The invention relates to wireless switching apparatus and methods for installation and use. More particularly, the invention relates to a wireless three-way switching apparatus for remote and local control of at least one energy load. The invention also relates to load monitoring and control using the switching apparatus and an energy monitoring device. One form of energy monitoring device comprises a Hall Effect current sensor.
Common electrical apparatus or appliances, such as a dishwasher, toaster, or lights, are generally energized by means of an AC power source. The appliance has electrical contacts or an electrical switch for connecting and disconnecting the appliance's electrical load from the AC source. The status (on or off) of the electrical appliance can be controlled by the electrical switch as long as the appliance's local on/off switch remains closed (on) to electrically connect the load and the relay.
The status of such electrical appliances can also be controlled remotely as long as the appliance's local on/off switch remains closed (on). In some instances, the AC receptacle to which the electrical appliance is plugged is provided with an intermediate device having a receiver connected to a relay. The receiver receives signals from a remote control unit and, depending upon the signals received, the receiver opens or closes the relay for connecting and disconnecting the electrical appliance from the AC source thereby changing the status of the electrical appliance. However, the system is inoperable if a user wishes to locally control the electrical appliance without using the remote control unit. For example, if a user manually turns off a lamp by opening the electrical connection at the lamp, the receiver and relay are powerless to close those contacts. There is a need to provide a more convenient system for providing remote and local control.
It is known to measure the power consumed by the electrical appliance using an energy monitoring device. The electrical appliance is plugged into the energy monitoring device which in turn is typically plugged into an AC receptacle. The energy monitoring device can display the power consumed by the electrical appliance by measuring electrical values such as current, voltage and power. An example of an energy monitoring device is “Kill A Watt™ marketed by P3 International, of New York, N.Y.
To the best of Applicant's knowledge, most energy monitoring devices use current transformers for measuring the current flowing through the AC receptacle. Current transformers are bulky and occupy more board space when mounted on a printed circuit board (PCB). Alternate devices include Hall Effect current sensors, however, to date it is believed these devices are limited to low power applications.
The present invention provides improvements to management and wireless control of energy loads such as electrical appliances or apparatus. Generally, wireless apparatus is provided including implementation of three-way control, in-wall or plug-in receptacle devices, retrofit capability and integration of energy management. With energy management, electrical loads can be monitored, controlled and managed including for problem detection.
In one embodiment, three-way switching apparatus is provided which enables a user to change a status of an electrical appliance either locally or remotely without disabling the other operation. Existing hard-wired “local operation-only” switches and receptacles can be retrofit to enable both local and wireless remote operations. Further existing hard-wired switches can be easily replaced with apparatus of the present invention by the minimally skilled, enabling a greater opportunity and control of the original load or alternate loads with the wireless apparatus.
Embodiments of the present invention also provide control of an electrical appliance using a combined system comprising an energy monitoring device operatively coupled to the wireless switching apparatus. Control includes management of loads based on one or more external variables including time of day, duration, temperature and characteristics of the load itself.
Further, the energy monitoring device can be incorporated in a low cost and compact apparatus using particular implementation of a Hall Effect current sensor. In one embodiment, the Hall Effect current sensor is mounted on one side of a printed circuit board (PCB) substrate. Avoiding load restrictions of conventional Hall Effect sensors, a copper track or trace for carrying the current to be measured is located, without size and current restriction, on the other side of a magnetically transparent PCB substrate.
In one aspect of the present invention a wireless apparatus for switching at least one energy load with an AC power source comprises a load-interface device having a relay between the at least one energy load and the AC power source; a controller operatively connected to the relay; a toggle and a wireless transceiver connected to the controller; and a remote wireless transceiver unit in communication with the wireless transceiver. The controller operates the relay for changing the state of the electrical continuity between the at least one energy load and the AC power source in response to a change in state of the toggle regardless of a state signaled through wireless signals received from the remote wireless transmitting unit, and in response to a change in the state signaled through the wireless signals received by the transceiver from the wireless transceiver unit regardless of the state of the toggle.
In another aspect of the present invention a combined system for controlling at least one energy load comprises an energy monitoring device operatively coupled to the wireless switching apparatus.
In another aspect of the present invention, a method for controlling at least one energy load is provided comprising maintaining a log of power consumed by the at least one energy load over a set period of time to arrive at an average power consumed by the at least one energy load. The power consumed by the at least one energy load is measured at a given instant to arrive at an instant power and is compared with the average power. One determines that the at least one energy load is outside operating limits when the instant power exceeds the average power by a predetermined tolerance.
