This invention relates to wireless power transfer and in particular to techniques that can be adapted for charging of batteries and the like.
Wireless power transfer is known for over 100 years. With the boom of portable electronic devices in the last decade the interest in wireless power transfer for battery charging is growing rapidly.
To increase wireless power transfer system operating range, a high-Q factor system using self-resonating coils can be used. The problem with self-resonating coils is the difficulty to tune the two coils to the RF source frequency and between one another (this is done by changing the number of windings and distance between the windings and not suitable for automatic feedback control).
For practical applications such as for use in charging household appliance applications, typical short range inductive chargers are limited to several centimeters or even millimeters. High-Q factor resonant systems partially offset the rapid decay of received power vs. distance between transmitter (transmitter) and receiver (receiver), at the cost of high operating voltages across the resonant coils, as the receiver coil voltage swings up wildly when the receiver device is moved closer to the transmitter. High-Q systems have to rectify and regulate voltages in the order of hundreds and even thousands of volts. This can pose a problem for typical low-voltage operated electronic devices operating in this type of environment. High input voltage regulators exist, although they are less efficient, bulky and costly.
Inductive, e.g., battery chargers typically operate over a short spatial range, typically limited to several centimeters or even millimeters. High-Q resonant systems partially offset the rapid decay of received power vs. distance between transmitter (transmitter) and receiver (receiver). While a better Q-factor can occur in the megahertz range, e.g. 5 to 27 MHz, the performance of a typical rectifier circuit in such a range is limited by the maximum operating frequency of semiconductor devices. A conventional rectifier design may not perform satisfactorily at these high frequencies of operation. At such a high frequency, the output voltage waveform of a conventional rectifier may include ringing transients, due to parasitic inductance and capacitance resonances. These transients cause rectification efficiency losses and output signal noise. Moreover, input impedance characteristics of rectifiers change as a function of frequency and load. To reduce the impact, series resonant converters are used to regulate by varying the switching frequency and counteract the reactive impedance variations.
According to an aspect, a circuit includes a resonator circuit for wireless reception of energy, including a receiver coil having a large number of windings N1 and a variable capacitance device connect in shunt across the receiver coil with the receiver coil and the variable capacitor and intrinsic capacitance of the receiver coil forming the resonator circuit and an output coil with a low number of windings N2 compared to the number of windings N1 of the receiver coil, the output coil being inductively coupled to the receiver coil to provide power output from the circuit, with the resonator circuit having a resonant frequency in a range of about 100 kHz to 30 MHz.
The following are embodiments.
The resonator circuit is tuned by the variable capacitance device to a resonant frequency within the range of 100 kHz to 30 MHz. The resonator circuit oscillates at high voltage and produces a strong magnetic field that is coupled to the secondary coil. Inductive coupling of the two coils produces an output voltage at the output coil related to VL(coil)=Vin*Q*N2/N1. The circuit further includes circuitry to convert an AC voltage across the output coil to a DC voltage. The circuit further includes circuitry to convert an AC voltage across the output coil to a DC voltage, the circuitry including a capacitor connected in shunt across the secondary coil and a DC/DC converter or battery charger coupled to the capacitor. The circuit further includes a rectifier circuit connected to the output coil to convert AC voltage across the output coil to a DC voltage, the circuitry further including a capacitor connected in shunt across the secondary coil and a DC/DC converter coupled in series with the capacitor.
According to an additional aspect, a circuit includes a resonator circuit for wireless transmission of energy, the circuit including a transmitter coil having a large number of windings N1, a variable capacitance device connected in shunt across the transmitter coil with the transmitter coil and the variable capacitor and intrinsic capacitance of the transmitter coil forming the resonator circuit, and an input coil configured to be coupled to an input RF source, with the input coil having a low number of windings N2 compared to the number of windings N1 of the transmitter coil, and the input coil being inductively coupled to the transmitter coil to provide power output from the circuit with the resonator circuit having a resonant frequency in a range of about 100 kHz to 30 MHz.
The following are embodiments.
The resonator circuit is tuned by the variable capacitance device. The resonator circuit oscillates at high voltage and produces a strong magnetic field at the transmitter coil. The circuit further includes an RF source connected to the input coil. Inductive coupling of the transmitter and input coils produces an output voltage at the transmitter coil related to VL(coil)=Vin*Q*N1/N2 where Vin is related to the voltage of the RF source connected to the input coil.
