This application claims the benefit of Taiwan application Serial No. 102107332, filed Mar. 1, 2013, the subject matter of which is incorporated herein by reference.
1. Field of the Invention
The invention relates in general to a wireless communication system, and more particularly, to a technique for detecting data packets.
2. Description of the Related Art
A wireless local area network (WLAN) system transceives data in a unit of packets. To lower possibilities of collisions between packets so as to enhance transmission quality, two successive packets are transmitted with a constant time interval in between. Such time interval is usually 16 μs, and is referred to as a short interframe space (SIFS) interval.
In the 802.11n specifications, a packet format having a shorter interval is defined for promoting network transmission efficiency. The length of such reduced interframe space (RIFS) is only 2 μm.
The invention is directed to a wireless receiving system and a signal processing method thereof for bringing forward the searching process for a next packet and thus solving the issue of a missing packet resulted from the decoding latency. Without involving a circuit having a faster computation speed, hardware costs and power consumption of the system and method according to the present invention are reduced.
According to an embodiment of the present invention, a wireless receiving system including a decoding module, an estimating module and a searching module is provided. The decoding module receives and decodes a packet to generate a decoding result. The estimating module retrieves packet length information from the decoding result, and estimates a transmission end time of the packet according to the packet length information. The searching module determines a search start time according to the transmission end time, and starts packet searching at the search start time.
According to another embodiment of the present invention, a signal processing method applied to a wireless receiving system is provided. The method includes steps of: receiving and decoding a packet to generate a decoding result; retrieving packet length information from the packet result, and estimating a transmission end time of the packet according to the packet length information; and determining a search start time according to the transmission end time, and starting packet searching at the search start time.
The above and other aspects of the invention will become better understood with regard to the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
The estimating module 24 retrieves packet length information from a decoding result generated by the decoding module 22, and estimates a transmission end time (i.e., the time at which the end of a packet is transmitted to the wireless receiving system 200) of a packet according to the packet length information. Take the first packet 31 for example. In practice, the time at which the beginning of the first packet 31 is transmitted to the wireless receiving system 200 is known. Therefore, given an estimated length of the first packet 31 is obtained, the estimating module 24 may estimate the time at which the first packet 31 is completely transmitted (i.e., the time point t31 in
The 802.11n specifications specify three packet formats: legacy, high throughput mixed, and high throughput greenfield. These three types of packets have different lengths and contents, and have structures depicted by schematic diagrams in
Ceiling ((LENGTH*8+22)/N—DBPS)*4 μs (1)
In equation (1), the calculation symbol Ceiling represents a minimum integer greater than or equal to a calculation target, the parameter
LENGTH represents the number of bytes of data that is not transmitted by a high throughput mode, and the parameter N_DBPS represents the number of bits of data transmitted by each OFDM symbol in a packet. Further, the calculation result of equation (1) indicates the length of remaining contents of a packet after an L-SIG section. In other words, the estimated length of the entire packet can be obtained by adding the calculation result of equation (1) with a predetermined packet section length (i.e., the known lengths of the first sections).
For a packet transmitted by a high throughput mixed mode and having a normal guard interval, the packet length information includes a parameter HT_LENGTH and a parameter HT_N_DBPS, and the estimating module 24 may estimate the packet length according to an equation below:
Ceiling ((HT_LENGTH*8+22)/HT—N—DBPS)*4 μs+8 μs (2)
In equation (2), the parameter HT_LENGTH represents the number of bytes that are transmitted by a high throughput mode (including the high throughput mixed mode and a high throughput greenfield mode), and the parameter HT_N_DBPS represents the number of bits of data transmitted by each OFDM symbol in a packet. Further, the calculation result of equation (2) indicates the length of remaining contents of a packet after an HT-SIG section.
For a packet transmitted by the high throughput mixed mode and having a short guard interval, the estimating module 24 may estimate the packet length according to an equation below:
Ceiling ((HT_LENGTH*8+22)/HT—N—DBPS)*3.2 μs+8 μs (3)
For a packet transmitted by the high throughput greenfield mode, the packet length information includes the parameter HT_LENGTH and the parameter HT_N_DBPS, and the estimating module 24 may estimate the packet length according to an equation below:
Ceiling ((HT_LENGTH*8+22)/HT—N—DBPS)*4 μs (4)
A calculation result of equation (4) indicates the length of remaining contents of a packet following the HT-SIG section.
Compared to the decoding procedure, operations for estimating a packet length are relatively simpler. Therefore, the estimating module 24 may easily estimate the transmission end time of the first packet 31 before the first packet 31 is completely decoded. According to the transmission end time of the first packet 31, the searching module 26 determines a search start time, and starts packet searching at the search start time. In the example depicted in
In principle, the search start time is set to ensure that contents of the second packet 32 are not missed by the wireless receiving system 200. In another embodiment, the searching module 26 may set the search start time at the time point t31, between the time points t31 and t32, or to be slightly later than the time point t32. By setting the search start time as a transmission end time of a packet added with a minimum packet interval, the searching module 26 consumes no unnecessary power between the time points t31 and t32 before the preamble of the packet appears.
Similarly, before the second packet 32 ends, the estimating module 24 estimates that the transmission end time of the second packet 32 is t34, and the searching module 26 adds the time point t34 with the minimum packet interval to determine that the next search start time is the time point t35. In the example in
It is demonstrated by the above description that, the search start time in the present invention is independent from the length of the decoding latency, and so the issue of missing packets resulted from the decoding latency is eliminated. It should be noted that, as the wireless receiving system 200 needs not to involve a circuit having a faster computation speed for shortening the decoding latency, hardware costs and power consumption are significantly reduced.
Various operation details and modifications (e.g., the method for selecting the search start time) in the description associated with the wireless receiving system 200 are applicable to the signal processing method in
In conclusion, with the wireless receiving system and the signal processing method of the present invention, the issue of missing packets is solved by bringing forward the time to start searching a subsequent packet. Compared to the prior art, the system and method of the present invention offer lower hardware costs and reduced power consumption.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
102107332 | Mar 2013 | TW | national |