In another aspect of the present invention, a method for retrofitting conventional system with wireless system comprises replacing a conventional receptacle for receiving a plug of the at least one energy load or an electrical switch controlling the at least one energy load with the controlled receptacle. In another aspect, the method for retrofitting conventional system with wireless system comprises replacing the conventional receptacle for receiving a plug of the at least one energy load with the controlled receptacle; and replacing the conventional electrical switch controlling the at least one energy load with an electrical outlet adapted to receive the remote wireless transceiver unit, the remote wireless transceiver unit comprising an interface for activating the transceiver unit.
A first aspect of the invention provides local and remote control (on and off) of at least one energy load using a wireless three-way switching apparatus. As used herein, the term “energy load” generally includes but is not limited to, home appliances and industrial apparatus. Examples of home appliances include lamps, kettles, toasters, dishwashers and car block heaters.
The invention also provides control of at least one energy load using a combined system comprising the switching apparatus interfaced with an energy monitoring device. In addition to monitoring functions, the combined system automatically turns on and off the energy load on the basis of a predetermined set of variables such as energy consumed by the energy load, changes in the energy consumption, energy usage patterns, cost of energy, time of day, temperature conditions around the energy load, or combinations thereof.
Embodiments of the invention are explained herein in the context of control of a single energy load such as a lamp or a car block heater or multiple energy loads.
With reference to
Turning to embodiments on the present invention, as shown in
The switching apparatus 4 further comprises a remote wireless transceiver unit 12 in communication with the wireless transceiver 10. The remote wireless transceiver unit 12 can be a mobile wireless device such as a laptop, a personal digital assistant (PDA), or a cell phone; or a wall mounted wireless device; or a personal computer (PC). The wireless transceiver 10 receives wireless signals which include instructions to change the state of the relay 7.
As shown in
The switching apparatus 4 can be used to change the status of the lamp 1 locally by a user when the local switch 1a of the lamp 1 is left in an “on’ position. This is done by the user changing the position of the toggle 9 at the controlled AC receptacle 2b into which the lamp 1 is plugged in. As a result of switch 1a being left on, the load or bulb of the lamp 1 is already electrically connected to the lamp's plug.
A change in position of the toggle 9 or a wireless signal from the wireless transceiver unit 12 is detected by the controller 6 which in turn causes the relay 7 to move to its opposing state thereby making or breaking the electrical continuity between the lamp 1 and the AC power source 11. As is known with conventional three-way arrangements, changing the state of the relay changes the state of the lamp, turning it on, if it was off, and turning it off, if it was on. The status of the lamp 1 can be changed remotely regardless of the position of the toggle 9. This can be done by a user activating an application on the wireless transceiver unit 12. The wireless signals sent by unit 12 are received by the transceiver 10. The controller 6 in turn causes the relay 7 to move to its opposing state thereby making or breaking the electrical continuity between the lamp 1 and the AC power source 11. The controller 6 can be connected to the relay 7 through a relay driver such as a transistor driven opto coupler.
In another aspect of the invention and as illustrated in
The energy monitoring device 13 measures electrical values, such as power consumed, at the controlled AC receptacle 2b to which the lamp 1 is connected. The energy monitoring device 13 is also adapted to communicate with the controller 6 to automatically operate the relay 7 for turning on and off the lamp 1 on the basis of the predetermined set of variables. The predetermined set of variables is set by the user. When a select one or more of the predetermined conditions set in the energy monitoring device 13 are satisfied, the energy monitoring device 13 communicates with the controller 6, which in turn moves the relay 7 to its opposing state thereby changing the state of the lamp 1.
The energy monitoring device 13 is also associated with a visual display 21 which can display the electrical values or any of the predetermined set of variables.
The configuration of the energy monitoring device 13 and the interaction of the energy monitoring device 13 with the switching apparatus 4 are explained below with reference to the drawings and specific examples.
In one example and as illustrated in
As illustrated in
The visual display 21 associated with the energy monitoring device 13 may be a LCD display or an array of LED's. The visual display 21 is controlled by the operating unit 18.
The current sensed by the Hall Effect current sensor 14 is sampled and fed to the analog to digital converter 17 which in turn converts the sampled analog signals to digital signals. The digital signals correspond to the sensed current. The digital signals are received by the operating unit 18 which processes the signals and generates output signals which are fed to the controller 6 and the visual display 21. The nature of the output signals are as follows: signals to turn on or off the lamp 1. This is based on the value of the sensed current and whether the predetermined variables set by the user have been met with; energy consumed by the lamp 1. This is displayed on the visual display 21; cost associated with the energy consumed by the lamp 1. These output signals are displayed on the visual display 21. Depending upon the signals received by the controller 6, the relay 7 is opened or closed for changing the status of the lamp 1.