According to an additional aspect, a system for wireless energy transfer includes a circuit for wireless transmission of energy, the circuit including a first resonator circuit including a transmitter coil having a large number of windings N1, a variable capacitance device connected in shunt across the transmitter coil with the transmitter coil and the variable capacitor and intrinsic capacitance of the transmitter coil forming the resonator circuit, an input coil configured to be connected to an input RF source, with the input coil having a low number of windings N2 compared to the number of windings N1 of the transmitter coil, and the input coil being inductively coupled to the transmitter coil to provide power output from the resonator circuit at a resonant frequency in a range of about 100 kHz to 30 MHz, a circuit for wireless reception of energy, the circuit includes a second resonator circuit includes a receiver coil inductively coupled to the transmitter coil, the receiver coil having a large number of windings N3, a variable capacitance device connected in shunt across the receiver coil with the receiver coil and the variable capacitor and intrinsic capacitance of the receiver coil forming the second resonator circuit, an output coil with a low number of windings N2 compared to the number of windings N1 of the receiver coil, the output coil being inductively coupled to the receiver coil to provide power output from the circuit, with the resonator circuit having a resonant frequency in a range of about 100 kHz to 30 MHz.
The following are embodiments.
The second resonator circuit is tuned by the variable capacitance device to a resonant frequency within the range of 100 kHz to 30 MHz. The circuit further includes circuitry to convert an AC voltage across the output coil to a DC voltage.
According to an additional aspect, a system for wireless energy transfer includes a circuit for wireless transmission of energy, configured to be fed by an RF source the circuit for wireless transmission including a first resonator circuit, a circuit for wireless reception of energy, from the first resonator circuit, the circuit for wireless reception including a second resonator circuit, and a circuit disposed between the circuit for wireless transmission of energy and the circuit for wireless reception of energy to inductively couple with the first and second resonator circuits to effectively produce a rectified voltage having a DC component at the circuit for wireless reception of energy.
The following are embodiments.
The circuit to inductively couple includes a tunable passive resonator disposed between the first and second resonator circuits, the tunable passive resonator including a coil having a large number of windings N1, a variable capacitance device connected in shunt across the coil with the coil and the variable capacitor and intrinsic capacitance of the coil forming the tunable resonator circuit, with the first and second resonator circuits in combination with the passive tunable resonator circuit providing at an output of the second resonator circuit a voltage having a DC component. The circuit to inductively couple includes a magnetic field transmitter operating at the first harmonic or higher harmonic of the base transmitter frequency. The first resonator further includes a transmitter coil having a large number of windings N1, a variable capacitance device connected in shunt across the transmitter coil with the transmitter coil and the variable capacitor and intrinsic capacitance of the transmitter coil forming the resonator circuit, an input coil configured to be coupled to an input RF source, with the input coil having a low number of windings N2 compared to the number of windings N1 of the transmitter coil, and the input coil being inductively coupled to the transmitter coil to provide power output from the resonator circuit at a resonant frequency in a range of about 100 kHz to 30 MHz. The second resonator further includes a receiver coil inductively coupled to the transmitter coil, the receiver coil having a large number of windings N3, a variable capacitance device connected in shunt across the receiver coil with the receiver coil and the variable capacitor and intrinsic capacitance of the receiver coil forming the second resonator circuit, an output coil with a low number of windings N2 compared to the number of windings N1 of the receiver coil, the output coil being inductively coupled to the receiver coil to provide power output from the circuit, with the resonator circuit having a resonant frequency in a range of about 100 kHz to 30 MHz
According to an additional aspect, a system for wireless energy transfer includes a table, a circuit embedded in the table for wireless transmission of energy, the circuit includes a first resonator circuit including a transmitter conductor and a variable capacitance device connected in shunt across the transmitter conductor with the transmitter coil and the variable capacitor and intrinsic capacitance of the transmitter coil forming the resonator circuit.
