et al. | Jul 2003 | B2 |
6609023 | Fischell et al. | Aug 2003 | B1 |
6631072 | Paul et al. | Oct 2003 | B1 |
6650227 | Bradin | Nov 2003 | B1 |
6664770 | Bartels | Dec 2003 | B1 |
6673250 | Kuennen et al. | Jan 2004 | B2 |
6683256 | Kao | Jan 2004 | B2 |
6696647 | Ono et al. | Feb 2004 | B2 |
6703921 | Wuidart et al. | Mar 2004 | B1 |
6731071 | Baarman | May 2004 | B2 |
6749119 | Scheible et al. | Jun 2004 | B2 |
6772011 | Dolgin | Aug 2004 | B2 |
6798716 | Charych | Sep 2004 | B1 |
6803744 | Sabo | Oct 2004 | B1 |
6806649 | Mollema et al. | Oct 2004 | B2 |
6812645 | Baarman | Nov 2004 | B2 |
6825620 | Kuennen et al. | Nov 2004 | B2 |
6831417 | Baarman | Dec 2004 | B2 |
6839035 | Addonisio et al. | Jan 2005 | B1 |
6844702 | Giannopoulos et al. | Jan 2005 | B2 |
6856291 | Mickle et al. | Feb 2005 | B2 |
6858970 | Malkin et al. | Feb 2005 | B2 |
6906495 | Cheng et al. | Jun 2005 | B2 |
6917163 | Baarman | Jul 2005 | B2 |
6917431 | Soljacic et al. | Jul 2005 | B2 |
6937130 | Scheible et al. | Aug 2005 | B2 |
6960968 | Odendaal et al. | Nov 2005 | B2 |
6961619 | Casey | Nov 2005 | B2 |
6967462 | Landis | Nov 2005 | B1 |
6975198 | Baarman | Dec 2005 | B2 |
6988026 | Breed et al. | Jan 2006 | B2 |
7027311 | Vanderelli et al. | Apr 2006 | B2 |
7035076 | Stevenson | Apr 2006 | B1 |
7042196 | Ka-Lai et al. | May 2006 | B2 |
7069064 | Govorgian et al. | Jun 2006 | B2 |
7084605 | Mickle et al. | Aug 2006 | B2 |
7116200 | Baarman et al. | Oct 2006 | B2 |
7118240 | Baarman et al. | Oct 2006 | B2 |
7126450 | Baarman et al. | Oct 2006 | B2 |
7127293 | MacDonald | Oct 2006 | B2 |
7132918 | Baarman et al. | Nov 2006 | B2 |
7147604 | Allen et al. | Dec 2006 | B1 |
7180248 | Kuennen et al. | Feb 2007 | B2 |
7191007 | Desai et al. | Mar 2007 | B2 |
7193418 | Freytag | Mar 2007 | B2 |
D541322 | Garrett et al. | Apr 2007 | S |
7212414 | Baarman | May 2007 | B2 |
7233137 | Nakamura et al. | Jun 2007 | B2 |
D545855 | Garrett et al. | Jul 2007 | S |
7239110 | Cheng et al. | Jul 2007 | B2 |
7248017 | Cheng et al. | Jul 2007 | B2 |
7251527 | Lyden | Jul 2007 | B2 |
7288918 | DiStefano | Oct 2007 | B2 |
7340304 | MacDonald | Mar 2008 | B2 |
7375492 | Calhoon et al. | May 2008 | B2 |
7375493 | Calhoon et al. | May 2008 | B2 |
7378817 | Calhoon et al. | May 2008 | B2 |
7382636 | Baarman et al. | Jun 2008 | B2 |
7385357 | Kuennen et al. | Jun 2008 | B2 |
7443135 | Cho | Oct 2008 | B2 |
7462951 | Baarman | Dec 2008 | B1 |
7466213 | Lobl et al. | Dec 2008 | B2 |
7471062 | Bruning | Dec 2008 | B2 |
7474058 | Baarman | Jan 2009 | B2 |
7492247 | Schmidt et al. | Feb 2009 | B2 |
7514818 | Abe et al. | Apr 2009 | B2 |
7518267 | Baarman | Apr 2009 | B2 |
7521890 | Lee et al. | Apr 2009 | B2 |
7525283 | Cheng et al. | Apr 2009 | B2 |
7545337 | Guenther | Jun 2009 | B2 |
7554316 | Stevens et al. | Jun 2009 | B2 |
7599743 | Hassler, Jr. et al. | Oct 2009 | B2 |
7615936 | Baarman et al. | Nov 2009 | B2 |
7639514 | Baarman | Dec 2009 | B2 |
7741734 | Joannopoulos et al. | Jun 2010 | B2 |
7795708 | Katti | Sep 2010 | B2 |
7825543 | Karalis et al. | Nov 2010 | B2 |
7825544 | Jansen et al. | Nov 2010 | B2 |
7835417 | Heideman et al. | Nov 2010 | B2 |
7843288 | Lee et al. | Nov 2010 | B2 |
7844306 | Shearer et al. | Nov 2010 | B2 |
7863859 | Soar | Jan 2011 | B2 |
7880337 | Farkas | Feb 2011 | B2 |
7884697 | Wei et al. | Feb 2011 | B2 |
7885050 | Lee | Feb 2011 | B2 |
7919886 | Tanaka | Apr 2011 | B2 |
7923870 | Jin | Apr 2011 | B2 |
7932798 | Tolle et al. | Apr 2011 | B2 |
7948209 | Jung | May 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7963941 | Wilk | Jun 2011 | B2 |
7969045 | Schmidt et al. | Jun 2011 | B2 |
7994880 | Chen et al. | Aug 2011 | B2 |
7999506 | Hollar et al. | Aug 2011 | B1 |
8022576 | Joannopoulos et al. | Sep 2011 | B2 |
8035255 | Kurs et al. | Oct 2011 | B2 |
8076800 | Joannopoulos et al. | Dec 2011 | B2 |
8076801 | Karalis et al. | Dec 2011 | B2 |
8084889 | Joannopoulos et al. | Dec 2011 | B2 |
8097983 | Karalis et al. | Jan 2012 | B2 |
8106539 | Schatz et al. | Jan 2012 | B2 |
8115448 | John | Feb 2012 | B2 |
8131378 | Greenberg et al. | Mar 2012 | B2 |
8178995 | Amano et al. | May 2012 | B2 |
8193769 | Azancot et al. | Jun 2012 | B2 |
8212414 | Howard et al. | Jul 2012 | B2 |
8260200 | Shimizu et al. | Sep 2012 | B2 |
8304935 | Karalis et al. | Nov 2012 | B2 |
8324759 | Karalis et al. | Dec 2012 | B2 |
8334620 | Park et al. | Dec 2012 | B2 |
8362651 | Hamam et al. | Jan 2013 | B2 |
8395282 | Joannopoulos et al. | Mar 2013 | B2 |
8395283 | Joannopoulos et al. | Mar 2013 | B2 |
8400017 | Kurs et al. | Mar 2013 | B2 |
8400018 | Joannopoulos et al. | Mar 2013 | B2 |
8400019 | Joannopoulos et al. | Mar 2013 | B2 |
8400020 | Joannopoulos et al. | Mar 2013 | B2 |
8400021 | Joannopoulos et al. | Mar 2013 | B2 |
8400022 | Joannopoulos et al. | Mar 2013 | B2 |
8400023 | Joannopoulos et al. | Mar 2013 | B2 |
8400024 | Joannopoulos et al. | Mar 2013 | B2 |
8410636 | Kurs et al. | Apr 2013 | B2 |
8441154 | Karalis et al. | May 2013 | B2 |
8457547 | Meskens | Jun 2013 | B2 |
8461719 | Kesler et al. | Jun 2013 | B2 |
8461720 | Kurs et al. | Jun 2013 | B2 |
8461721 | Karalis et al. | Jun 2013 | B2 |
8461722 | Kurs et al. | Jun 2013 | B2 |
8461817 | Martin et al. | Jun 2013 | B2 |
8466583 | Karalis et al. | Jun 2013 | B2 |
8471410 | Karalis et al. | Jun 2013 | B2 |
8476788 | Karalis et al. | Jul 2013 | B2 |
8482157 | Cook et al. | Jul 2013 | B2 |
8482158 | Kurs et al. | Jul 2013 | B2 |
8487480 | Kesler et al. | Jul 2013 | B1 |
8497601 | Hall et al. | Jul 2013 | B2 |
8552592 | Schatz et al. | Oct 2013 | B2 |
8569914 | Karalis et al. | Oct 2013 | B2 |
8587153 | Schatz et al. | Nov 2013 | B2 |
8587155 | Giler et al. | Nov 2013 | B2 |
8598743 | Hall et al. | Dec 2013 | B2 |
8618696 | Karalis et al. | Dec 2013 | B2 |
8629578 | Kurs et al. | Jan 2014 | B2 |
8643326 | Campanella et al. | Feb 2014 | B2 |
20020032471 | Loftin et al. | Mar 2002 | A1 |
20020105343 | Scheible et al. | Aug 2002 | A1 |
20020118004 | Scheible et al. | Aug 2002 | A1 |
20020130642 | Ettes et al. | Sep 2002 | A1 |
20020167294 | Odaohhara | Nov 2002 | A1 |
