The present invention relates to synchronous time systems and particularly to systems having “slave” devices synchronized by signals transmitted by a controlling “master” device. More particularly, the present invention relates to synchronous time systems, wherein the master device wirelessly transmits the signals to the slave devices.
Conventional hard-wired synchronous time systems (e.g., clock systems, bell systems, etc.) are typically used in schools and industrial facilities. The devices in these systems are wired together to create a synchronized system. Because of the extensive wiring required in such systems, installation and maintenance costs may be high.
Conventional wireless synchronous time systems are not hard-wired, but instead rely on wireless communication among devices to synchronize the system. For example, one such system utilizes a government WWVB radio time signal to synchronize a system of clocks. This type of radio controlled clock system typically includes a master unit that broadcasts a government WWVB radio time signal and a plurality of slave clocks that receive the time signal. To properly synchronize, the slave clock units must be positioned in locations where they can adequately receive the broadcast WWVB signal. Interference generated by power supplies, computer monitors, and other electronic equipment may interfere with the reception of the signal. Additionally, the antenna of a radio controlled slave clock can be de-tuned if it is placed near certain metal objects, including conduit, wires, brackets, bolts, etc., which may be hidden a building's walls. Wireless synchronous time systems that provide reliable synchronization and avoid high installation and maintenance costs would be welcomed by users of such systems.
According to the present invention, a wireless synchronous time system comprises a primary event device or “master” device including a first receiver operable to receive a global positioning system (“GPS”) time signal, and a first processor coupled to the first receiver to process the GPS time signal. The primary event device also includes a memory coupled to the first processor and operable to store a programmed instruction, including a preprogrammed time element and a preprogrammed function element. The primary event device also includes an internal clock coupled to the first processor to store the time component and to increment relative to the stored time component thereafter to produce a first internal time. A transmitter is also included in the primary event device and is coupled to the first processor to transmit the first internal time and the programmed instruction.
The synchronized event system further includes a secondary event device or “slave” device having a second receiver to wirelessly receive the first internal time and the programmed instruction, which are transmitted by the primary event device. The secondary event device includes a second processor coupled to the second receiver to selectively register the programmed instruction, a second internal clock coupled to the processor to store the time component and to increment relative to the stored time component thereafter to produce a second internal time, and an event switch operable to execute the registered programmed instruction when the second internal time matches the preprogrammed time element of the programmed instruction.
In some embodiments, the secondary event device or “slave” device may include an analog clock, a digital clock, one or more time-controlled switching devices (e.g., a bell, a light, an electronic message board, a speaker, etc.), or any other device for which the functionality of the device is synchronized with other devices. In these devices, the programmed instruction includes an instruction to display time and/or an instruction to execute a function at a predetermined time. The programmed instruction is broadcast to the “slave” unit devices by the primary event device or “master” device. In this way, for example, the master device synchronizes the time displayed by a system of analog slave clocks, synchronously sounds a system of slave bells, synchronizes the time displayed by a system of slave digital clocks, or synchronizes any other system of devices for which the functionality of the devices of the system is desired to be synchronized. In some embodiments, the master device transmits multiple programmed commands (a “program”) to the slave devices and the slave devices include a processor operable to execute the multiple programmed commands.
In some embodiments, these systems further include a power interrupt module coupled to the processors to retain the internal time and the programmed instruction in the event of a power failure. Both the “master” primary event device and the “slave” secondary event device are able to detect a power failure and store current time information into separate memory modules.
The system is synchronized by first receiving a GPS time signal at the master device and setting a first internal clock to the GPS time signal. The first internal clock is then incremented relative to the GPS time signal to produce a first internal time. Operational data in the form of the programmed instruction, including the preprogrammed time element and the preprogrammed function element, is then retrieved from a memory and is wirelessly transmitted along with the first internal time. A second receiver at the “slave” device wirelessly receives the first internal time and the operational data and selectively registers it. A second internal clock within the “slave” device is set to the first internal time and is incremented relative thereto to produce a second internal time. In preferred embodiments, such as an analog clock, the second internal time is simply displayed. In other slave devices, such as a system of bells, a function is identified from the preprogrammed function element and is executed (e.g., bells or alarms are rung) when the second internal time matches the preprogrammed time element.