The following are embodiments. The transmitter conductor is coupled to an input RF source to provide power output from the resonator circuit at a resonant frequency in a range of about 100 kHz to 30 MHz.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Referring now to
The tunable transmitter resonator 12 includes a coil 15 (a transmitter coil) having a high number of windings N2 and a coil 14 (input coil) with a relatively low number of windings N1 where N2 is about 10 to 1000 times greater than N1. The tunable transmitter resonator 12 also includes a variable capacitance element (variable capacitor) 18 coupled in shunt across the coil 15. The variable capacitance element 18 allows the resonator 12 to be tuned, via an electrically isolated LC circuit (coil 15 and capacitor 18). The coil 15 having the relatively large number of windings N2 compared to coil 14 having windings N1. The tunable transmitter resonator 12 is fed via the input coil 14. The input coil 14 is fed an RF signal from RF source 16.
Typical bandwidth ranges, voltage ranges and power ranges are:
Other ranges and sub-ranges within the above ranges, such as 5 to 27 MHz are possible.
The ratio of windings N2/N1 permits a relatively low voltage at the input coil 14 to transfer electrical energy by inductively coupling to the transmitter coil 15 and produce a very high magnetic field at transmitter coil 15. This high magnetic field inductively couples to the receiver resonator 22, as will be discussed shortly. The tunable transmitter 12 thus has a resonant structure operating at a high-voltage, producing a strong magnetic field.
A resonator is provided by use of air-core coils with an air-gap variable capacitor and variable tuning. Other configurations are possible depending on the desired properties including the bandwidth, voltage and power requirements for the tunable transmitter resonator 12. The tunable receiver resonator 22 includes a coil 25 (receiver coil) having a high number of windings N2 and a coil 24 (output coil) having a relatively low number of windings N1, where N2 is about 10 to 1000 times greater than N1. The tunable receiver resonator 22 also includes a variable capacitance element (variable capacitor) 28 coupled in shunt across the coil 25. The variable capacitance element 28 allows the resonator 22 to be tuned, via an electrically isolated LC circuit (coil 25 and capacitor 28). The coil 25 having the relatively large number of windings N2 compared to coil 24 having windings N1 permits the receiver resonator (coil 26 and capacitor 28) to efficiently couple via inductive coupling for coil 25 into the relatively high magnetic field produced by the transmitter resonator 12, producing a relatively high voltage at the coil 25. The coil 25 is inductively coupled to the coil 24.
In some embodiments, the coil 24 is magnetically shielded from the coil 15 so as not to allow significant inductive coupling between coil 15 in the transmitter and coil 24 in the receiver. Such magnetic shielding could be accomplished in various ways including placing the secondary coil within a region defined by and confined by the primary coil 25 on the receiver 21. One such arrangement to magnetically shield the coil 24 in the receiver is illustrated in
Referring now to
The tunable receiver resonator 22 receives energy via inductive coupling from the tunable transmitter resonator 12 and the tunable receiver resonator 22 inductively couples that energy to the coil 24. An output voltage at the coil proportional to the ratio N1/N2 is produced. This voltage is much lower than the voltage induced across coil 25 from tunable resonator 12. This lower AC voltage at the coil 24 is rectified by a full wave rectifier 33 to produce a DC voltage. The capacitor 30 smoothes/filters this DC voltage and the DC/DC converter 32, converts the DC voltage to a desired value according to input voltage requirements of a subsequent device such as a load 34. As the load 34 draws current from the DC/DC converter circuit 32, the voltage at the output of the coil 25 does not drop, but causes the DC/DC converter to increase current drawn through the coil 25. The separately tunable resonators for both transmission and reception increase the operating range of the arrangement and improve the manufacturability of the arrangement in comparison to self-resonator coils that rely in intrinsic coil capacitance. The inclusion of a variable capacitor permits precise tuning and thus selection of the resonant frequency of the resonator. The inclusion of the secondary coils 14, 24 for transmission and reception respectively, reduces the voltage requirement at the RF source 16, as well as the voltage requirements of the processing circuits, e.g., capacitor 30, rectifier 33 and DC/DC converter 32 at the receiver.