20030038641 | Scheible | Feb 2003 | A1 |
20030062794 | Scheible et al. | Apr 2003 | A1 |
20030062980 | Scheible et al. | Apr 2003 | A1 |
20030071034 | Thompson et al. | Apr 2003 | A1 |
20030124050 | Yadav et al. | Jul 2003 | A1 |
20030126948 | Yadav et al. | Jul 2003 | A1 |
20030160590 | Schaefer et al. | Aug 2003 | A1 |
20030199778 | Mickle et al. | Oct 2003 | A1 |
20030214255 | Baarman et al. | Nov 2003 | A1 |
20040000974 | Odenaal et al. | Jan 2004 | A1 |
20040026998 | Henriott et al. | Feb 2004 | A1 |
20040100338 | Clark | May 2004 | A1 |
20040113847 | Qi et al. | Jun 2004 | A1 |
20040130425 | Dayan et al. | Jul 2004 | A1 |
20040130915 | Baarman | Jul 2004 | A1 |
20040130916 | Baaman | Jul 2004 | A1 |
20040142733 | Parise | Jul 2004 | A1 |
20040150934 | Baarman | Aug 2004 | A1 |
20040189246 | Bulai et al. | Sep 2004 | A1 |
20040201361 | Koh et al. | Oct 2004 | A1 |
20040222751 | Mollema et al. | Nov 2004 | A1 |
20040227057 | Tuominen et al. | Nov 2004 | A1 |
20040232845 | Baarman | Nov 2004 | A1 |
20040233043 | Yazawa et al. | Nov 2004 | A1 |
20040267501 | Freed et al. | Dec 2004 | A1 |
20050007067 | Baarman et al. | Jan 2005 | A1 |
20050021134 | Opie | Jan 2005 | A1 |
20050027192 | Govari et al. | Feb 2005 | A1 |
20050033382 | Single | Feb 2005 | A1 |
20050085873 | Gord et al. | Apr 2005 | A1 |
20050093475 | Kuennen et al. | May 2005 | A1 |
20050104064 | Hegarty et al. | May 2005 | A1 |
20050104453 | Vanderelli et al. | May 2005 | A1 |
20050116650 | Baarman | Jun 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050122058 | Baarman et al. | Jun 2005 | A1 |
20050122059 | Baarman et al. | Jun 2005 | A1 |
20050125093 | Kikuchi et al. | Jun 2005 | A1 |
20050127849 | Baarman et al. | Jun 2005 | A1 |
20050127850 | Baarman et al. | Jun 2005 | A1 |
20050127866 | Hamilton et al. | Jun 2005 | A1 |
20050135122 | Cheng et al. | Jun 2005 | A1 |
20050140482 | Cheng et al. | Jun 2005 | A1 |
20050151511 | Chary | Jul 2005 | A1 |
20050156560 | Shimaoka et al. | Jul 2005 | A1 |
20050189945 | Reidemian | Sep 2005 | A1 |
20050194926 | DiStefano | Sep 2005 | A1 |
20050253152 | Klimov et al. | Nov 2005 | A1 |
20050288739 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050288740 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050288741 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050288742 | Giordano et al. | Dec 2005 | A1 |
20060001509 | Gibbs | Jan 2006 | A1 |
20060010902 | Trinh et al. | Jan 2006 | A1 |
20060022636 | Xian et al. | Feb 2006 | A1 |
20060053296 | Busboom et al. | Mar 2006 | A1 |
20060061323 | Cheng et al. | Mar 2006 | A1 |
20060066443 | Hall | Mar 2006 | A1 |
20060090956 | Peshkovskiy et al. | May 2006 | A1 |
20060132045 | Baarman | Jun 2006 | A1 |
20060164866 | Vanderelli et al. | Jul 2006 | A1 |
20060181242 | Freed et al. | Aug 2006 | A1 |
20060184209 | John et al. | Aug 2006 | A1 |
20060184210 | Singhal et al. | Aug 2006 | A1 |
20060185809 | Elfrink et al. | Aug 2006 | A1 |
20060199620 | Greene et al. | Sep 2006 | A1 |
20060202665 | Hsu | Sep 2006 | A1 |
20060205381 | Beart et al. | Sep 2006 | A1 |
20060214626 | Nilson et al. | Sep 2006 | A1 |
20060219448 | Grieve et al. | Oct 2006 | A1 |
20060238365 | Vecchione et al. | Oct 2006 | A1 |
20060270440 | Shearer et al. | Nov 2006 | A1 |
20060281435 | Shearer et al. | Dec 2006 | A1 |
20070010295 | Greene et al. | Jan 2007 | A1 |
20070013483 | Stewart | Jan 2007 | A1 |
20070016089 | Fischell et al. | Jan 2007 | A1 |
20070021140 | Keyes, IV et al. | Jan 2007 | A1 |
20070024246 | Flaugher | Feb 2007 | A1 |
20070064406 | Beart | Mar 2007 | A1 |
20070069687 | Suzuki | Mar 2007 | A1 |
20070096875 | Waterhouse et al. | May 2007 | A1 |
20070105429 | Kohl et al. | May 2007 | A1 |
20070117596 | Greene et al. | May 2007 | A1 |
20070126650 | Guenther | Jun 2007 | A1 |
20070145830 | Lee et al. | Jun 2007 | A1 |
20070164839 | Naito | Jul 2007 | A1 |
20070171681 | Baarman | Jul 2007 | A1 |
20070176840 | Pristas et al. | Aug 2007 | A1 |
20070178945 | Cook et al. | Aug 2007 | A1 |
20070182367 | Partovi | Aug 2007 | A1 |
20070208263 | John et al. | Sep 2007 | A1 |
20070222542 | Joannopoulos et al. | Sep 2007 | A1 |
20070257636 | Phillips et al. | Nov 2007 | A1 |
20070267918 | Gyland | Nov 2007 | A1 |
20070276538 | Kjellsson et al. | Nov 2007 | A1 |
20080012569 | Hall et al. | Jan 2008 | A1 |
20080014897 | Cook et al. | Jan 2008 | A1 |
20080030415 | Homan et al. | Feb 2008 | A1 |
20080036588 | Iverson et al. | Feb 2008 | A1 |
20080047727 | Sexton et al. | Feb 2008 | A1 |
20080051854 | Bulkes et al. | Feb 2008 | A1 |
20080067874 | Tseng | Mar 2008 | A1 |
20080132909 | Jascob et al. | Jun 2008 | A1 |
20080154331 | John et al. | Jun 2008 | A1 |
20080176521 | Singh et al. | Jul 2008 | A1 |
20080191638 | Kuennen et al. | Aug 2008 | A1 |
20080197710 | Kreitz et al. | Aug 2008 | A1 |
20080197802 | Onishi et al. | Aug 2008 | A1 |
20080211320 | Cook et al. | Sep 2008 | A1 |
20080238364 | Weber et al. | Oct 2008 | A1 |
20080255901 | Carroll et al. | Oct 2008 | A1 |
20080265684 | Farkas | Oct 2008 | A1 |
20080266748 | Lee | Oct 2008 | A1 |
20080272860 | Pance | Nov 2008 | A1 |
20080273242 | Woodgate et al. | Nov 2008 | A1 |
20080278264 | Karalis et al. | Nov 2008 | A1 |
20080291277 | Jacobsen et al. | Nov 2008 | A1 |
20080300657 | Stultz | Dec 2008 | A1 |
20080300660 | John | Dec 2008 | A1 |
20090010028 | Baarmen et al. | Jan 2009 | A1 |
20090015075 | Cook et al. | Jan 2009 | A1 |
20090033280 | Choi et al. | Feb 2009 | A1 |
20090033564 | Cook et al. | Feb 2009 | A1 |
20090038623 | Farbarik et al. | Feb 2009 | A1 |
20090045772 | Cook et al. | Feb 2009 | A1 |
20090051224 | Cook et al. | Feb 2009 | A1 |
20090058189 | Cook et al. | Mar 2009 | A1 |
20090058361 | John | Mar 2009 | A1 |
20090067198 | Graham et al. | Mar 2009 | A1 |
20090072627 | Cook et al. | Mar 2009 | A1 |
20090072628 | Cook et al. | Mar 2009 | A1 |
20090072629 | Cook et al. | Mar 2009 | A1 |
20090072782 | Randall | Mar 2009 | A1 |
20090079268 | Cook et al. | Mar 2009 | A1 |
20090079387 | Jin et al. | Mar 2009 | A1 |
20090085408 | Bruhn | Apr 2009 | A1 |
