This application is the National Phase of PCT International Application No. PCT/KR2015/009462, filed on Sep. 8, 2015, which claims priority under 35 U.S.C. 119(a) to Patent Application No. 10-2014-0130529, filed in the Republic of Korea on Sep. 29, 2014, all of which are hereby expressly incorporated by reference into the present application.
The present invention relates to wireless charging, and more specifically, a wireless power transmitting apparatus and a wireless power receiving apparatus included in a wireless charging system.
As wireless communications technology is continuing to advance, wireless power transmitting/receiving technology which wirelessly transmits power to electronic devices has started to receive more attention. This type of wireless power transmitting/receiving technology may be diversely applied not only to battery charging of mobile terminals but also to delivery of power to home appliances, electric cars, or subways.
The wireless power transmitting/receiving technology uses a fundamental principle of magnetic induction or magnetic resonance. In order to increase an efficiency of the power transmission/reception, it is necessary to maintain a proper level of inductance by increasing an effective permeability of the wireless power transmitting/receiving apparatus.
Meanwhile, the wireless power transmitting/receiving apparatus may include a substrate, a soft magnetic layer disposed on the substrate and a coil disposed on the soft magnetic layer. In this case, the coil is wound in parallel to a plane of the soft magnetic layer. Due to a limitation related to size of the coil which is wound, there is a limitation in regards to achieving a desired level of the effective permeability.
In particular, there is a problem related to the wireless power transmitting/receiving apparatus applied to a vehicle in that it is difficult to apply a high-permeability-pellet to a soft magnetic layer due to vibration or temperature variation characteristics.
Moreover, due to the vibration characteristics, a double-sided tape which is very thick should be used between the substrate and the soft magnetic layer and between the soft magnetic layer and the coil. Thus, there is a limitation in terms of being able to increase the permeability by increasing the thickness of the soft magnetic layer.
Embodiments of the present invention provide a wireless power transmitting apparatus and a wireless power receiving apparatus of a wireless charging system.
According to an aspect of the present invention, a wireless power transmitting apparatus of a wireless charging system includes a substrate, a first bonding layer formed on the substrate, a soft magnetic layer formed on the first bonding layer, a second bonding layer formed on the soft magnetic layer and a transmitting coil formed on the second bonding layer, wherein at least one of the first bonding layer and the second bonding layer includes a magnetic substance.
At least one of the first bonding layer and the second bonding layer may include a magnetic layer which includes a magnetic substance, and a bonding agent which is formed on both sides of the magnetic layer.
The magnetic layer may include at least one of a sendust, a permalloy and MPP (Molybdenum Permalloy Powder).
A metal ribbon may be further formed between the magnetic layer and the bonding agent.
The bonding agent may include an insulation material.
The bonding agent may include at least one of an acrylate-based organic bonding agent, an epoxy-based organic bonding agent and a silicon-based organic bonding agent.
At least one surface of the first bonding layer and the second layer may be film-forming processed with an insulation material.
The insulation material may include SiO2.
A support film may be further formed on the transmitting coil.
The soft magnetic layer may include a composite comprising any one of single metal powder/flakes or alloy powder/flakes and a polymer resin.
The alloy powder/flakes may be Fe, Co and Ni alloy powder/flakes or Fe, Si and Cr alloy powder/flakes.
The polymer resin may include at least one of a PV (polyvinyl)-based resin, a PE (polyethylene)-based resin and a PP (polypropylene)-based resin.
According to an aspect of the present invention, the wireless power receiving apparatus of the wireless charging system includes a substrate, a first bonding layer formed on the substrate, a soft magnetic layer formed on the first bonding layer, a second bonding layer formed on the soft magnetic layer, and a receiving coil formed on the second bonding layer, wherein at least one of the first bonding layer and the second bonding layer includes a magnetic substance.
According to an aspect of the present invention, the bonding layer of the wireless power transmitting apparatus or the wireless power receiving apparatus of the wireless charging system includes a magnetic layer including a magnetic substance, and a bonding agent formed on both sides of the magnetic layer.
According to an embodiment of the invention, it may be possible to increase the effective permeability of the wireless power transmitting apparatus and the wireless power receiving apparatus, and to increase the inductance of the wireless power transmitting apparatus and the wireless power receiving apparatus. Therefore, the efficiency of power transmitting/receiving between the wireless power transmitting apparatus and the wireless power receiving apparatus can be increased.
In particularly, it may be possible to obtain a wireless power transmitting apparatus that can also be stably applied to a vehicle in which there are vibration and temperature variation characteristics.