Because the power output is connected to the coil 24 having a low number of windings N2, the ratio between output voltage and resonator voltage is controlled by the ratio of the number of windings of the two coils, as:
VL(coil)=Vin*Q*N2/N1
Where Q is the quality factor of the resonator and N2 and N1 are respectively the number of windings for the coils 25 and 24. For example, if Q=10, N1=100 and N2=10, the coil voltage will be the same as the input voltage, convenient to rectify and regulate. Another advantage of this arrangement is the ability to tune transmitter and receiver resonators 12, 22 separately to the oscillator/driver RF power source frequency rather than tuning the source to the resonator. This can enable tuning multiple receivers separately while powered by a single transmitter. Tuning can be performed manually with a variable capacitor, or automatically using a voltage-controlled capacitor, such as reverse-biased semiconductor junction.
In an example, tunable AM-radio antenna resonators usable in a range of 550 kHz to 1600 kHz are used for the coil arrangement of
Referring now to
The resonator 62 is a LC tank circuit with resonant frequency f, driven by rectangular pulse oscillator and a power switch or amplifier. A passive LC repeater is tuned to the first harmonic 2f of the resonant frequency f. The two frequencies are mixed in the receiver to produce an essentially asymmetrical DC component in the output without a rectifier circuit. DC power is produced from AC source by mixing the two signals f and 2f to produce a signal having a sum output voltage along with a DC component. The two voltages with different frequency can be produced from the same AC or RF power source, using the base frequency f and the first harmonic 2f.
By controlling the phase shift between the two voltages, a higher amplitude positive or negative DC component can be produced at the output. Signals at the two frequencies are mixed at the power source or transmitted separately and mixed at the receiver. By using resonant circuits for transmitter and receiver, amplification of the output voltage can be achieved. That is, by mixing the two sinusoidal waveforms, f and 2f (as illustrated in
Referring now to
This arrangement permits RF transmission that can charge multiple devices (and the emissions can be under acceptable limits, such as those established by for example the International Commission on Non-Ionizing Radiation Protection). With this arrangement, e.g., around 100 mW each (typically 30 mW needed) could be received by multiple devices over several cubic meters of space and resonant repeaters enhance power for small devices. In this arrangement the loop around the table provides a large surface area where devices having tunable receiver resonators (22 or 22′) can be positioned freely.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, instead of the passive resonator a magnetic field transmitter operating at the first harmonic or higher harmonic of the base transmitter frequency can be used to provide effective rectification, as discussed above. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
645576 | Telsa | Mar 1900 | A |
649621 | Tesla | May 1900 | A |