20090085706 | Baarman et al. | Apr 2009 | A1 |
20090096413 | Patovi et al. | Apr 2009 | A1 |
20090102292 | Cook et al. | Apr 2009 | A1 |
20090108679 | Porwal | Apr 2009 | A1 |
20090108997 | Patterson et al. | Apr 2009 | A1 |
20090115628 | Dicks et al. | May 2009 | A1 |
20090127937 | Widmer et al. | May 2009 | A1 |
20090134712 | Cook et al. | May 2009 | A1 |
20090146892 | Shimizu et al. | Jun 2009 | A1 |
20090153273 | Chen | Jun 2009 | A1 |
20090160261 | Elo | Jun 2009 | A1 |
20090161078 | Wu et al. | Jun 2009 | A1 |
20090167449 | Cook et al. | Jul 2009 | A1 |
20090174263 | Baarman et al. | Jul 2009 | A1 |
20090179502 | Cook et al. | Jul 2009 | A1 |
20090188396 | Hofmann et al. | Jul 2009 | A1 |
20090189458 | Kawasaki | Jul 2009 | A1 |
20090195332 | Joannopoulos et al. | Aug 2009 | A1 |
20090195333 | Joannopoulos et al. | Aug 2009 | A1 |
20090212636 | Cook et al. | Aug 2009 | A1 |
20090213028 | Cook et al. | Aug 2009 | A1 |
20090218884 | Soar | Sep 2009 | A1 |
20090224608 | Cook et al. | Sep 2009 | A1 |
20090224609 | Cook et al. | Sep 2009 | A1 |
20090224723 | Tanabe | Sep 2009 | A1 |
20090224856 | Karalis et al. | Sep 2009 | A1 |
20090230777 | Baarman et al. | Sep 2009 | A1 |
20090237194 | Waffenschmidt et al. | Sep 2009 | A1 |
20090243394 | Levine | Oct 2009 | A1 |
20090243397 | Cook et al. | Oct 2009 | A1 |
20090251008 | Sugaya | Oct 2009 | A1 |
20090261778 | Kook | Oct 2009 | A1 |
20090267558 | Jung | Oct 2009 | A1 |
20090267709 | Joannopoulos et al. | Oct 2009 | A1 |
20090267710 | Joannopoulos et al. | Oct 2009 | A1 |
20090271047 | Wakamatsu | Oct 2009 | A1 |
20090271048 | Wakamatsu | Oct 2009 | A1 |
20090273242 | Cook | Nov 2009 | A1 |
20090273318 | Rondoni et al. | Nov 2009 | A1 |
20090281678 | Wakamatsu | Nov 2009 | A1 |
20090284082 | Mohammadian | Nov 2009 | A1 |
20090284083 | Karalis et al. | Nov 2009 | A1 |
20090284218 | Mohammadian et al. | Nov 2009 | A1 |
20090284220 | Toncich et al. | Nov 2009 | A1 |
20090284227 | Mohammadian et al. | Nov 2009 | A1 |
20090284245 | Kirby et al. | Nov 2009 | A1 |
20090284369 | Toncich et al. | Nov 2009 | A1 |
20090286470 | Mohammadian et al. | Nov 2009 | A1 |
20090286475 | Toncich et al. | Nov 2009 | A1 |
20090286476 | Toncich et al. | Nov 2009 | A1 |
20090289595 | Chen et al. | Nov 2009 | A1 |
20090299918 | Cook et al. | Dec 2009 | A1 |
20090308933 | Osada | Dec 2009 | A1 |
20090322158 | Stevens et al. | Dec 2009 | A1 |
20090322280 | Kamijo et al. | Dec 2009 | A1 |
20100015918 | Liu et al. | Jan 2010 | A1 |
20100017249 | Fincham et al. | Jan 2010 | A1 |
20100033021 | Bennett | Feb 2010 | A1 |
20100034238 | Bennett | Feb 2010 | A1 |
20100036773 | Bennett | Feb 2010 | A1 |
20100038970 | Cook et al. | Feb 2010 | A1 |
20100045114 | Sample et al. | Feb 2010 | A1 |
20100052431 | Mita | Mar 2010 | A1 |
20100052811 | Smith et al. | Mar 2010 | A1 |
20100060077 | Paulus et al. | Mar 2010 | A1 |
20100065352 | Ichikawa | Mar 2010 | A1 |
20100066349 | Lin et al. | Mar 2010 | A1 |
20100076524 | Forsberg et al. | Mar 2010 | A1 |
20100081379 | Cooper et al. | Apr 2010 | A1 |
20100094381 | Kim et al. | Apr 2010 | A1 |
20100096934 | Joannopoulos et al. | Apr 2010 | A1 |
20100102639 | Joannopoulos et al. | Apr 2010 | A1 |
20100102640 | Joannopoulos et al. | Apr 2010 | A1 |
20100102641 | Joannopoulos et al. | Apr 2010 | A1 |
20100104031 | Lacour | Apr 2010 | A1 |
20100109443 | Cook et al. | May 2010 | A1 |
20100109445 | Kurs et al. | May 2010 | A1 |
20100109604 | Boys et al. | May 2010 | A1 |
20100115474 | Takada et al. | May 2010 | A1 |
20100117454 | Cook et al. | May 2010 | A1 |
20100117455 | Joannopoulos et al. | May 2010 | A1 |
20100117456 | Karalis et al. | May 2010 | A1 |
20100117596 | Cook et al. | May 2010 | A1 |
20100123353 | Joannopoulos et al. | May 2010 | A1 |
20100123354 | Joannopoulos et al. | May 2010 | A1 |
20100123355 | Joannopoulos et al. | May 2010 | A1 |
20100123452 | Amano et al. | May 2010 | A1 |
20100123530 | Park et al. | May 2010 | A1 |
20100127573 | Joannopoulos et al. | May 2010 | A1 |
20100127574 | Joannopoulos et al. | May 2010 | A1 |
20100127575 | Joannopoulos et al. | May 2010 | A1 |
20100127660 | Cook et al. | May 2010 | A1 |
20100133918 | Joannopoulos et al. | Jun 2010 | A1 |
20100133919 | Joannopoulos et al. | Jun 2010 | A1 |
20100133920 | Joannopoulos et al. | Jun 2010 | A1 |
20100141042 | Kesler et al. | Jun 2010 | A1 |
20100148589 | Hamam et al. | Jun 2010 | A1 |
20100148723 | Cook et al. | Jun 2010 | A1 |
20100151808 | Toncich et al. | Jun 2010 | A1 |
20100156346 | Takada et al. | Jun 2010 | A1 |
20100156355 | Bauerle et al. | Jun 2010 | A1 |
20100156570 | Hong et al. | Jun 2010 | A1 |
20100164295 | Ichikawa et al. | Jul 2010 | A1 |
20100164296 | Kurs | Jul 2010 | A1 |
20100164297 | Kurs et al. | Jul 2010 | A1 |
20100164298 | Karalis et al. | Jul 2010 | A1 |
20100171368 | Schatz et al. | Jul 2010 | A1 |
20100171370 | Karalis et al. | Jul 2010 | A1 |
20100179384 | Hoeg et al. | Jul 2010 | A1 |
20100181843 | Schatz et al. | Jul 2010 | A1 |
20100181844 | Karalis et al. | Jul 2010 | A1 |
20100181845 | Fiorello et al. | Jul 2010 | A1 |
20100181961 | Novak et al. | Jul 2010 | A1 |
20100181964 | Huggins et al. | Jul 2010 | A1 |
20100184371 | Cook et al. | Jul 2010 | A1 |
20100187911 | Joannopoulos et al. | Jul 2010 | A1 |
20100187913 | Sample | Jul 2010 | A1 |
20100188183 | Shpiro | Jul 2010 | A1 |
20100190435 | Cook et al. | Jul 2010 | A1 |
20100190436 | Cook et al. | Jul 2010 | A1 |
20100194206 | Burdo et al. | Aug 2010 | A1 |
20100194207 | Graham | Aug 2010 | A1 |
20100194334 | Kirby et al. | Aug 2010 | A1 |
20100194335 | Kirby et al. | Aug 2010 | A1 |
20100201189 | Kirby et al. | Aug 2010 | A1 |
20100201201 | Mobarhan et al. | Aug 2010 | A1 |
20100201202 | Kirby et al. | Aug 2010 | A1 |
20100201203 | Schatz et al. | Aug 2010 | A1 |
20100201204 | Sakoda et al. | Aug 2010 | A1 |
20100201205 | Karalis et al. | Aug 2010 | A1 |
20100201310 | Vorenkamp et al. | Aug 2010 | A1 |
20100201312 | Kirby et al. | Aug 2010 | A1 |
20100201313 | Vorenkamp et al. | Aug 2010 | A1 |
20100201316 | Takada et al. | Aug 2010 | A1 |