While the invention can allow various modifications and alternative embodiments, specific embodiments thereof are shown by way of example in the drawings and will be described. However, it should be understood that there is no intention to limit the invention to the particular embodiments disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
It will be understood that although the terms including ordinal numbers such as “first,” “second,” etc. may be used herein to describe various elements, these elements are not limited by these terms. These terms are only used to distinguish one element from another. For example, a second element could be termed a first element without departing from the teachings of the present inventive concept, and similarly a first element could be also termed a second element. The term “and/or” includes any and all combination of one or more of the related listed items.
When an element is referred to as being “connected to” or “coupled with” another element, not only it can be directly connected or coupled to the other element, but also it can be understood that intervening elements may be present. In contrast, when an element is referred to as being “directly connected to” or “directly coupled with” another element, there are no intervening elements present.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the present inventive concept. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this inventive concept belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and regardless of the numbers in the drawings, the same or corresponding elements will be assigned with the same numbers and overlapping descriptions will be omitted.
Referring to
The wireless power transmitting apparatus 200 is connected to the power source 100 and receives power from the power source 100. Further, the wireless power transmitting apparatus 200 wirelessly transmits power to the wireless power receiving apparatus 300. In this case, the wireless power transmitting apparatus 200 may transmit power using an electromagnetic induction method or a resonance method. Although the power source 100 and the wireless power transmitting apparatus 200 are illustrated as separated elements, the structure is not limited thereto. The power source 100 may be included in the wireless power transmitting apparatus 200.
The wireless power receiving apparatus 300 wirelessly receives power from the wireless power transmitting apparatus 200. The wireless power receiving apparatus 300 may also receive power using the electromagnetic induction method or the resonance method. Further, the wireless power receiving apparatus 300 provides the received power to the load terminal 400.
Referring to
The power source 100 may generate an alternating current (AC) power having a predetermined frequency and supply it to the transmitting coil 210 of the wireless power transmitting apparatus 200.
Further, the alternating current generated by the transmitting coil 210 may be delivered to the receiving coil 310, which is inductively coupled to the transmitting coil 210. On the other hand, the power delivered to the transmitting coil 201 may be delivered to the wireless power receiving apparatus 300 having the same resonance frequency as the wireless power transmitting apparatus 200 through a frequency resonance method. The power may be transferred between two impedance matched LC circuits through resonanc.
The power which is delivered to the receiving coil 310 using the electromagnetic induction manner or the resonance method may be rectified through the rectifying unit 320 and delivered to the load terminal 400.
Referring to
Here, the capacitor C1 may be a variable capacitor, and impedance matching may be performed as a capacitance of the capacitor C1 is adjusted. Although an equivalent circuit diagram of the receiving coil 310 may also be similar to the equivalent circuit diagram of the transmitting coil 210, the structure is not limited thereto.
Referring to
Referring to
The rectifying unit 320 may convert the alternating current power delivered from the receiving coil 310 into a direct current (DC) power, and deliver the converted direct current power to the load terminal 400.
Specifically, the rectifying unit 320 may include a rectifier and a smoothing circuit, although they are not shown in the drawings. Although the rectifier (e.g., it may be a silicon rectifier) may be equivalently represented as a diode D1, the rectifier is not limited thereto. The rectifier may convert the alternating current power delivered from the receiving coil 310 into a direct current power. The smoothing circuit may remove an alternating element included in the DC power converted in the rectifier and output smooth DC power. Although, the smoothing circuit, for example, may be equivalently represented as a capacitor C3, the smoothing circuit is not limited thereto.
The load terminal 400 may be a battery or a device with a built-in battery.
Meanwhile, the quality factor possesses an important meaning in terms of wireless power transmission. The quality factor (Q) indicates an index of energy which may be accumulated around the wireless power transmitting apparatus 200 or the wireless power receiving apparatus 300. The quality factor (Q) may vary depending on an operating frequency (w), a shape, a size, a material, etc. of a coil, and may be represented by the following Equation 1.
Q=w*Ls/Rs [Equation 1]
Here, Ls is a coil inductance, and Rs indicates a resistance corresponding to a power loss occurring in the coil itself.
The quality factor may have a value from 0 to infinity, and as the quality factor becomes greater, it may be assumed that efficiency of power transmission between the wireless power transmitting apparatus 200 and the wireless power receiving apparatus 300 increases.
According to an embodiment of the present invention, increase of coil inductance is intended by including a magnetic substance in a bonding layer.
Referring to
Referring to
Referring to
The substrate 810 may be a plastic material substrate or a metal material substrate. The substrate 810 may also be a PCB (Printed Circuit Board). The substrate 810 may be a case of the wireless power transmitting apparatus 800. Thus, the substrate 810 may be used with an instrument.