787412 | Tesla | Apr 1905 | A |
1119732 | Tesla | Dec 1914 | A |
5982139 | Parise | Nov 1999 | A |
6114834 | Parise | Sep 2000 | A |
6289237 | Mickle et al. | Sep 2001 | B1 |
6437685 | Hanaki | Aug 2002 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6792259 | Parise | Sep 2004 | B1 |
6856291 | Mickle et al. | Feb 2005 | B2 |
6960968 | Odendaal et al. | Nov 2005 | B2 |
6967462 | Landis | Nov 2005 | B1 |
7027311 | Vanderelli et al. | Apr 2006 | B2 |
7057514 | Mickle et al. | Jun 2006 | B2 |
7068991 | Parise | Jun 2006 | B2 |
7084605 | Mickle et al. | Aug 2006 | B2 |
7373133 | Mickle et al. | May 2008 | B2 |
7383064 | Mickle et al. | Jun 2008 | B2 |
7403803 | Mickle et al. | Jul 2008 | B2 |
7440780 | Mickle et al. | Oct 2008 | B2 |
7443057 | Nunelly | Oct 2008 | B2 |
7528698 | Mickle et al. | May 2009 | B2 |
7567824 | Mickle et al. | Jul 2009 | B2 |
7639994 | Greene et al. | Dec 2009 | B2 |
7643312 | Vanderelli et al. | Jan 2010 | B2 |
7706771 | Rofougaran | Apr 2010 | B2 |
7741734 | Joannopoulos et al. | Jun 2010 | B2 |
7825543 | Karalis et al. | Nov 2010 | B2 |
7843288 | Lee et al. | Nov 2010 | B2 |
7844306 | Shearer et al. | Nov 2010 | B2 |
7880337 | Farkas | Feb 2011 | B2 |
7893564 | Bennett | Feb 2011 | B2 |
7898105 | Greene et al. | Mar 2011 | B2 |
7919886 | Tanaka | Apr 2011 | B2 |
7925308 | Greene et al. | Apr 2011 | B2 |
20060238365 | Vecchione et al. | Oct 2006 | A1 |
20070178945 | Cook et al. | Aug 2007 | A1 |
20070222542 | Joannopoulos et al. | Sep 2007 | A1 |
20080014897 | Cook et al. | Jan 2008 | A1 |
20080211320 | Cook et al. | Sep 2008 | A1 |
20080278264 | Karalis et al. | Nov 2008 | A1 |
20090015075 | Cook et al. | Jan 2009 | A1 |
20090033564 | Cook et al. | Feb 2009 | A1 |
20090045773 | Pandya et al. | Feb 2009 | A1 |
20090051224 | Cook et al. | Feb 2009 | A1 |
20090058189 | Cook et al. | Mar 2009 | A1 |
20090072628 | Cook et al. | Mar 2009 | A1 |
20090072629 | Cook et al. | Mar 2009 | A1 |
20090079268 | Cook et al. | Mar 2009 | A1 |
20090102292 | Cook et al. | Apr 2009 | A1 |
20090108679 | Porwal | Apr 2009 | A1 |
20090127937 | Cook et al. | May 2009 | A1 |
20090134712 | Cook et al. | May 2009 | A1 |
20090153273 | Chen et al. | Jun 2009 | A1 |
20090160261 | Elo | Jun 2009 | A1 |
20090195332 | Joannopoulos et al. | Aug 2009 | A1 |
20090195333 | Joannopoulos et al. | Aug 2009 | A1 |
20090212636 | Cook et al. | Aug 2009 | A1 |
20090213028 | Cook et al. | Aug 2009 | A1 |
20090224856 | Karalis et al. | Sep 2009 | A1 |
20090267709 | Joannopoulos et al. | Oct 2009 | A1 |
20090267710 | Joannopoulos et al. | Oct 2009 | A1 |
20090284082 | Mohammadian | Nov 2009 | A1 |
20090284083 | Karalis et al. | Nov 2009 | A1 |
20090284218 | Mohammadian et al. | Nov 2009 | A1 |
20090284220 | Toncich et al. | Nov 2009 | A1 |
20090284227 | Mohammadian et al. | Nov 2009 | A1 |
20090284245 | Kirby et al. | Nov 2009 | A1 |
20090284369 | Toncich et al. | Nov 2009 | A1 |
20090286470 | Mohammadian et al. | Nov 2009 | A1 |
20090286475 | Toncich et al. | Nov 2009 | A1 |
20090286476 | Toncich et al. | Nov 2009 | A1 |
20090289595 | Chen et al. | Nov 2009 | A1 |
20090299918 | Cook et al. | Dec 2009 | A1 |
20100034238 | Bennett | Feb 2010 | A1 |