In further examples, the interaction of the energy monitoring device 13 and the switching apparatus 4 is described for changing the state of a single energy load on the basis of a predetermined set of variables. The energy loads are described in the context of a lamp 1, a car block heater and an electrical appliance. As shown in
In this example, as the energy monitoring device 13 measures power, it allows a user to identify instances where power is being wasted, such as when a controlled receptacle draws current, even when a load plugged into the receptacle is not in use. This is usually the case with loads such as linear power supplies or appliances such as televisions that constantly use power even when the load is in an idle or off state.
In another example, as the energy monitoring device 13 measures power, it allows a user to verify whether an energy efficient load actually uses as little power as advertised. If the electrical appliance was advertised as consuming 1100 watts and in actual use consumes 1500 watts, the user will be able to identify this difference using the energy monitoring device 13 and take corrective actions based on this measurement.
In another example, the operating unit 18 of the energy monitoring device 13 can be programmed to calculate the cost associated with the power consumed at the receptacle 2b to which the lamp 1 is connected. The operating unit 18 calculates the cost based on the cost of power from the local energy provider which is stored therein. The cost of power may be updated periodically. The visual display 21 displays the cost associated with the usage of the lamp 1 plugged into the AC receptacle 2b and also the power consumed by the lamp 1 during its operation. The energy monitoring device 13 can also be adapted to communicate with the controller 6 to automatically turn off the lamp 1 when the cost associated with the power consumed by the lamp 1 exceeds a predetermined cost limit.
Further, in another example, as the energy monitoring device 13 measures power and costs associated with the power consumption, it allows a user to see the difference in cost when a load is run at peak time or non-peak time and allows a user to schedule operation of the load when the energy cost is low. If the cost of energy is high during the day time, a user could set the energy monitoring device 13 to turn on an electrical appliance during the non-peak time thereby saving money.
In another example, the energy monitoring device 13 can be used to detect faults in an energy load. Each energy load that is being monitored by the energy monitoring device 13 will exhibit power consumption characteristics. As the energy load ages, this consumption could change as problems occur, or due to general wear and tear of the components of the load.
This is useful for large energy loads including industrial apparatus. The energy monitoring device 13 is adapted to look for these patterns and alert users before a problem becomes catastrophic. For example if an excess current is detected in an energy load it will be flagged for repair or shut down. This is very useful for large energy loads that cost more to operate when not in an optimal state of repair. A simple maintenance check up after being flagged could bring the energy load back into specification and cause it to run more efficiently, saving more power. There is no need to wait for a hard failure when problems could be preventatively detected and addressed. System stress and overloading can be detected at early stages.
The energy monitoring device 13 identifies whether the electrical appliance is outside operating limits and needs repair by: maintaining a log of power consumed by the electrical appliance over a set period of time to arrive at an average power consumed by the electrical appliance; measuring the power consumed by the electrical appliance at a given instant to arrive at an instant power; comparing the instant power with the average power; and determining that the electrical appliance needs repair when the instant power exceeds the average power by a predetermined tolerance.
In another example, energy loads such as a car block heater are typically plugged in and draw power well in advance of being used. This is a waste of energy and money. Using the energy monitoring device 13, a user can set a temperature range and/or other predetermined variables to turn on the car block heater at a more opportune time. A user may set the energy monitoring device 13 to enable the car block heater such as when the temperature drops below a set value or −10 degrees Celsius and several hours before the car is needed, such as between 3:00-5:00 am before going to work. The energy monitoring device 13 is adapted to communicate with the controller 6 to automatically turn on and off the car block heater when both the set conditions are satisfied.
According to one embodiment of the invention and as illustrated in
According to another embodiment of the invention, as illustrated in
The switching apparatus 4 can be installed by an ordinary home owner as it does involve re-routing of the wiring.
According to another embodiment of the invention and as illustrated in
According to another embodiment of the invention as illustrated in
According to another embodiment of the invention as illustrated in
Having reference to
Having reference to
Having reference to
Having reference to
In an embodiment of the invention as illustrated in
Accordingly in one embodiment of the invention, the copper track 29 is located on the other side of the substrate 15 and is operatively coupled to the Hall Effect current sensor 14. For this PCB design to be functional, the PCB substrate should be magnetically transparent such as a reinforced fiberglass substrate. This design of the PCB enables a larger track dimension to be accommodated on the substrate without modification to the substrate, thereby enabling full-range current measurements to be obtained. Use of a Hall Effect current sensor also reduces board space.
Number | Date | Country | |
---|---|---|---|
61232600 | Aug 2009 | US |