1. Technical Field
The present disclosure relates to a wireless remote control device for controlling an electronic device.
2. Description of Related Art
In computer systems such as personal computer (PC), operators usually need to press a power button to turn the computer system on or press a reset button to reset the computer, which is inconvenient when the operator is far from the PC.
Many aspects of the embodiments can be better understood with references to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, written in a programming language, such as, for example, Java, C, or Assembly. One or more software instructions in the modules may be embedded in firmware, such as an EPROM. It will be appreciated that modules may comprise connected logic units, such as gates and flip-flops, and may comprise programmable units, such as programmable gate arrays or processors. The modules described herein may be implemented as either software and/or hardware modules and may be stored in any type of computer-readable medium or other computer storage device.
Referring to
Referring to
Referring to
Referring to
The wireless remote control device further includes a transistor T3, a buzzer LS1, LEDs D1, D2 and resistors R15˜R17. A transistor T3 base is electrically connected to the indication signal output pin B0 via the resistor R15 for receiving an indication signal. A transistor T3 emitter is grounded. A transistor T3 collector is electrically connected to a buzzer LS1 cathode. A buzzer LS1 anode receives the +5V DC voltage. The LEDs D1 and D2 cathodes are electrically connected to the indication signal output pins B1 and B2 respectively for receiving the indication signal. The LEDs D1 and D2 anodes receives the +5V DC voltage via the resistors R16 and R17 respectively. In one embodiment, the transistors T1˜T3 are NPN type transistors. The MOSFETs Q1 and Q2 are N-channel MOSFETs. An oscillating frequency of the crystal oscillator X1 is 315 megahertz.
In use, the switches S1˜S3 are pressed by an external force to turn on/off or reset the electronic device. When a corresponding switch is pressed, the corresponding data pin of the encoding chip U1 receives the +5V DC and is at a high voltage level. Assuming that logic 1 represents a high voltage level and logic 0 represents a low voltage level. In the practice, the switches S1˜S3 may be arranged in a plurality of ways. The operation on the electronic device is indicated for each possible arrangement as follows:
It is to be understood, however, that even though numerous characteristics and advantages of the embodiments have been set forth in the foregoing description, together with details of the structure and function of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0146783 | Apr 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4912463 | Li | Mar 1990 | A |
20020186203 | Huang | Dec 2002 | A1 |
20030118187 | Fitzgibbon | Jun 2003 | A1 |
20030188172 | Yeh | Oct 2003 | A1 |
20090300373 | Cui et al. | Dec 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110254668 A1 | Oct 2011 | US |