20100036773 | Bennett | Feb 2010 | A1 |
20100052431 | Mita | Mar 2010 | A1 |
20100096934 | Joannopoulos et al. | Apr 2010 | A1 |
20100102639 | Joannopoulos et al. | Apr 2010 | A1 |
20100102640 | Joannopoulos et al. | Apr 2010 | A1 |
20100102641 | Joannopoulos et al. | Apr 2010 | A1 |
20100109443 | Cook et al. | May 2010 | A1 |
20100109445 | Kurs et al. | May 2010 | A1 |
20100117454 | Cook et al. | May 2010 | A1 |
20100117455 | Joannopoulos et al. | May 2010 | A1 |
20100117456 | Karalis et al. | May 2010 | A1 |
20100117596 | Cook et al. | May 2010 | A1 |
20100123353 | Joannopoulos et al. | May 2010 | A1 |
20100123354 | Joannopoulos et al. | May 2010 | A1 |
20100123355 | Joannopoulos et al. | May 2010 | A1 |
20100123530 | Park et al. | May 2010 | A1 |
20100127573 | Joannopoulos et al. | May 2010 | A1 |
20100127574 | Joannopoulos et al. | May 2010 | A1 |
20100127575 | Joannopoulos et al. | May 2010 | A1 |
20100127660 | Cook et al. | May 2010 | A1 |
20100133918 | Joannopoulos et al. | Jun 2010 | A1 |
20100133919 | Joannopoulos et al. | Jun 2010 | A1 |
20100133920 | Joannopoulos et al. | Jun 2010 | A1 |
20100141042 | Kesler et al. | Jun 2010 | A1 |
20100148589 | Hamam et al. | Jun 2010 | A1 |
20100148723 | Cook et al. | Jun 2010 | A1 |
20100151808 | Toncich et al. | Jun 2010 | A1 |
20100164295 | Ichikawa et al. | Jul 2010 | A1 |
20100164296 | Kurs et al. | Jul 2010 | A1 |
20100164297 | Kurs et al. | Jul 2010 | A1 |
20100164298 | Karalis et al. | Jul 2010 | A1 |
20100171368 | Schatz et al. | Jul 2010 | A1 |
20100171370 | Karalis et al. | Jul 2010 | A1 |
20100171371 | Kriuk et al. | Jul 2010 | A1 |
20100181843 | Schatz et al. | Jul 2010 | A1 |
20100181844 | Karalis et al. | Jul 2010 | A1 |
20100181845 | Fiorello et al. | Jul 2010 | A1 |
20100181961 | Von Novak et al. | Jul 2010 | A1 |
20100184371 | Cook et al. | Jul 2010 | A1 |
20100187911 | Joannopoulos et al. | Jul 2010 | A1 |
20100190435 | Cook et al. | Jul 2010 | A1 |
20100190436 | Cook et al. | Jul 2010 | A1 |
20100194206 | Burdo et al. | Aug 2010 | A1 |
20100194207 | Graham | Aug 2010 | A1 |
20100194334 | Kirby et al. | Aug 2010 | A1 |
20100194335 | Kirby et al. | Aug 2010 | A1 |
20100201189 | Kirby et al. | Aug 2010 | A1 |
20100201201 | Mobarhan et al. | Aug 2010 | A1 |
20100201202 | Kirby et al. | Aug 2010 | A1 |
20100201203 | Schatz et al. | Aug 2010 | A1 |
20100201205 | Karalis et al. | Aug 2010 | A1 |
20100201310 | Vorenkamp et al. | Aug 2010 | A1 |
20100201311 | Kirby et al. | Aug 2010 | A1 |
20100201312 | Kirby et al. | Aug 2010 | A1 |
20100201313 | Vorenkamp et al. | Aug 2010 | A1 |
20100201314 | Toncich et al. | Aug 2010 | A1 |
20100201533 | Kirby et al. | Aug 2010 | A1 |
20100207458 | Joannopoulos et al. | Aug 2010 | A1 |
20100207572 | Kirby et al. | Aug 2010 | A1 |
20100207575 | Pijnenburg et al. | Aug 2010 | A1 |
20100207822 | Sotoudeh | Aug 2010 | A1 |
20100210233 | Cook et al. | Aug 2010 | A1 |
20100213895 | Keating et al. | Aug 2010 | A1 |
20100217553 | Von Novak et al. | Aug 2010 | A1 |
20100219694 | Kurs et al. | Sep 2010 | A1 |
20100222010 | Ozaki et al. | Sep 2010 | A1 |
20100225175 | Karalis et al. | Sep 2010 | A1 |
20100225270 | Jacobs et al. | Sep 2010 | A1 |