Additional features and advantages will become apparent to those skilled in the art upon consideration of the following detailed description of preferred embodiments exemplifying the best mode of carrying out the invention as presently perceived.
a shows a clock movement box used in the setting of the slave clock of
b shows a block diagram of a secondary device of
a shows a block diagram of a slave device of
b shows a block diagram of another slave device of
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other constructions and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected,” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings and can include electrical connections and couplings, whether direct or indirect.
Referring to
The primary master device 110 can further include a transmission unit 120, which wirelessly transmits a signal to the secondary or “slave” devices 130. In one embodiment, the signal sent to the slave devices 130 includes the processed GPS time signal component and/or a programmed instruction that is input to the primary master device 110 through a programmer input connection 125. The programmed instruction includes a preprogrammed time element and a preprogrammed function element which, along with the GPS time signal component, is transmitted by the primary master device 110 to synchronize the slave devices 130. In one construction, the processed GPS time signal component and the programmed instruction are wirelessly transmitted to the slave devices 130 at approximately a frequency between 72 and 76 MHz. In another construction, the processed GPS time signal component and the programmed instruction are wirelessly transmitted to the secondary devices 130 at a frequency of approximately 154 MHz.
Each of the secondary devices 130 includes an antenna 150 to wirelessly receive the signal from the primary device 110, such as, for example, the processed GPS time signal component and the programmed instruction from the primary master device 110. Each of the secondary devices 130 also includes a processor (see
The primary device 110 may also transmit one or more programmed instructions (a “program”) that may be executed by the processor of the secondary devices 130. The program may include a message to be displayed by a message board, a tone or wave file (a “sound file”) to be generated by a speaker, an image file to be displayed by a monitor, or a function or algorithm to be performed on a data set. The secondary devices 130 may also store one or more programs in an internal memory and simply receive a direction of which program to retrieve from the internal memory and execute from the primary device 110. The primary device 110 may also transmit input parameters to the secondary devices 130 that the processor may use when executing a program.
For the analog time display 145, shown in
It will be readily apparent to those of ordinary skill in the art that the secondary devices may include any one of a number of electronic devices for which a particular functionality is desired to be performed at a particular time, such as televisions, radios, electric door locks, lights, etc.
Referring to
In some embodiments, upon powering up the master device 110, the processor 210 can check the setting of the channel switch 245, the time zone switch 250, and the daylight savings bypass switch 255. The processor 210 stores the switch information into the memory 215. In some embodiments, a signal is received through the antenna 129 and a time signal component is extracted from it. For example, in some embodiments using a GPS time signal, a GPS signal is received through the antenna 129 and a GPS time signal component is extracted from it. When the receiving unit or connector 205 receives the GPS time signal component, the processor 210 adjusts it according to the switch information of the channel switch 245, the time zone switch 250, and the daylight savings bypass switch 255, and sets an internal clock 260 to the processed GPS time signal component to produce a first internal time.
The channel switch 245 enables a user to select a particular transmission frequency or range of frequencies determined best for transmission in the usage area, and to independently operate additional primary master devices in overlapping broadcast areas without causing interference between them. The GPS time signal uses a coordinated universal time (“UTC”), and requires a particular number of compensation hours to display the correct time and date for the desired time zone. The time zone switch 250 enables the user to select a desired time zone, which permits worldwide usage. The time zone switch 250 or a separate switch may also be used to compensate for fraction-of-an-hour time differences. For example, in some areas a half-an-hour time offset may be added to the received time component to generate a correct time. Lastly, the GPS time signal may or may not include daylight savings time information. As a result, users in areas that do not require daylight savings adjustment may be required to set the daylight savings bypass switch 255 to bypass an automatic daylight savings adjustment program. Manual daylight savings time adjustment can also be accomplished by adjusting the time zone switch 250 to a desired time zone retain a correct time.