The soft magnetic layer 830 may be embodied in various forms such as a pellet, a plate, a sheet, a ribbon, a foil, a film, a composite, etc. However, when the wireless power transmitting apparatus 800 is applied to a vehicle, the pellet is difficult to use due to vibration or temperature characteristics of vehicles. Thus, the soft magnetic layer 830 may include a composite comprising a single metal or an alloy powder/flakes and a polymer resin. Here, although the alloy powder/flakes may include at least one of Fe, Co and Ni alloy powder/flakes and Fe, Si and Cr alloy powder/flakes, they are not limited thereto. Further, although the polymer resin may include at least one of a PV (polyvinyl)-based resin, a PE (polyethylene)-based resin and a PP (polypropylene)-based resin, the polymer resin is not limited thereto. In this case, the soft magnetic layer 830 may include 90 wt % or more of an alloy powder/flakes, and 10 wt % or less of a polymer resin.
The transmitting coil 850 is formed on the soft magnetic layer 830. The coil 850 may be wound in a direction parallel to a plane of the soft magnetic layer 830 on the soft magnetic layer 830. Although it is not shown, a support film may further be formed on the transmitting coil 850. The support film is for supporting the transmitting coil 850, and it may include a PET (polyethylene terephthalate) material.
Meanwhile, the first bonding layer 820 is formed between the substrate 810 and the soft magnetic layer 830, and bonds the substrate 810 and the soft magnetic layer 830 together. Further, the second bonding layer 840 is formed between the soft magnetic layer 830 and the transmitting coil 850, and bonds the soft magnetic layer 830 and the transmitting coil 850 together. In this case, at least one of the first bonding layer 820 and the second bonding layer 840 includes a magnetic substance. When at least one of the first bonding layer 820 and the second bonding layer 840 includes a magnetic substance, the effective permeability of the wireless power transmitting apparatus 800 may increase, and the inductance may increase.
Referring to
The magnetic layer 900 may be a magnetic sheet, a magnetic film, a magnetic foil, etc. that includes a magnetic substance with high permeability. Here, although the magnetic substance with a high permeability may, for example, be a sendust, a permalloy, a MPP (Molybdenum Permalloy Powder), etc., the magnetic substance with high permeability is not limited thereto. The sendust refers to a Fe—Si—Al ternary alloy. The permalloy refers to a Ni—Fe binary alloy. Accordingly, an initial permeability of the magnetic layer 900 may be 500μ′ or more, and the difference in the initial permeability between the magnetic layer and the soft magnetic layer 830 may be 100μ′ or more at a range of 100 to 300 kHz. Here, the magnetic layer 900 may replace a dielectric substance film substrate of a general double-sided tape, which bonds the substrate 810 and the soft magnetic layer 830 or the soft magnetic layer 830 and the coil 850. Accordingly, without increasing an overall thickness of the wireless power transmitting apparatus or the wireless power receiving apparatus, it may be possible to increase effective permeability, and to increase inductance.
In this case, a metal ribbon may further be formed between the magnetic layer 900 and the bonding agent 910. Here, the metal ribbon may refer to a thin film which is made by spreading out a metal very slightly in a single atomic unit. Since the permeability of the metal ribbon is very high, without increasing an overall thickness of the wireless power transmitting apparatus, it may be possible to further increase effective permeability, and to increase inductance.
Meanwhile, when permeability of the magnetic layer 900 is higher than that of the soft magnetic layer 830, an electromagnetic component may be compensated due to a current conducted between the first bonding layer 820 or the second bonding layer 840 and the soft magnetic layer 830. Accordingly, the bonding agent 910 may include an insulation material. For instance, the bonding agent 910 may include an acrylate-based organic bonding agent, an epoxy-based organic bonding agent, a silicon-based organic bonding agent, etc.
In other cases, a surface of the first bonding layer 820 or the second bonding layer 840 may be film-forming processed with SiO2 or the like. Accordingly, the soft magnetic layer 830 may be insulated from the first bonding layer 820 or the second bonding layer 840.
Hereinafter, a test result related to inductance of a wireless power transmitting apparatus according to an embodiment of the present invention is explained.
Referring to
Here, a substrate, a soft magnetic layer and a coil are laminated in a sequence, and a bonding layer is formed between the substrate and the soft magnetic layer and between the soft magnetic layer and the coil. A soft magnetic layer which has permeability (μ) of 26 and a thickness of 2.0 mm is used, and a bonding layer between the soft magnetic layer and a coil is fixed at a thickness of 0.1 mm.
After measuring inductance when a bonding layer does not include a magnetic substance (normal), i.e. when using a general double-sided tape in which a bonding agent is formed on both sides of a substrate made by an dielectric film, the inductance was measured while increasing the thickness of a bonding layer from 0.1 mm to 0.4 mm, wherein the bonding layer included a magnetic substance of which permeability (μ) was 500 and a thickness ratio of a magnetic layer and a bonding agent was 7:3.
As shown in
Thus, according to an embodiment of the present invention, a wireless power transmitting apparatus having high inductance may be achieved. Moreover, a desired level of inductance may be achieved by adjusting the thickness of a bonding layer.