20100225272 | Kirby et al. | Sep 2010 | A1 |
20100231053 | Karalis et al. | Sep 2010 | A1 |
20100231163 | Mashinsky | Sep 2010 | A1 |
20100231340 | Fiorello et al. | Sep 2010 | A1 |
20100237096 | Wegelin | Sep 2010 | A1 |
20100237706 | Karalis et al. | Sep 2010 | A1 |
20100237707 | Karalis et al. | Sep 2010 | A1 |
20100237708 | Karalis et al. | Sep 2010 | A1 |
20100237709 | Hall et al. | Sep 2010 | A1 |
20100244576 | Hillan et al. | Sep 2010 | A1 |
20100244577 | Shimokawa | Sep 2010 | A1 |
20100244578 | Yoshikawa | Sep 2010 | A1 |
20100244580 | Uchida et al. | Sep 2010 | A1 |
20100244581 | Uchida | Sep 2010 | A1 |
20100244582 | Yoshikawa | Sep 2010 | A1 |
20100244583 | Shimokawa | Sep 2010 | A1 |
20100244839 | Yoshikawa | Sep 2010 | A1 |
20100248622 | Lyell et al. | Sep 2010 | A1 |
20100253152 | Karalis et al. | Oct 2010 | A1 |
20100253281 | Li | Oct 2010 | A1 |
20100256831 | Abramo | Oct 2010 | A1 |
20100259108 | Giler et al. | Oct 2010 | A1 |
20100259109 | Sato | Oct 2010 | A1 |
20100259110 | Kurs et al. | Oct 2010 | A1 |
20100259111 | Ruocco | Oct 2010 | A1 |
20100259447 | Crouch | Oct 2010 | A1 |
20100264745 | Karalis et al. | Oct 2010 | A1 |
20100264746 | Kazama et al. | Oct 2010 | A1 |
20100264747 | Hall et al. | Oct 2010 | A1 |
20100276995 | Marzetta et al. | Nov 2010 | A1 |
20100277003 | Von Novak et al. | Nov 2010 | A1 |
20100277005 | Karalis et al. | Nov 2010 | A1 |
20100277120 | Cook et al. | Nov 2010 | A1 |
20100277121 | Hall et al. | Nov 2010 | A1 |
20100279606 | Hillan et al. | Nov 2010 | A1 |
20100289331 | Shionoiri et al. | Nov 2010 | A1 |
20100289341 | Ozaki et al. | Nov 2010 | A1 |
20100289449 | Elo | Nov 2010 | A1 |
20100295506 | Ichikawa | Nov 2010 | A1 |
20100301678 | Kim et al. | Dec 2010 | A1 |
20100308939 | Kurs | Dec 2010 | A1 |
20100323616 | Von Novak et al. | Dec 2010 | A1 |
20100327660 | Karalis et al. | Dec 2010 | A1 |
20100327661 | Karalis et al. | Dec 2010 | A1 |
20110012431 | Karalis et al. | Jan 2011 | A1 |
20110018361 | Karalis et al. | Jan 2011 | A1 |
20110018679 | Davis et al. | Jan 2011 | A1 |
20110025133 | Sauerlaender et al. | Feb 2011 | A1 |
20110031821 | Greene et al. | Feb 2011 | A1 |
20110037322 | Kanno | Feb 2011 | A1 |
20110043046 | Joannopoulos et al. | Feb 2011 | A1 |
20110043047 | Karalis et al. | Feb 2011 | A1 |
20110043048 | Karalis et al. | Feb 2011 | A1 |
20110043049 | Karalis et al. | Feb 2011 | A1 |
20110043163 | Baarman et al. | Feb 2011 | A1 |
20110049996 | Karalis et al. | Mar 2011 | A1 |
20110049998 | Karalis et al. | Mar 2011 | A1 |
20110050166 | Cook et al. | Mar 2011 | A1 |
20110053500 | Menegoli et al. | Mar 2011 | A1 |
20110056215 | Ham et al. | Mar 2011 | A1 |
20110057606 | Saunamaki | Mar 2011 | A1 |
20110057607 | Carobolante | Mar 2011 | A1 |
20110057891 | Ham et al. | Mar 2011 | A1 |
20110062790 | Kouki | Mar 2011 | A1 |
20110062791 | Shearer et al. | Mar 2011 | A1 |
20110062796 | Farahani | Mar 2011 | A1 |
20110062916 | Farahani | Mar 2011 | A1 |
20110065383 | Frankland et al. | Mar 2011 | A1 |
20110080050 | Thundat et al. | Apr 2011 | A1 |
20110080051 | Lee et al. | Apr 2011 | A1 |
20110080052 | Sato | Apr 2011 | A1 |
20110080053 | Urano | Apr 2011 | A1 |
20110080054 | Urano | Apr 2011 | A1 |