20100201513 | Vorenkamp et al. | Aug 2010 | A1 |
20100207458 | Joannopoulos et al. | Aug 2010 | A1 |
20100210233 | Cook et al. | Aug 2010 | A1 |
20100213770 | Kikuchi | Aug 2010 | A1 |
20100213895 | Keating et al. | Aug 2010 | A1 |
20100217553 | Von Novak et al. | Aug 2010 | A1 |
20100219694 | Kurs et al. | Sep 2010 | A1 |
20100219695 | Komiyama et al. | Sep 2010 | A1 |
20100219696 | Kojima | Sep 2010 | A1 |
20100222010 | Ozaki et al. | Sep 2010 | A1 |
20100225175 | Karalis et al. | Sep 2010 | A1 |
20100225270 | Jacobs et al. | Sep 2010 | A1 |
20100225271 | Oyobe et al. | Sep 2010 | A1 |
20100225272 | Kirby et al. | Sep 2010 | A1 |
20100231053 | Karalis et al. | Sep 2010 | A1 |
20100231163 | Mashinsky | Sep 2010 | A1 |
20100231340 | Fiorello et al. | Sep 2010 | A1 |
20100234922 | Forsell | Sep 2010 | A1 |
20100235006 | Brown | Sep 2010 | A1 |
20100237706 | Karalis et al. | Sep 2010 | A1 |
20100237707 | Karalis et al. | Sep 2010 | A1 |
20100237708 | Karalis et al. | Sep 2010 | A1 |
20100237709 | Hall et al. | Sep 2010 | A1 |
20100244576 | Hillan et al. | Sep 2010 | A1 |
20100244577 | Shimokawa | Sep 2010 | A1 |
20100244578 | Yoshikawa | Sep 2010 | A1 |
20100244579 | Sogabe et al. | Sep 2010 | A1 |
20100244580 | Uchida et al. | Sep 2010 | A1 |
20100244581 | Uchida | Sep 2010 | A1 |
20100244582 | Yoshikawa | Sep 2010 | A1 |
20100244583 | Shimokawa | Sep 2010 | A1 |
20100244767 | Turner et al. | Sep 2010 | A1 |
20100244839 | Yoshikawa | Sep 2010 | A1 |
20100248622 | Kirby et al. | Sep 2010 | A1 |
20100253152 | Karalis et al. | Oct 2010 | A1 |
20100253281 | Li | Oct 2010 | A1 |
20100256481 | Mareci et al. | Oct 2010 | A1 |
20100256831 | Abram et al. | Oct 2010 | A1 |
20100259108 | Giler et al. | Oct 2010 | A1 |
20100259109 | Sato | Oct 2010 | A1 |
20100259110 | Kurs et al. | Oct 2010 | A1 |
20100264745 | Karalis et al. | Oct 2010 | A1 |
20100264746 | Kazama et al. | Oct 2010 | A1 |
20100264747 | Hall et al. | Oct 2010 | A1 |
20100276995 | Marzetta et al. | Nov 2010 | A1 |
20100277003 | Von Novak et al. | Nov 2010 | A1 |
20100277004 | Suzuki et al. | Nov 2010 | A1 |
20100277005 | Karalis et al. | Nov 2010 | A1 |
20100277120 | Cook et al. | Nov 2010 | A1 |
20100277121 | Hall et al. | Nov 2010 | A1 |
20100289341 | Ozaki et al. | Nov 2010 | A1 |
20100289449 | Elo | Nov 2010 | A1 |
20100295505 | Jung et al. | Nov 2010 | A1 |
20100295506 | Ichikawa | Nov 2010 | A1 |
20100308939 | Kurs | Dec 2010 | A1 |
20100314946 | Budde et al. | Dec 2010 | A1 |
20100327660 | Karalis et al. | Dec 2010 | A1 |
20100327661 | Karalis et al. | Dec 2010 | A1 |
20100328044 | Waffenschmidt et al. | Dec 2010 | A1 |
20110004269 | Strother et al. | Jan 2011 | A1 |
20110012431 | Karalis et al. | Jan 2011 | A1 |
20110018361 | Karalis et al. | Jan 2011 | A1 |
20110025131 | Karalis et al. | Feb 2011 | A1 |
20110031928 | Soar | Feb 2011 | A1 |
20110043046 | Joannopoulos et al. | Feb 2011 | A1 |
20110043047 | Karalis et al. | Feb 2011 | A1 |
20110043048 | Karalis et al. | Feb 2011 | A1 |
20110043049 | Karalis et al. | Feb 2011 | A1 |
20110049995 | Hashiguchi | Mar 2011 | A1 |
20110049996 | Karalis et al. | Mar 2011 | A1 |
20110049998 | Karalis et al. | Mar 2011 | A1 |
20110074218 | Karalis et al. | Mar 2011 | A1 |
20110074346 | Hall et al. | Mar 2011 | A1 |
20110074347 | Karalis et al. | Mar 2011 | A1 |
20110089895 | Karalis et al. | Apr 2011 | A1 |
20110095618 | Schatz et al. | Apr 2011 | A1 |
20110115303 | Baarman et al. | May 2011 | A1 |
20110115431 | Dunworth et al. | May 2011 | A1 |
20110121920 | Kurs et al. | May 2011 | A1 |
20110128015 | Dorairaj et al. | Jun 2011 | A1 |
20110140544 | Karalis et al. | Jun 2011 | A1 |
20110148219 | Karalis et al. | Jun 2011 | A1 |
20110162895 | Karalis et al. | Jul 2011 | A1 |
20110169339 | Karalis et al. | Jul 2011 | A1 |
20110181122 | Karalis et al. | Jul 2011 | A1 |
20110193416 | Campanella et al. | Aug 2011 | A1 |
20110193419 | Karalis et al. | Aug 2011 | A1 |
20110198939 | Karalis et al. | Aug 2011 | A1 |
20110215086 | Yeh | Sep 2011 | A1 |
20110221278 | Karalis et al. | Sep 2011 | A1 |
20110227528 | Karalis et al. | Sep 2011 | A1 |
20110227530 | Karalis et al. | Sep 2011 | A1 |
20110241618 | Karalis et al. | Oct 2011 | A1 |
20110248573 | Kanno et al. | Oct 2011 | A1 |
20110254377 | Wildmer et al. | Oct 2011 | A1 |
20110254503 | Widmer et al. | Oct 2011 | A1 |
20110266878 | Cook et al. | Nov 2011 | A9 |
20110278943 | Eckhoff et al. | Nov 2011 | A1 |
20120001492 | Cook et al. | Jan 2012 | A9 |
20120001593 | DiGuardo | Jan 2012 | A1 |
20120007435 | Sada et al. | Jan 2012 | A1 |
20120007441 | John et al. | Jan 2012 | A1 |
20120025602 | Boys et al. | Feb 2012 | A1 |
20120032522 | Schatz et al. | Feb 2012 | A1 |
20120038525 | Monsalve Carcelen et al. | Feb 2012 | A1 |
20120062345 | Kurs et al. | Mar 2012 | A1 |
20120068549 | Karalis et al. | Mar 2012 | A1 |
20120086284 | Campanella et al. | Apr 2012 | A1 |
20120086867 | Kesler et al. | Apr 2012 | A1 |
20120091794 | Campanella et al. | Apr 2012 | A1 |
20120091795 | Fiorello et al. | Apr 2012 | A1 |
20120091796 | Kesler et al. | Apr 2012 | A1 |
20120091797 | Kesler et al. | Apr 2012 | A1 |
20120091819 | Kulikowski et al. | Apr 2012 | A1 |
20120091820 | Campanella et al. | Apr 2012 | A1 |
20120091949 | Campanella et al. | Apr 2012 | A1 |
20120091950 | Campanella et al. | Apr 2012 | A1 |
20120098350 | Campanella et al. | Apr 2012 | A1 |
20120112531 | Kesler et al. | May 2012 | A1 |
20120112532 | Kesler et al. | May 2012 | A1 |
20120112534 | Kesler et al. | May 2012 | A1 |
20120112535 | Karalis et al. | May 2012 | A1 |
20120112536 | Karalis et al. | May 2012 | A1 |
20120112538 | Kesler et al. | May 2012 | A1 |
20120112691 | Kurs et al. | May 2012 | A1 |
20120119569 | Karalis et al. | May 2012 | A1 |
20120119575 | Kurs et al. | May 2012 | A1 |
20120119576 | Kesler et al. | May 2012 | A1 |
20120119698 | Karalis et al. | May 2012 | A1 |
20120139355 | Ganem et al. | Jun 2012 | A1 |
20120146575 | Armstrong et al. | Jun 2012 | A1 |
20120153732 | Kurs et al. | Jun 2012 | A1 |
20120153733 | Schatz et al. | Jun 2012 | A1 |
