Energy conservation is a proven means to reduce the operating costs of hotels. But many lodging facility operators shun attempts at saving energy in the guest-rooms, as they are concerned about the negative impact that such measures may have on guest perception and comfort.
A modern guestroom uses approximately 25 Kilowatt-hours (KWHr) of electricity (or equivalent fuel) each day. Based on a cost estimate of $0.07 per KWHr, this amounts to about $1.75 per day per room. This figure assumes the following appliances are used in a typical room: Heating/Ventilation/Air-Conditioning (HVAC), lamps (portable), lights (fixed), television, radio, and minibar. A mini-bar is a convenient store of goods within each room, usually within a refrigerator, that can be accessed by the guest at his or her discretion.
With the exception of the minibar, the electrical power consumption by the appliances is manually controlled, and the amount of electricity used by these appliances can be reduced using an energy management system (EMS). In the case of the HVAC system, a well-designed EMS can reduce not only the number of hours the HVAC system is used each day, but can also reduce the average power required. The EMS can set back the HVAC temperature whenever a room is not rented and, when rented, whenever a guest is not in the room. The EMS will turn off lamps and lights when the guest or housekeeping leaves the room. The EMS can turn off the television when the room is not rented, and it can open or close the drapes to control heat exchange with the outside.
In modern lodging facilities, the EMS is part of a larger guest room control system, which also includes a direct digital control (DDC) system and a central electrical lock system (CELS). The DDC system allows a guest to remotely control the lamps, lights, shades, television, and other appliances from a single control station. The CELS connects guestroom doors to a central computer in the hotel for logging keycard access operations and for enabling and disabling access cards.
Guest room control systems typically comprise a control computer or device for each room. The control computer receives data from various sensors throughout the room and, in response to the feedback provided by the sensors, operates a number of remote room control devices. Such remote sensors include, for example, motion sensors, temperature sensors, smoke detectors, and door and other closure switches. Such remote room control devices include, for example, thermostats and associated relays for heating, ventilation and air conditioning (HVAC) equipment, electronic locks, lighting control switches and relays, and motors and switches for opening and closing drapes. The central control computer uses the data and control devices to, for example, adjust the room's temperature, determine and annunciate whether the room is occupied or unoccupied, determine and annunciate whether the room's mini-bar has been accessed, sound fire and emergency alarms, turn lights on or off, permit or deny access to the room, open and close drapes, turn audio-visual equipment on or off, and perform other functions related to controlling equipment or annunciating status in rooms. The central control computer located in each room can be linked to a single master central control computer. The central control computer from each room provides data to the master central control computer from which such data is disseminated to display and control terminals at housekeeping, front desk, security, engineering or any number of other locations in order to provide hotel personnel with access to the data and with the ability to remotely control various room functions or settings from such terminals.
Such guest room control systems work well to provide conveniences to the guest. However, these systems typically require a specific sensor for a specific purpose, thus, many different sensors may be required for a single guest room. For example, a main switch is used to determine whether a guest opened the main door. Another switch is used to determine whether the guest opened the mini-bar door. Yet another switch is used to determine whether the guest opened a door to a patio, such as a lanai or sliding door. Therefore, a number of different sensors (and corresponding receivers) may be incorporated in a guest room. While multiple sensors provide greater control of the power consumption for a guest room, the system installation, operation and maintenance becomes more complex and costly.
The above discussed and other drawbacks and deficiencies are overcome or alleviated by a wireless switch comprising: a sensor for sensing a change of a state of a barrier; a selector positionable between a first position and a second position; a transmitter operatively coupled to the sensor and selector; and wherein the transmitter transmits a first wireless signal when the selector is positioned in the first position and the sensor senses a change of state, and the transmitter transmits a second wireless signal different from the first signal when the selector is positioned in the second position and the sensor senses the change of state.