Once the processor 210 adjusts the GPS time signal component according to the settings of the switches discussed above and sets the internal clock 260 to produce the first internal time, the internal clock 260 starts to increment the first internal time until another GPS time signal is received from the GPS receiver 127 (
The first internal time and the programmed instruction are transmitted by the master device 110 using a data protocol as shown in
Each secondary slave device 130 receives the signal broadcast by the master device 110 including information according to the time packet structure of
A diagram of the analog slave clock 145 of
In some constructions, the secondary devices 130 can also include an indicator 417 that indicates whether the secondary device 130 is receiving any signals from the primary device 110. In one construction, the indicator 417 can include a light emitting diode (“LED”) that flashes in response to every incoming signal received and processed by the secondary device 130. In another construction, the indicator 417 can include an LED that flashes after a certain period of time elapses during which the secondary device 130 does not receive any signal from the primary device 110. In other constructions, the indicator 417 can include a speaker operable to indicate the reception or lack of reception of a signal with an audible indication.
In some constructions, the indicator 417 can also be used to indicate the execution of an instruction. For example, an LED may flash or a speaker may transmit a sound or recording that indicates that an event will occur, is occurring, or has occurred, such as the locking of a door or the turning off of a light.
In some constructions, the secondary devices 130 also include a power source 418. In the illustrated construction of
a illustrates a clock movement box 450 having a manual time set wheel 465, and a push button 470 for setting the position of the hands 430 of the analog display 425. The clock movement box 450 is of the type typically found on the back of conventional analog display wall clocks, and is used to set such clocks. In setting the analog slave clock 145, the manual time set wheel 465 of the clock movement box 450 is initially turned until the set of hands 430 shows a time within 29 minutes of the GPS time (i.e., the actual time). When power is applied to the slave analog clock 145, the second hand 432 starts to step. The push button 470 of the clock movement box 450 is depressed when the second hand reaches the 12 o'clock position. This signals to the second processor 410 that the second hand 432 is at the 12 o'clock position, enabling the second processor 410 to “know” the location of the second hand 432. The push button 470 is again depressed when the second hand 432 crosses over the minute hand 434, wherever it may be. This enables the second processor 410 to “know” the location of the minute hand 434 on the clock dial. (See U.S. patent application Ser. No. 09/645,974 to O'Neill, the disclosure of which is incorporated by reference herein). The second processor 410 may also “know” the location of the hands of the clock dial by optically detecting the position of gears within the clock that determine the position of the hands or the hands themselves.
To synchronize itself to the master device 110, the second receiver 406 of the slave device 145 automatically and continuously or periodically searches a transmission frequency or a channel that contains the first internal time and the programmed instruction. When the receiving unit 402 wirelessly receives and identifies the first internal time, the processor 410 stores the received first internal time at the second internal clock 420. The second internal clock 420 immediately starts to increment to produce a second internal time. The second internal time is kept by the second internal clock 420 until another first internal time signal is received by the slave clock 145. If the processor 410 determines that the set of hands 430 displays a lag time (i.e., since a first internal time signal was last received by the slave clock 145, the second internal clock 420 had fallen behind), the processor 410 speeds up the second hand 432 from one step per second to a rate greater than one step per second until both the second hand 432 and the minute hand 434 agree with the newly established second internal time. If the processor 410 determines that the set of hands 430 shows a lead time (i.e., since the first internal time signal was last received by the slave clock 145, the second internal clock 420 had moved faster than the time signal relayed by the master device), the processor 410 slows down the second hand 432 from one step per second to a rate less than one step per second until both the second hand 432 and the minute hand 434 agree with the newly established second internal time.
b illustrates a message board 147, which is another example of a secondary device 130 for use in the synchronous system 100. In some constructions, the message board 147 includes similar components to the slave clock 145, such as, for example, a receiving unit 402, a processor 410, memory 415, a power interrupt module 438, and an internal clock 420. The message board 147 further includes a display 421. In some constructions, the message board 147 can store preprogrammed messages in a portion 415a of memory 415. The messages can be hardwired into the memory portion 415a or can be manually entered via a programmer input connector 416. In other constructions, the messages are stored in the primary device 110 and are wirelessly transmitted to the board 147. In these constructions, the processor 410 can parse the signal, extract the message and the time at which the message is to be displayed, and store that information in memory 415. In further constructions, the message board 147 can also include an analog clock movement unit (not shown) to display time or can show the time on the display 421.