20120153734 | Kurs et al. | Jun 2012 | A1 |
20120153735 | Karalis et al. | Jun 2012 | A1 |
20120153736 | Karalis et al. | Jun 2012 | A1 |
20120153737 | Karalis et al. | Jun 2012 | A1 |
20120153738 | Karalis et al. | Jun 2012 | A1 |
20120153893 | Schatz et al. | Jun 2012 | A1 |
20120184338 | Kesler et al. | Jul 2012 | A1 |
20120206096 | John | Aug 2012 | A1 |
20120223573 | Schatz et al. | Sep 2012 | A1 |
20120228952 | Hall et al. | Sep 2012 | A1 |
20120228953 | Kesler et al. | Sep 2012 | A1 |
20120228954 | Kesler et al. | Sep 2012 | A1 |
20120235500 | Ganem et al. | Sep 2012 | A1 |
20120235501 | Kesler et al. | Sep 2012 | A1 |
20120235502 | Kesler et al. | Sep 2012 | A1 |
20120235503 | Kesler et al. | Sep 2012 | A1 |
20120235504 | Kesler et al. | Sep 2012 | A1 |
20120235505 | Schatz et al. | Sep 2012 | A1 |
20120235566 | Karalis et al. | Sep 2012 | A1 |
20120235567 | Karalis et al. | Sep 2012 | A1 |
20120235633 | Kesler | Sep 2012 | A1 |
20120235634 | Hall et al. | Sep 2012 | A1 |
20120239117 | Kesler et al. | Sep 2012 | A1 |
20120242159 | Lou et al. | Sep 2012 | A1 |
20120242225 | Karalis et al. | Sep 2012 | A1 |
20120248884 | Karalis et al. | Oct 2012 | A1 |
20120248886 | Kesler et al. | Oct 2012 | A1 |
20120248887 | Kesler et al. | Oct 2012 | A1 |
20120248888 | Kesler et al. | Oct 2012 | A1 |
20120248981 | Karalis et al. | Oct 2012 | A1 |
20120256494 | Kesler et al. | Oct 2012 | A1 |
20120267960 | Low et al. | Oct 2012 | A1 |
20120280765 | Kurs et al. | Nov 2012 | A1 |
20120313449 | Kurs et al. | Dec 2012 | A1 |
20120313742 | Kurs et al. | Dec 2012 | A1 |
20130007949 | Kurs et al. | Jan 2013 | A1 |
20130020878 | Karalis et al. | Jan 2013 | A1 |
20130033118 | Karalis et al. | Feb 2013 | A1 |
20130038402 | Karalis et al. | Feb 2013 | A1 |
20130057364 | Kesler et al. | Mar 2013 | A1 |
20130062966 | Verghese et al. | Mar 2013 | A1 |
20130069441 | Verghese et al. | Mar 2013 | A1 |
20130069753 | Kurs | Mar 2013 | A1 |
20130099587 | Lou et al. | Apr 2013 | A1 |
20130154383 | Kasturi et al. | Jun 2013 | A1 |
20130154389 | Kurs et al. | Jun 2013 | A1 |
20130159956 | Verghese et al. | Jun 2013 | A1 |
20130175874 | Lou et al. | Jul 2013 | A1 |
20130175875 | Kurs et al. | Jul 2013 | A1 |
20130200716 | Kesler et al. | Aug 2013 | A1 |
20130200721 | Kurs et al. | Aug 2013 | A1 |
20130221744 | Hall et al. | Aug 2013 | A1 |
20130278073 | Kurs et al. | Oct 2013 | A1 |
20130278074 | Kurs et al. | Oct 2013 | A1 |
20130278075 | Kurs et al. | Oct 2013 | A1 |
20130300353 | Kurs et al. | Nov 2013 | A1 |
20130307349 | Hall et al. | Nov 2013 | A1 |
20130320773 | Schatz et al. | Dec 2013 | A1 |
20130334892 | Hall et al. | Dec 2013 | A1 |
20140002012 | McCauley et al. | Jan 2014 | A1 |
20140070622 | Keeling et al. | Mar 2014 | A1 |
20140070764 | Keeling | Mar 2014 | A1 |
20140197694 | Asanuma et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
142352 | Aug 1912 | CA |
102239633 | Nov 2011 | CN |
102439669 | May 2012 | CN |
103329397 | Sep 2013 | CN |
38 24 972 | Jan 1989 | DE |
100 29147 | Dec 2001 | DE |
200 16 655 | Mar 2002 | DE |
102 21 484 | Nov 2003 | DE |
103 04 584 | Aug 2004 | DE |
10 2005 03629 | Feb 2007 | DE |
10 2006 04405 | Apr 2008 | DE |
1 335 477 | Aug 2003 | EP |
1 521 206 | Apr 2005 | EP |
1 524 010 | Apr 2005 | EP |
2 357 716 | Aug 2011 | EP |
2 660 948 | Nov 2013 | EP |
02-097005 | Apr 1990 | JP |
4-265875 | Sep 1992 | JP |
6-341410 | Dec 1994 | JP |
9-182323 | Jul 1997 | JP |
9-298847 | Nov 1997 | JP |
10-164837 | Jun 1998 | JP |
11-75329 | Mar 1999 | JP |
11-188113 | Jul 1999 | JP |
2001-309580 | Nov 2001 | JP |
2002-010535 | Jan 2002 | JP |
2003-179526 | Jun 2003 | JP |
2004-166459 | Jun 2004 | JP |
2004-201458 | Jul 2004 | JP |
2004-229144 | Aug 2004 | JP |
2005-57444 | Mar 2005 | JP |
2005-149238 | Jun 2005 | JP |
2006-074848 | Mar 2006 | JP |
2007-505480 | Mar 2007 | JP |
2007-266892 | Oct 2007 | JP |
2007-537637 | Dec 2007 | JP |
2008-508842 | Mar 2008 | JP |
2008-206231 | Sep 2008 | JP |
2008-206327 | Sep 2008 | JP |
2011-072074 | Apr 2011 | JP |
2012-504387 | Feb 2012 | JP |
2013-543718 | Dec 2013 | JP |
10-2007-0017804 | Feb 2007 | KR |
10-2008-0007635 | Jan 2008 | KR |
10-2009-0122072 | Nov 2009 | KR |
10-2011-0050920 | May 2011 | KR |
112842 | Jul 2005 | SG |
WO 9217929 | Oct 1992 | WO |
WO 9323908 | Nov 1993 | WO |
WO 9428560 | Dec 1994 | WO |
WO 9511545 | Apr 1995 | WO |
WO 9602970 | Feb 1996 | WO |
WO 9850993 | Nov 1998 | WO |
WO 0077910 | Dec 2000 | WO |
WO 03092329 | Nov 2003 | WO |
WO 03096361 | Nov 2003 | WO |
WO 03096512 | Nov 2003 | WO |
WO 2004015885 | Feb 2004 | WO |
WO 2004038888 | May 2004 | WO |
WO 2004055654 | Jul 2004 | WO |
WO 2004073150 | Aug 2004 | WO |
WO 2004073166 | Aug 2004 | WO |
WO 2004073176 | Aug 2004 | WO |
WO 2004073177 | Aug 2004 | WO |
WO 2004112216 | Dec 2004 | WO |
WO 2005024865 | Mar 2005 | WO |
WO 2005060068 | Jun 2005 | WO |
WO 2005109597 | Nov 2005 | WO |
WO 2005109598 | Nov 2005 | WO |
WO 2006011769 | Feb 2006 | WO |
WO 2007008646 | Jan 2007 | WO |
WO 2007020583 | Feb 2007 | WO |
WO 2007042952 | Apr 2007 | WO |
WO 2007084716 | Jul 2007 | WO |
WO 2007084717 | Jul 2007 | WO |
WO 2008109489 | Sep 2008 | WO |
WO 2008118178 | Oct 2008 | WO |
WO 2009009559 | Jan 2009 | WO |
WO 2009018568 | Feb 2009 | WO |
WO 2009023155 | Feb 2009 | WO |
WO 2009023646 | Feb 2009 | WO |
WO 2009033043 | Mar 2009 | WO |
WO 2009062438 | May 2009 | WO |
WO 2009070730 | Jun 2009 | WO |
WO 2009126963 | Oct 2009 | WO |
WO 2009140506 | Nov 2009 | WO |
WO 2009149464 | Dec 2009 | WO |
WO 2009155000 | Dec 2009 | WO |
WO 2010030977 | Mar 2010 | WO |
WO 2010036980 | Apr 2010 | WO |
WO 2010039967 | Apr 2010 | WO |
WO 2010090538 | Aug 2010 | WO |
WO 2010090539 | Aug 2010 | WO |
WO 2010093997 | Aug 2010 | WO |
WO 2010104569 | Sep 2010 | WO |
WO 2011061388 | May 2011 | WO |
WO 2011061821 | May 2011 | WO |
WO 2011062827 | May 2011 | WO |
WO 2011112795 | Sep 2011 | WO |
WO 2012037279 | Mar 2012 | WO |
WO 2012170278 | Dec 2012 | WO |
WO 2013013235 | Jan 2013 | WO |
WO 2013020138 | Feb 2013 | WO |
WO 2013036947 | Mar 2013 | WO |
WO 2013059441 | Apr 2013 | WO |
WO 2013067484 | May 2013 | WO |