20110081857 | Lee et al. | Apr 2011 | A1 |
20110089895 | Karalis et al. | Apr 2011 | A1 |
20110095617 | Cook et al. | Apr 2011 | A1 |
20110095618 | Schatz et al. | Apr 2011 | A1 |
20110095619 | Urano | Apr 2011 | A1 |
20110101788 | Sun et al. | May 2011 | A1 |
20110101791 | Urano | May 2011 | A1 |
20110109167 | Park et al. | May 2011 | A1 |
20110109262 | Lizuka et al. | May 2011 | A1 |
20110115303 | Baarman et al. | May 2011 | A1 |
20110115430 | Saunamaki | May 2011 | A1 |
20110115431 | Dunworth et al. | May 2011 | A1 |
20110115432 | El-Maleh et al. | May 2011 | A1 |
20110119135 | Grilli et al. | May 2011 | A1 |
20110119144 | Grilli et al. | May 2011 | A1 |
20110121658 | Fukada | May 2011 | A1 |
20110121778 | Oyobe et al. | May 2011 | A1 |
20110121920 | Kurs et al. | May 2011 | A1 |
20110124305 | Von Novak et al. | May 2011 | A1 |
20110127843 | Karaoguz et al. | Jun 2011 | A1 |
20110127848 | Ryu et al. | Jun 2011 | A1 |
20110127951 | Walley et al. | Jun 2011 | A1 |
20110127952 | Walley et al. | Jun 2011 | A1 |
20110127953 | Walley et al. | Jun 2011 | A1 |
20110127954 | Walley et al. | Jun 2011 | A1 |
20110130093 | Walley et al. | Jun 2011 | A1 |
20110133564 | Teo et al. | Jun 2011 | A1 |
20110133565 | Teo et al. | Jun 2011 | A1 |
20110133566 | Teo et al. | Jun 2011 | A1 |
20110133567 | Teo et al. | Jun 2011 | A1 |
20110133568 | Wang et al. | Jun 2011 | A1 |
20110133569 | Cheong et al. | Jun 2011 | A1 |
20110140543 | Ryu et al. | Jun 2011 | A1 |
20110140544 | Karalis et al. | Jun 2011 | A1 |
20110140807 | Ryu et al. | Jun 2011 | A1 |
20110140809 | Ryu et al. | Jun 2011 | A1 |
20110148215 | Marzetta et al. | Jun 2011 | A1 |
20110148219 | Karalis et al. | Jun 2011 | A1 |
20110148347 | Greene et al. | Jun 2011 | A1 |
20110148349 | Kim et al. | Jun 2011 | A1 |
20110148351 | Ichikawa | Jun 2011 | A1 |
20110156486 | Teo et al. | Jun 2011 | A1 |
20110156487 | Teo et al. | Jun 2011 | A1 |
20110156490 | Hwang et al. | Jun 2011 | A1 |
20110156491 | Kim et al. | Jun 2011 | A1 |
20110156492 | Ryu et al. | Jun 2011 | A1 |
20110156493 | Bennett | Jun 2011 | A1 |
20110156635 | Hong et al. | Jun 2011 | A1 |
20110156639 | Ryu et al. | Jun 2011 | A1 |
20110159812 | Kim et al. | Jun 2011 | A1 |
20110162895 | Karalis et al. | Jul 2011 | A1 |
20110163542 | Farkas | Jul 2011 | A1 |
20110163608 | Brohlin et al. | Jul 2011 | A1 |
20110163609 | Wada et al. | Jul 2011 | A1 |
20110164471 | Baarrman et al. | Jul 2011 | A1 |
20110266878 | Cook et al. | Nov 2011 | A9 |
20130119930 | Sakoda et al. | May 2013 | A1 |
20130127242 | Ichikawa | May 2013 | A1 |
20130127253 | Stark et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2056426 | May 2009 | EP |
WO 2010024895 | Mar 2010 | WO |
WO 2010116441 | Oct 2010 | WO |
WO 20110061821 | May 2011 | WO |
WO 20110065352 | Jun 2011 | WO |
WO 20110070637 | Jun 2011 | WO |
WO 20110074082 | Jun 2011 | WO |
WO 20110077488 | Jun 2011 | WO |
WO 20110077493 | Jun 2011 | WO |
WO 20110077493 | Jul 2011 | WO |
WO2011081466 | Jul 2011 | WO |
Entry |
---|
PCT International Search Report with Written Opinion in corresponding Int'l appln. PCT/US2013/025065 dated Jul. 10, 2013. |
Number | Date | Country | |
---|---|---|---|
20130200717 A1 | Aug 2013 | US |