Hereinabove, for the sake of providing a convenient description, although a wireless power transmitting apparatus is described by way of examples, the invention is not limited thereto. Embodiments of the present invention may also be equally applied to a bonding layer which is formed between a substrate, a soft magnetic layer and a coil of a wireless power receiving apparatus. Further, when a wireless power receiving apparatus has a WPC function and NFC function simultaneously, a NFC coil may be further laminated onto a soft magnetic layer. The NFC coil may be configured to surround an outer circumference of a receiving coil.
Although exemplary embodiments of the present invention have been referenced and described above, it will be understood that it is possible for those of ordinary skill in the art to implement modifications and variations on the present invention without departing from the concept and scope of the present invention listed in the following appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0130529 | Sep 2014 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2015/009462 | 9/8/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/052879 | 4/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4023057 | Meckling | May 1977 | A |
5164242 | Webster | Nov 1992 | A |
5371486 | Yamada | Dec 1994 | A |
6404317 | Mizoguchi | Jun 2002 | B1 |
8803751 | Miller | Aug 2014 | B1 |
9030159 | Chen | May 2015 | B2 |
9178369 | Partovi | Nov 2015 | B2 |
9209627 | Baarman | Dec 2015 | B2 |
20020097639 | Ishizaki | Jul 2002 | A1 |
20030076211 | Matsuta | Apr 2003 | A1 |
20050012652 | Wakayama | Jan 2005 | A1 |
20050231436 | McLean | Oct 2005 | A1 |
20060271129 | Tai | Nov 2006 | A1 |
20070001921 | Takahashi | Jan 2007 | A1 |
20070077691 | Watanabe | Apr 2007 | A1 |
20070120681 | Yamazaki | May 2007 | A1 |
20080185578 | Yoshizumi | Aug 2008 | A1 |
20080198560 | Fujiwara | Aug 2008 | A1 |
20080292876 | Choi | Nov 2008 | A1 |
20090243784 | Iwasaki | Oct 2009 | A1 |
20090295526 | Mikami | Dec 2009 | A1 |
20100141369 | Mori | Jun 2010 | A1 |
20100231344 | Mashino | Sep 2010 | A1 |
20100314946 | Budde | Dec 2010 | A1 |
20110037557 | Konoue | Feb 2011 | A1 |
20110281535 | Low et al. | Nov 2011 | A1 |
20110285215 | Hatase | Nov 2011 | A1 |
20120086538 | Chu | Apr 2012 | A1 |
20120187457 | Yamazaki | Jul 2012 | A1 |
20120319811 | Chu | Dec 2012 | A1 |
20130009740 | Chang | Jan 2013 | A1 |
20130119511 | Shi | May 2013 | A1 |
20130147675 | Kato | Jun 2013 | A1 |
20130222101 | Ito | Aug 2013 | A1 |
20130234820 | Yoo | Sep 2013 | A1 |
20130300207 | Wang | Nov 2013 | A1 |
20130306364 | Suzuki | Nov 2013 | A1 |
20130333820 | Sherrer | Dec 2013 | A1 |
20140002228 | Hatanaka et al. | Jan 2014 | A1 |
20140043196 | Gouchi | Feb 2014 | A1 |
20140176286 | Okada | Jun 2014 | A1 |
20140186526 | Chang | Jul 2014 | A1 |
20140203985 | Tsubaki | Jul 2014 | A1 |
20140209691 | Finn | Jul 2014 | A1 |
20140225702 | Yazaki | Aug 2014 | A1 |
20140239892 | Sawa | Aug 2014 | A1 |
20140306787 | Kato | Oct 2014 | A1 |
20140333151 | Matsui et al. | Nov 2014 | A1 |
20140333152 | Kawano et al. | Nov 2014 | A1 |
20140340030 | Jung | Nov 2014 | A1 |
20140368307 | Kato | Dec 2014 | A1 |
20150024236 | Kang | Jan 2015 | A1 |
20150097521 | Endou | Apr 2015 | A1 |
20150123604 | Lee | May 2015 | A1 |
20150155084 | Kim | Jun 2015 | A1 |
20150236517 | Deguchi et al. | Aug 2015 | A1 |
20150325362 | Kumura | Nov 2015 | A1 |
20150331268 | Hohshi | Nov 2015 | A1 |
20150349424 | Hur | Dec 2015 | A1 |
20160064814 | Jang | Mar 2016 | A1 |
20160134126 | Tillotson et al. | May 2016 | A1 |
20160240301 | Yeom | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2013-219991 | Oct 2013 | JP |
10-2013-0072181 | Jul 2013 | KR |
10-2013-0099124 | Sep 2013 | KR |
10-2014-0048722 | Apr 2014 | KR |
10-1394508 | May 2014 | KR |
WO 2013172349 | Nov 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20170222472 A1 | Aug 2017 | US |