1. Field of the Invention
The present invention relates to communication networks and, more particularly, to a wireless repeater that includes a receiver and a transmitter in an ultra-high speed personal area network.
2. Description of Related Art
As the world becomes more reliant on electronic devices, and portable devices, the desire for faster and more convenient devices continues to increase. Accordingly, manufacturers and designers of such devices strive to create faster and easier to use devices to serve the needs of consumers.
Indeed, the demand for ultra-high data rate wireless communication has increased, in particular due to the emergence of many new multimedia applications. Due to limitations at these high data rates, the need for ultrahigh speed personal area networking (PAN) and point-to-point or point-to-multipoint data links becomes vital.
Previously, conventional wireless local area networks (WLAN), e.g., 802.11a, 802.11b, and 802.11g standards, are limited, in the best case, to a data rate of only 54 Mb/s. Other high speed wireless communications, such as ultra wide band (UWB) and multiple-input/multiple-output (MIMO) systems can extend the data rate to 100 Mb/s.
To push through the gigabit per second (Gb/s) spectrum, either spectrum efficiency or the available bandwidth must be increased. Consequently, the recent development of technologies and systems operating at the millimeter-wave (MMW) frequencies increases with the demand to reach such data speeds.
Fortunately, many governments have made available several GHz (gigahertz) band-width unlicensed Instrumentation, Scientific, and Medical (ISM) bands in the 60 GHz spectrum. For instance, the United States, through the Federal Communications Commission (FCC), allocated 59-64 GHz for unlicensed applications in the United States. Likewise, Japan allocated 59-66 GHz for high speed data communications. Also, Europe allocated 59-62, 62-63, and 65-66 GHz for mobile broadband and WLAN communications. The availability of frequencies in this spectrum presents an opportunity for ultra-high speed short-range wireless communications.
Unfortunately, even with the advantages of high frequencies, there are some fundamental disadvantages. For example, one fundamental limitation of 60 GHz high-speed indoor communication systems is channel degradation due to the shadowing effect occurring with a line of sight (LOS) obstruction, often by a human body. For instance, if an individual or other object interferes with the transmission of the communication system, by simply entering the line of sight between, for example, a transmitter and a receiver, the communication signal can either fade, or be temporarily completely lost. Thus, the best transmission can be achieved in a direct LOS relationship.
What is needed, therefore, is a device and system to enable easy and non-obstructive LOS for efficient and convenient transmission of ultra-high frequencies at ultra-high data transmissions. It is to such a device that the present invention is primarily detected.
The present invention is a wireless repeater assembly for ultra-high speed wireless communications. The wireless repeater assembly includes a first antenna in communication with a receiver, and a second antenna in communication with a transmitter.
The receiver and the transmitter of the repeater can be mounted on an automated mechanical scanning system, or feature electronic scanning capabilities. Thus, the repeater can automatically perform alignment with strategically positioned base stations.
Alternatively, a multi-sector repeater can comprise N receiver/transmitters providing sectorial coverage, and thus alleviate many needs of the scanning features.
Preferably, the first antenna and the second antenna of the repeater can operate in the range of approximately 60 GHz, i.e., 54 to 66 GHz, wherein receiving and transmitting data communication at least approximately 5 Gb/s.
The present invention provides strategically positioned repeaters to minimize loss of sight problems for the repeater to communication with other receivers and transmitters in proximity to the repeater.
A wireless repeater assembly can comprise a receiver for receiving wireless data communications, wherein the receiver comprises: a receiving antenna for receiving analog signals; a receiver filter adapted to enable frequencies of a predetermined range to pass onto the receiver amplifier; and a receiver amplifier for boosting a signal emitted from the receiver filter; a transmitter for transmitting wireless data communications, wherein the transmitter comprises: a transmitter amplifier for boosting a signal coming from the receiver; a transmitter filter adapted to enable frequencies of a predetermined range to pass onto the transmitting antenna; and transmitting antenna for transmitting signals from the repeater assembly; and a hard wire connection between the receiver and the transmitter, wherein the receiver and the transmitter are in wired communication.
The receiving antenna can be tuned to receive approximately 60 GHz and the transmitting antenna is tuned to transmit at approximately 60 GHz.
The receiving antenna can comprise a high gain antenna, the receiver filter can comprise a band-pass filter, and wherein the receiver amplifier can comprise a low noise amplifier. The transmitter amplifier can comprise a power amplifier, the transmitter filter can comprise a band-pass filter, and wherein the transmitting antenna can comprise a high gain antenna.
The wireless repeater can further comprise a buffer memory positioned between the receiver and the transmitter for securing data.