WO 2013113017 | Aug 2013 | WO |
WO 2013142840 | Sep 2013 | WO |
WO 2013179639 | Dec 2013 | WO |
WO 2014004843 | Jan 2014 | WO |
Entry |
---|
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority for International Application No. PCT/US2015/036766 dated Dec. 29, 2016 (16 pages). |
Invitation to Pay Additional Fees for International Application No. PCT/US2015/036766 dated Nov. 16, 2015 (6 pages). |
“Intel CTO Says Gap between Humans, Machines Will Close by 2050”, Intel News Release, (See intel.com/.../20080821comp.htm?iid=S . . .) (Printed Nov. 6, 2009). |
“Physics Update, Unwired Energy”, Physics Today, pp. 26, (Jan. 2007) (See http://arxiv.org/abs/physics/0611063.). |
“In pictures: A year in technology”, BBC News, (Dec. 28, 2007). |
“Next Little Thing 2010 Electricity without wires”, CNN Money (See money.cnn.com/galleries/2009/smallbusiness/0911/gallery.next_little_thing_2010.smb/) (dated Nov. 30, 2009). |
Abe et al. “A Noncontact Charger Using a Resonant Converter with Parallel Capacitor of the Secondary Coil”. IEEE, 36(2):444-451, Mar./Apr. 2000. |
Ahmadian, M. et al., “Miniature Transmitter for Implantable Micro Systems”, Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, Mexico, pp. 3028-3031 (Sep. 17-21, 2003). |
Aoki, T. et al., “Observation of strong coupling between one atom and a monolithic microresonator”, Nature, vol. 443:671-674 (2006). |
Apneseth et al. “Introducing wireless proximity switches” ABB Review Apr. 2002. |
Aristeidis Karalis et al., “Efficient Wireless non-radiative mid-range energy transfer”, Annals of Physics, vol. 323, pp. 34-48 (2008). |
Baker et al., “Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1(1):28-38 (Mar. 2007). |
Balanis, C.A., “Antenna Theory: Analysis and Design,” 3rd Edition, Sections 4.2, 4.3, 5.2, 5.3 (Wiley, New Jersey, 2005). |
Berardelli, P., “Outlets Are Out”, ScienceNOW Daily News, Science Now, http://sciencenow.sciencemag.org/cgi/content/ful1/2006/1114/2, (Nov. 14, 2006) 2 pages. |
Biever, C., “Evanescent coupling' could power gadgets wirelessly”, NewScientistsTech.com, http://www. newscientisttech.com/article.ns?id=dn1 0575&print=true, (Nov. 15, 2006) 2 pages. |
Borenstein, S., “Man tries wirelessly boosting batteries”, (The Associated Press), USA Today, (Nov. 16, 2006) 1 page. |
Borenstein, S., “Man tries wirelessly boosting batteries”, AP Science Writer, Boston.com, (See http://www.boston.com/business/technology/articles/2006/11/15/man_tries_wirelessly_b . . .) (Nov. 15, 2006). |
Boyle, A., “Electro-nirvana? Not so fast”, MSNBC, http:/lcosmiclog.msnbc.msn.com/_news/2007/06/08/4350760- electro-nirvana-not-so-fast, (Jun. 8, 2007) 1 page. |
Budhia, M. et al., “A New IPT Magnetic Coupler for Electric Vehicle Charging Systems”, IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, pp. 2487-2492 (Nov. 7-10, 2010). |
Budhia, M. et al., “Development and evaluation of single sided flux couplers for contactless electric vehicle charging”, 2011 IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, pp. 614-621 (Sep. 17-22, 2011). |
Budhia, M. et al.,“Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT”, IEEE Transactions on Industrial Electronics, vol. 60:318-328 (Jan. 2013). |
Bulkeley, W. M., “MIT Scientists Pave the Way for Wireless Battery Charging”, The Wall Street Journal (See http://online.wsj.com/article/SB118123955549228045.html?mod=googlenews_wsj), (Jun. 8, 2007) 2 pages. |
Burri et al., “Invention Description”, (Feb. 5, 2008). |
Cass, S., “Air Power—Wireless data connections are common—now scientists are working on wireless power”, Sponsored by IEEE Spectrum, http://spectrum.ieee.org/computing/hardware/air-power, (Nov. 2006) 2 pages. |
Castelvecchi, Davide, “The Power of Induction—Cutting the last cord could resonate with our increasingly gadget dependent lives”, Science News Online, vol. 172, No. 3, Jul. 21, 2007, 6 pages. |
Chang, A., “Recharging The Wireless Way—Even physicists forget to recharge their cell phones sometimes.”, PC Magazine, ABC News Internet Ventures, (Dec. 12, 2006) 1 page. |
Chinaview“Scientists light bulb with ‘wireless electricity’”,www.Chinaview.en, http://news.xinhuanet.com/english/2007-06/08/content_6215681.htm,Jun. 2007,1 page. |
Cooks, G., “The vision of an MIT physicist: Getting rid of pesky rechargers”, Boston.com, (Dec. 11, 2006) 1 page. |
Derbyshire, D., “The end of the plug? Scientists invent wireless device that beams electricity through your home”, Daily Mail, http://www.dailymail.co.uk/pages/live/articles/technology/technology.html?in_article_id=4 . . .), (Jun. 7, 2007) 3 pages. |
Eisenberg, Anne, “Automatic Recharging, From a Distance”, The New York Times, (see www.nytimes.com/2012/03/11/business/built-in-wireless-chargeing-for-electronic-devices.html?_r=0) (published on Mar. 10, 2012). |
Esser et al., “A New Approach to Power Supplies for Robots”, IEEE, vol. 27(5):872-875, (Sep./Oct. 1991). |
Fan, Shanhui et al., “Rate-Equation Analysis of Output Efficiency and Modulation Rate of Photomic-Crystal Light-Emitting Diodes”, IEEE Journal of Quantum Electronics, vol. 36(10):1123-1130 (Oct. 2000). |
Fenske et al., “Dielectric Materials at Microwave Frequencies”, Applied Microwave & Wireless, pp. 92-100 (2000). |
Fernandez, C. et al., “A simple dc-dc converter for the power supply of a cochlear implant”, IEEE, pp. 1965-1970 (2003). |
Ferris, David, “How Wireless Charging Will Make Life Simpler (And Greener)”, Forbes (See forbes.com/sites/davidferris/2012/07/24/how-wireless-charging-will-make-life-simpler-and-greener/print/) (dated Jul. 24, 2012). |
Fildes, J., “Physics Promises Wireless Power”, (Science and Technology Reporter), BBC News, (Nov. 15, 2006) 3 pages. |
Fildes, J., “The technology with impact 2007”, BBC News, (Dec. 27, 2007) 3 pages. |
Fildes, J., “Wireless energy promise powers up”, BBC News, http://news.bbc.co.uk/2/hi/technology/6725955.stm, (Jun. 7, 2007) 3 pages. |
Finkenzeller, Klaus, “RFID Handbook—Fundamentals and Applications in Contactless Smart Cards”, Nikkan Kohgyo-sya, Kanno Taihei, first version, pp. 32-37, 253 (Aug. 21, 2001). |