Referring to the exemplary drawings wherein like elements are numbered alike in the several Figures:
Wireless switch 8 includes a sensor 10, such as a magnetic switch, pressure switch or any other known device for sensing a change of state (e.g., open/closed positions) of a barrier (not shown), such as a door, window, appliance or the like. Sensor 10 generates a sensor signal based on the change of state. Wireless switch 8 also includes a selector 16 positionable between two or more positions. Selector 16 allows a signal 19 transmitted by transmitter/controller 12 to be modified to indicate identification data. Because signal 19 transmitted by the transmitter/controller 12 can be modified, one wireless switch 8 can be uniquely identified by the receiver/controller 14 in a system 6 including a plurality of wireless switches 8. By uniquely identifying wireless switch 8, the type of barrier correlating to switch 8 is also identified. For example, selector switch 8 may correlate to a door. Even further, the selector switch 8 may correlate to a specific type of door, such as an entry door, mini-bar door, patio door (e.g., sliding or lanai), or the like. Transmitter/controller 12 transmits signal 19 indicative of the discrete state of sensor 10. The transmitted signal 19 also includes the unique identifier for wireless switch 8. Transmitted signal 19 is received by receiver/controller 14 for use in controlling room devices 18.
The selector switch configuration optionally includes operable connection to an I/O pin of the microcontroller 26 for setting the state of the I/O pin to ground or Vcc. In one embodiment, a particular selector switch configuration is selected by removing/adding a jumper, setting a DIP switch or toggle switch or the like. One side of the selector switch configuration is operatively coupled to one or more I/O pins and the other side operatively coupled to ground (see
As described, transmitter/controller 12 includes circuitry having microcontroller 26. However, any suitable control circuitry may be used. For example, dedicated logic and discrete circuitry is optionally used to communicate the state of the barrier and identity of switch 8. Also as described, control circuitry may be powered by a current source disposed within wireless switch 8, such as a battery. When a battery is used for the current source, wireless switch 8 requires no hard wiring for power. Signal 19 transmitted by transmitter 28 may be any wireless signal, such as infrared, radio frequency or the like. Transmitter 28 may be any suitable wireless transmitter, as is well known, and commercially available. Again, microcontroller 26 or suitable control circuitry is used for controlling the transmission of signal 19. In one embodiment, microcontroller 26 includes memory and I/O ports for communication with selector 16. Again, the selector switch configuration correlates to the state of the microcontroller's 26 I/O ports, which correlate to an address selected to identify wireless switch 8. This address, along with the signal indicating the state of the barrier, is transmitted to the receiver/controller 14.
Referring again to
The wireless switch 8 of
As previously discussed, an infrared transmitter 28 for transmitting a diffused beam may be used in system 6 where transmitter 28 is not within the line of sight of receiver/controller 14. For example, wireless switch 8 in the embodiment of
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 09/944,810 filed Aug. 31, 2001 now U.S. Pat. No. 6,832,072, the contents of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3833895 | Facteau | Sep 1974 | A |
4223301 | Grimes et al. | Sep 1980 | A |
4698937 | Kornbrekke et al. | Oct 1987 | A |
4804945 | Millet | Feb 1989 | A |
4850040 | Teich et al. | Jul 1989 | A |
4866433 | Akutsu | Sep 1989 | A |
4887205 | Chou | Dec 1989 | A |
5128792 | Teich et al. | Jul 1992 | A |
5402105 | Doyle et al. | Mar 1995 | A |
5903226 | Suman et al. | May 1999 | A |
5933085 | Holcomb et al. | Aug 1999 | A |
5942981 | Kackman | Aug 1999 | A |
5986548 | McGregor | Nov 1999 | A |
6072402 | Kniffin et al. | Jun 2000 | A |
6137405 | Carney | Oct 2000 | A |
6178699 | Kawanobe et al. | Jan 2001 | B1 |
20010020891 | Minagawa et al. | Sep 2001 | A1 |
20020178385 | Dent et al. | Nov 2002 | A1 |
20050164678 | Rezvani et al. | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050095984 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09944810 | Aug 2001 | US |
Child | 11010844 | US |