The receiver can further comprise an analog-to-digital converter, and the transmitter further can comprise a digital-to-analog converter.
The wireless repeater assembly can comprise at least two layers, a top layer and a bottom layer, and wherein the top layer comprises liquid crystal polymer and the bottom layer comprises fire resistant 4.
The wireless repeater can be in communication with a power adapter of a light source, and wherein the wireless repeater assembly obtains operating power from the power adapter. Additionally, the wireless repeater assembly can be positioned at least two meters above a ground.
The wireless repeater assembly can transmit through a wall to a second wireless repeater assembly, and the wireless repeater assembly and the second wireless repeater assembly are in proximity to each other on opposing sides of the wall.
The wireless repeater can scan approximately 90 degrees in an azimuth, and in the range of approximately 90 to 180 degrees in a elevation for analog signals operating at approximately 60 GHz within five meters of the wireless repeater assembly. The wireless repeater assembly is preferably powered with direct current.
These and other objects, features and advantages of the present invention will become more apparent upon reading the following specification in conjunction with the accompanying drawing figures.
To facilitate an understanding of the principles and features of the invention, it is explained hereinafter with reference to its implementation in an illustrative embodiment. In particular, the invention is described in the context of being a wireless repeater assembly enabling the repetition of communication signals and, further, to extend the range of wireless transmitters.
The invention, however, is not limited to its use as a wireless repeater assembly for ultra-high speed communications. Rather, the invention can be used when a repeater is desired, or as is necessary. Thus, the device described hereinafter as a wireless repeater can also find utility as a device for other applications, beyond that of a wireless repeater.
Additionally, the material described hereinafter as making up the various elements of the invention are intended to be illustrative and not restrictive. Many suitable materials that would perform the same or a similar function as the materials described herein are intended to be embraced within the scope of the invention. Such other materials not described herein can include, but are not limited to, for example, materials that are developed after the time of the development of the invention.
While the invention is described as operating within a preferred frequency range, one skilled in the art would appreciate that the repeater assembly can operate at most available frequencies. Additionally, while the invention is described as operating with range of a preferred data transmission speed, one skilled in the art would appreciate that the repeater assembly can operate at most data transmission speeds.
In a preferred embodiment, the receiver 110 and the transmitter 120 of the repeater assembly 100 are in communication. Indeed, preferably, the receiver 110 and transmitter 120 are in communication via a hard wire connection 130.
The receiver 110 includes the antenna 112. Preferably, the antenna 112 is adapted to receive frequencies in the range of approximately 60 GHz, i.e., 54 to 66 GHz. The antenna 112 can be a high gain antenna, which is an antenna having a focused, narrow radiowave beam width. The narrow beam width can allow for precise targeting of obtaining a signal. The high gain antenna is sometimes also referred to as a directional antenna. Medium gain antennas, exhibiting broader radiation coverage, preferably, can be used in a multi-sector embodiment.
The receiver 110 further includes the filter 114. Preferably, the filter 114 is a band-pass filter. Typically, a band-pass filter can be an electronic circuit that permits frequencies through, filtering a certain range. A preferred band-pass filter, for instance, would enable frequencies in the range of 54 to 66 GHz to pass, while the frequencies outside the set range are attenuated or dumped.
The receiver 110 can further include the amplifier 116. The amplifier 116, preferably, is a low noise amplifier. The low noise amplifier can provide a boost, or increase the gain, of a signal having been filtered by the filter 114, without degrading a signal to noise ratio.
The transmitter 120 includes the amplifier 122. Preferably, the amplifier 122 is a power amplifier. The power amplifier can boost a signal, wherein producing a larger load.
The transmitter 120 also includes a filter 124. The filter 124, in a preferred embodiment, can be a band-pass filter.
The transmitter 120, further, includes the antenna 126. Like the antenna 112 for the receiver 110, the antenna 126 for the transmitter 120, is preferably a high gain antenna, wherein adapted to transmit a signal from the repeater assembly 100.
In a preferred embodiment of the present invention, the repeater assembly 100 can receive and transmit, through the receiver 110 and the transmitter 120, respectively, in a range of 54 to 66 GHz. Typically, this range, i.e., approximately 60 GHz, includes devices that are used in short-range applications.
The receiver antenna 202 operates similar to the antenna 112, as described above. The receiver antenna 202 is in communication with the receiver 204. The receiver 204 can include an ADC, or an analog to digital converter. The ADC converts signals from analog into digital signals. The analog signal obtained from the receiver antenna 202 is converted to a digital signal. Preferably, the receiver 204 can operate at approximately 60 GHz.