Finkenzeller, Klaus, “RFID Handbook (2nd Edition)”, The Nikkan Kogyo Shimbun, Ltd., pp. 19, 20, 38, 39, 43, 44, 62, 63, 67, 68, 87, 88, 291, 292 (Published on May 31, 2004). |
Freedman, D.H., “Power on a Chip”, MIT Technology Review, (Nov. 2004). |
Gary Peterson, “MIT WiTricity Not So Original After All”, Feed Line No. 9, (See http://www.tfcbooks.com/articles/witricity.htm) printed Nov. 12, 2009. |
Geyi, Wen, “A Method for the Evaluation of Small Antenna Q”, IEEE Transactions on Antennas and Propagation, vol. 51(8):2124-2129 (Aug. 2003). |
Hadley, F., “Goodbye Wires—MIT Team Experimentally Demonstrates Wireless Power Transfer, Potentially Useful for Power Laptops, Cell-Phones Without Cords”, Massachusetts Institute of Technology, Institute for Soldier D Nanotechnologies, http://web.mit.edu/newsoffice/2007/wireless-0607.html, (Jun. 7, 2007) 3 pages. |
Haus, H.A., “Waves and Fields in Optoelectronics,” Chapter 7 “Coupling of Modes—Reasonators and Couplers” (Prentice-Hall, New Jersey, 1984). |
Heikkinen et al., “Performance and Efficiency of Planar Rectennas for Short-Range Wireless Power Transfer at 2.45 GHz”, Microwave and Optical Technology Letters, vol. 31(2):86-91, (Oct. 20, 2001). |
Highfield, R., “Wireless revolution could spell end of plugs”,(Science Editor), Telegraph.co.uk, http://www. telegraph.co.uk/news/main.jhtml?xml=/news/2007/06/07/nwireless1 07.xml, (Jun. 7, 2007) 3 pages. |
Hirai et al., “Integral Motor with Driver and Wireless Transmission of Power and Information for Autonomous Subspindle Drive”, IEEE, vol. 15(1):13-20, (Jan. 2000). |
Hirai et al., “Practical Study on Wireless Transmission of Power and Information for Autonomous Decentralized Manufacturing System”, IEEE, vol. 46(2):349-359, Apr. 1999. |
Hirai et al., “Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information”, IEEE, vol. 15(2):335-345, (Mar. 2000). |
Hirai et al., “Wireless Transmission of Power and Information and Information for Cableless Linear Motor Drive”, IEEE, vol. 15(1):21-27, (Jan. 2000). |
Hirayama, M., “Splashpower—World Leaders in Wireless Power”, PowerPoint presentation, Splashpower Japan, (Sep. 3, 2007) 30 pages. |
Ho, S. L. et al., “A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging”, IEEE Transactions on Magnetics, vol. 47(5):1522-1525 (May 2011). |
Infotech Online, “Recharging gadgets without cables”, infotech.indiatimes.com, (Nov. 17, 2006) 1 page. |
Jackson, J. D., “Classical Electrodynamics”, 3rd Edition, Wiley, New York, 1999, pp. 201-203. |
Jackson, J.D., “Classical Electrodynamics,” 3rd Edition, Sections 1.11, 5.5, 5.17, 6.9, 8.1, 8.8, 9.2, 9.3 (Wiley, New York, 1999). |
Jacob, M. V. et al., “Lithium Tantalate—A High Permittivity Dielectric Material for Microwave Communication Systems”, Proceedings of IEEE TENCON—Poster Papers, pp. 1362-1366, 2003. |
Karalis, Aristeidis, “Electricity Unplugged”, Feature: Wireless Energy Physics World, physicsworld.com, pp. 23-25 (Feb. 2009). |
Kawamura et al., “Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications”, IEEE, vol. 32(3):503-508, (May/Jun. 1996). |
Kurs, A. et al., “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Science vol. 317, pp. 83-86 (Jul. 6, 2007). |
Kurs, A. et al., “Simultaneous mid-range power transfer to multiple devices”, Applied Physics Letters, vol. 96, No. 044102 (2010). |
Kurs, A. et al.,“Optimized design of a low-resistance electrical conductor for the multimegahertz range”, Applied Physics Letters, vol. 98:172504-172504-3 (Apr. 2011). |
Lamb, Gregory M. ,“Look Ma—no wires!—Electricity broadcast through the air may someday run your home”,The Christian Science Monitor,http://www.csmonitor.com/2006/1116/p14s01-stct.html,Nov. 15, 2006,2 pages. |
Lee, “Antenna Circuit Design for RFID Applications,” Microchip Technology Inc., AN710, 50 pages (2003). |
Lee, “RFID Coil Design,” Microchip Technology Inc., AN678, 21 pages (1998). |
Liang et al., “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Applied Physics Letters, 81(7):1323-1325 (Aug. 12, 2002). |
Markoff, J. ,“Intel Moves to Free Gadgets of Their Recharging Cords”, The New York Times—nytimes.com, Aug. 21, 2008, 2 pages. |
Mediano, A. et al. “Design of class E amplifier with nonlinear and linear shunt capacitances for any duty cycle”, IEEE Trans. Microwave Theor. Tech., vol. 55, No. 3, pp. 484-492, (2007). |
Microchip Technology Inc., “microID 13.56 MHz Design Guide—MCRF355/360 Reader Reference Design,” 24 pages (2001). |
Minkel, J R. ,“Wireless Energy Lights Bulb from Seven Feet Away—Physicists vow to cut the cord between your laptop battery and the wall socket—with just a simple loop of wire”,Scientific American,http://www.scientificamerican.com/article.cfm?id=wireless-energy-lights-bulb-from-seven-feet-away,Jun. 7, 2007,1 page. |
Minkel, J R. ,“Wireless Energy Transfer May Power Devices at a Distance”,Scientific American,Nov. 14, 2006,1 page. |
Morgan, J., “Lab report: Pull the plug for a positive charge”, The Herald, Web Issue 2680, (Nov. 16, 2006) 3 pages. |
Moskvitch, Katia, “Wireless charging—the future for electric cars?”, BBC News Technology (See www.bbc.co.uk/news/technology-14183409) (dated Jul. 21, 2011). |
O'Brien et al., “Analysis of Wireless Power Supplies for Industrial Automation Systems”, IEEE, pp. 367-372 (Nov. 2-6, 2003). |
O'Brien et al., “Design of Large Air-Gap Transformers for Wireless Power Supplies”, IEEE, pp. 1557-1562 (Jun. 15-19, 2003). |
Pendry, J. B., “A Chiral Route to Negative Refraction”, Science, vol. 306:1353-1355 (2004). |
Physics Today, “Unwired energy questions asked answered”, Sep. 2007, pp. 16-17. |
Powercast LLC. “White Paper” Powercast simply wire free, 2003. |
PR News Wire, “The Big Story for CES 2007: The public debut of eCoupled Intelligent Wireless Power”, Press Release, Fulton Innovation LLC, Las Vegas, NV, (Dec. 27, 2006) 3 pages. |
Press Release, “The world's first sheet-type wireless power transmission system: Will a socket be replaced by e-wall?”,Public Relations Office, School of Engineering, University of Tokyo, Japan,Dec. 12, 2006,4 pages. |