The buffer memory device 206 can be adapted to contain data, especially when the receiver 204 is communicating with the transmitter 208. Preferably, the transmitter 208 includes a DAC, or digital to analog converter. The DAC converts digital signals into analog signals, wherein the repeater 200 can transmit the digital signal via the transmitter antenna 210. The transmitter 208 can operate at approximately 60 GHz.
In an exemplary embodiment, the repeater assembly can be implemented in a unit-to-unit communication scheme, as illustrated in
In a preferred embodiment, the modules 305 and 310 of the repeater assembly can comprise at least two layers, a top layer 312 and a bottom layer 314. The top layer 312 is preferably comprised of liquid crystal polymer (LCP), while the bottom layer 314 is preferably comprised of FR4 (Fire Resistant 4). The top layer 312 and the bottom layer 314 are connected with an adhesive, preferably 3M-9713.
A patent application “Receiver Assembly and Method for Multi-Gigabit Wireless Systems” further describes this substrate layering. The patent application, having the same inventorship, was filed on the same date as the present application—31 Mar. 2006—the entire contents and substance is herein incorporated by reference.
Further, use of high gain, high directivity antennas with the modules 305 and 310 can enable data transmissions through a material 315, for instance, wood and/or glass, which can make-up or hold/secure the unit 300. Due to the high directivity of the antenna of the module 305 and 310, proximity alignment is preferred between different unit-to-unit wireless modules.
Indeed, this concept can be expanded, for in another embodiment, as illustrated in
For instance, the wireless repeater 400 can communicate with a number of peripherals, for example, a laptop, a digital camera, a monitor, a mobile music device (MP3 player), a printer, a scanner, a desktop, and the like.
Referring now to
As described, one of the limitations of the ultra-high frequency, ultra-high speed communication is the line of sight limitation.
The wireless repeater 700 of
Powering the wireless repeater presents a challenge. Since the repeater is wireless, the last thing a consumer wants with the wireless repeater is a power wire. Hence, the placement of wireless repeaters in communication with existing lighting systems of an indoor environment is advantageous. First, the use of an existing power supply suppresses the need for additional electric wiring and installation for the wireless repeater. Secondly, lighting systems are typically located above the ground, and therefore are suitable to easily establish a line-of-sight propagation path between different wireless nodes.
Thus, because the wireless repeater can have a small form factor, it can be plugged into in an existing lighting system 900. This is illustrated in
The receiver/transmitter of the through-wall repeater 1000 can be mounted on an automated mechanical scanning system and/or feature a multi-sector topology to support sectorial coverage. Thus, the repeater 1000 can perform automatically the optimum alignment with proximity-located base stations, preferably within the same room of the repeater 1000. Preferably, the range of mechanical scanning can be approximately 180 degrees in azimuth, and in the range of approximately 90 to 180 degrees in elevation, in order to provide favorable coverage. Additionally, in a preferred embodiment, the repeater 1000 is positioned at least two meters above ground, wherein reducing shadowing and link interruption due to human body obstruction.
The receiver/transmitter dedicated for the through-wall repeater 1000 can be fixed on a backside of the repeater 1000, wherein being in direct contact with the wall. A two unit embodiment is preferably aligned on both sides of the wall, preferably within +/−5 cm, wherein providing a robust linkage.
The repeater 1000 can include the receiver 1010 (e.g., 60 GHz module), and the transmitter 1020 (e.g., 60 GHz module) implemented on the LCP-FR4 technology (as described above, and in the referenced patent application). An advanced version of the repeater module (see
The wireless repeaters described herein can preferably operate on a DC (direct current) power supply. For instance, the DC power supply can be a battery, a standard AC-DC plug, or an AC-DC adaptor that can be plugged on and derived the power from a light system.
While the invention has been disclosed in its preferred forms, it will be apparent to those skilled in the art that many modifications, additions, and deletions can be made therein without departing from the spirit and scope of the invention and its equivalents, as set forth in the following claims.
This application claims the benefit of U.S. Provisional Application Nos. 60/666,839 and 60/666,840, both filed 31 Mar. 2005, and U.S. Provisional Application Nos. 60/667,287, 60/667,312, 60/667,313, 60/667,375, 60/667,443, and 60/667,458, collectively filed 01 Apr. 2005, the entire contents and substance of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60666839 | Mar 2005 | US | |
60666840 | Mar 2005 | US | |
60667287 | Apr 2005 | US | |
60667312 | Apr 2005 | US | |
60667313 | Apr 2005 | US | |
60667375 | Apr 2005 | US | |
60667443 | Apr 2005 | US | |
60667458 | Apr 2005 | US |