Presstv, “Wireless power transfer possible”, http://edition.presstv.ir/detail/12754.html, Jun. 11, 2007, 1 page. |
Reidy, C. (Globe Staff), “MIT discovery could unplug your iPod forever”, Boston.com, http://www.boston.com/ business/ticker/2007/06/mit_discovery_c.html, (Jun. 7, 2007) 3 pages. |
Risen, C., “Wireless Energy”, The New York Times, (Dec. 9, 2007) 1 page. |
Sakamoto et al., “A Novel Circuit for Non-Contact Charging Through Electro-Magnetic Coupling”, IEEE, pp. 168-174 (1992). |
Scheible, G. et al., “Novel Wireless Power Supply System for Wireless Communication Devices in Industrial Automation Systems”, IEEE, pp. 1358-1363, (Nov. 5-8, 2002). |
Schneider, D. “A Critical Look at Wireless Power”, IEEE Spectrum, pp. 35-39 (May 2010). |
Schneider, David, “Electrons Unplugged. Wireless power at a distance is still far away”, IEEE Spectrum, pp. 35-39 (May 2010). |
Schuder, J. C. et al., “An Inductively Coupled RF System for the Transmission of 1 kW of Power Through the Skin”, IEEE Transactions on Bio-Medical Engineering, vol. BME-18, No. 4, pp. 265-273 (Jul. 1971). |
Schuder, J. C., “Powering an Artificial Heart: Birth of the Inductively Coupled-Radio Frequency System in 1960”, Artificial Organs, vol. 26:909-915 (2002). |
Schuder, J.C. et al., “Energy Transport Into the Closed Chest From a Set of Very-Large Mutually Orthogonal Coils”, Communication Electronics, vol. 64:527-534 (Jan. 1963). |
Schutz, J. et al., “Load Adaptive Medium Frequency Resonant Power Supply”, IEEE, pp. 282-287 (Nov. 2002). |
Sekitani et al. “A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches” www.nature.com/naturematerials. Published online Apr. 29, 2007. |
Sekitani et al., “A large-area flexible wireless power transmission sheet using printed plastic MEMS switches and organic field-effect transistors”, IEDM '06, International Electron Devices Meeting, (Dec. 11-13, 2006) 4 pages. |
Sekiya, H. et al., “FM/PWM control scheme in class DE inverter”, IEEE Trans. Circuits Syst. I, vol. 51(7) (Jul. 2004). |
Senge, M., “MIT's wireless electricity for mobile phones”, Vanguard, http://www.vanguardngr.com/articles/2002/features/gsm/gsm211062007.htm, (Jun. 11, 2007) 1 page. |
Sensiper, S., “Electromagnetic wave propogation on helical conductors”, Technical Report No. 194 (based on PhD Thesis), Massachusetts Institute of Technology, (May 16, 1951) 126 pages. |
Soljacic, M. , “Wireless Non-Radiative Energy Transfer—PowerPoint presentation”. Massachusetts Institute of Technology, (Oct. 6, 2005). |
Soljacic, M. et al., “Wireless Energy Transfer Can Potentially Recharge Laptops Cell Phones Without Cords”, (Nov. 14, 2006) 3 pages. |
Soljacic, M. et al., “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity”, J. Opt. Soc. Am B, vol. 19, No. 9, pp. 2052-2059 (Sep. 2002). |
Soljacic, M., “Wireless nonradiative energy transfer”, Visions of Discovery New Light on Physics, Cosmology, and Consciousness, Cambridge University Press, New York, NY pp. 530-542 (2011). |
Someya, Takao. “The world's first sheet-type wireless power transmission system”. University of Tokyo, (Dec. 12, 2006). |
Staelin, David H. et al., Electromagnetic Waves, Chapters 2, 3, 4, and 8, pp. 46-176 and 336-405 (Prentice Hall Upper Saddle River, New Jersey 1998). |
Stark III, Joseph C., “Wireless Power Transmission Utilizing a Phased Array of Tesla Coils”, Master Thesis, Massachusetts Institute of Technology (2004). |
Stewart, W., “The Power to Set you Free”, Science, vol. 317:55-56 (Jul. 6, 2007). |
Tang, S.C. et al., “Evaluation of the Shielding Effects on Printed-Circuit-Board Transformers Using Ferrite Plates and Copper Sheets”, IEEE Transactions on Power Electronics, vol. 17:1080-1088 (Nov. 2002). |
Tesla, Nikola, “High Frequency Oscillators for Electro-Therapeutic and Other Purposes”, Proceedings of the IEEE, vol. 87:1282-1292 (Jul. 1999). |
Tesla, Nikola, “High Frequency Oscillators for Electro-Therapeutic and Other Purposes”, The Electrical Engineer, vol. XXVI, No. 50 (Nov. 17, 1898). |
Texas Instruments, “HF Antenna Design Notes—Technical Application Report,” Literature No. 11-08-26-003, 47 pages (Sep. 2003). |
Thomsen et al., “Ultrahigh speed all-optical demultiplexing based on two-photon absorption in a laser diode,” Electronics Letters, 34(19):1871-1872 (Sep. 17, 1998). |
UPM Rafsec, “Tutorial overview of inductively coupled RFID Systems,” 7 pages (May 2003). |
Valtchev et al. “Efficient Resonant Inductive Coupling Energy Transfer Using New Magnetic and Design Criteria”. IEEE, pp. 1293-1298, 2005. |
Vandevoorde et al., “Wireless energy transfer for stand-alone systems: a comparison between low and high power applicability”, Sensors and Actuators, vol. 92:305-311 (2001). |
Vilkomerson, David et al., “Implantable Doppler System for Self-Monitoring Vascular Grafts”, IEEE Ultrasonics Symposium, pp. 461-465 (2004). |
Villeneuve, Pierre R. et al., “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency”, Physical Review B, vol. 54:7837-7842 (Sep. 15, 1996). |
Yariv, Amnon et al., “Coupled-resonator optical waveguide: a proposal and analysis”, Optics Letters, vol. 24(11):711-713 (Jun. 1, 1999). |
Yates, David C. et al., “Optimal Transmission Frequency for Ultralow-Power Short-Range Radio Links”, IEEE Transactions on Circuits and Systems—1, Regular Papers, vol. 51:1405-1413 (Jul. 2004). |
Yoshihiro Konishi, Microwave Electronic Circuit Technology, Chapter 4, pp. 145-197 (Marcel Dekker, Inc., New York, NY 1998). |
Ziaie, Babak et al., “A Low-Power Miniature Transmitter Using a Low-Loss Silicon Platfoiiii for Biotelemetry”, Proceedings—19th International Conference IEEE/EMBS, pp. 2221-2224, (Oct. 30-Nov. 2, 1997) 4 pages. |
Zierhofer, Clemens M. et al., “High-Efficiency Coupling-Insensitive Transcutaneous Power and Data Transmission Via an Inductive Link”, IEEE Transactions on Biomedical Engineering, vol. 37, No. 7, pp. 716-722 (Jul. 1990). |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2015/036766 dated Jan. 21, 2016 (22 pages). |
Number | Date | Country | |
---|---|---|---|
20150372495 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62015078 | Jun 2014 | US |