In addition to slave clocks that display the synchronized time signal, a slave device 130 may include one or more switching slave devices 140 as depicted in
The slave switching device 140 includes a second receiving unit 510 having an antenna 150 and a second receiver 520, a second processor 525, a second internal clock 530, a second memory 535, an operating switch 540, and a device power source 550. The secondary slave switching device 140 further includes a power interrupt module 552 coupled to the processor 410 to retain the internal time and the programmed instruction on a continuous basis, similar to the power interrupt module of the master device 110 and the slave clock 145. The secondary slave switching device 140 includes any one of a number of devices 555, which is to be synchronously controlled. Depending upon the device 555 to be controlled, a first end 560 of the device 555 is coupled to a normally open end (“NO”) 565 or a normally closed end (“NC”) 570 of the operating switch 540. The first power lead 575 of the device power source 550 is also coupled to a second end 580 of the device 555, and a second power lead 585 of the device power source 550 is configured to be coupled to the normally open end 565 or the normally closed end 570 of the operating switch 540. The operating switch 540 may close and/or open a connection between the second power lead 585 and the normally open end 565 or normally closed end 570 of the operating switch 540 to break or complete a circuit that provides operating power or instructions to the device 555. It will be readily apparent to those of ordinary skill in the art that the device 555 and operating switch 540 may be constructed and operated in other constructions and/or manners than those illustrated and described. For example, the operating switch 540 may generate and transmit operating power and/or instructions over a wireless connection, such as over a radio frequency or infrared signal, to the device 555. The device 555 receives the operating power and/or instructions and begins and/or stops operating or modifies its operation as instructed.
As shown in
In other constructions, the sensor(s) 590 can provide an additional input factor for determining whether an event should take place. For example, the sensor 590 can include one or more motion detectors and an event can include turning off overhead lights at a certain time. If the motion detector(s), however, detects someone within a specified proximity, the processor 525 can determine not to execute the event (e.g., turn off the lights) at the scheduled time. Furthermore, feedback from the sensor(s) 590 can provide additional functionality, such as providing announcement of the execution of an event or enabling a warning once an event has been executed. For example, a buzzer or recording via a speaker can sound prior to an event, such as closing and locking a door. Also, the buzzer or recording can sound if someone attempts to open a door after a certain time.
Still referring to
In some constructions, the memory 535 can also store time adjustment information such as daylight savings information, time zone information, etc. The time adjustment information can serve as a back-up in the event the secondary device 130 does not receive a signal from the primary device 110 or receives a signal from the primary device 110 that requires additional time adjusting than that performed by the primary device 110. For example, a group of secondary devices 130 may receive identical signal from a primary device 110, but one of the secondary devices 130 may process the received signal to display the time in one time zone (i.e., the time in New York) and another secondary device 130 may process the received signal to display the time in another time zone (i.e., the time in Paris).
In some constructions, the system 100 also allows for two-way communication between secondary devices 130 and primary device 110. In these constructions, the secondary device 130 can include a transceiving unit 592 (see
In some constructions, like the receiver 406 of the slave clock 145, the second receiver 520 of the slave switching device 140 automatically searches a transmission frequency or a channel that contains a first internal time and a programmed instruction from the master device 110. When the receiving unit 510 wirelessly receives and identifies the first internal time, the second processor 525 stores the received first internal time in a second internal clock 530. The second internal clock 530 immediately starts to increment to produce a second internal time until another first internal time signal is received from the master device 110.
Additionally, in some constructions, the programmed instruction can be stored in the memory 535. When there is a match between the second internal time and the preprogrammed time element of the programmed instruction, the preprogrammed function element will be executed. For example, if the preprogrammed time element contains a time of day, and the preprogrammed functional element contains an instruction to switch on a light, the light will be switched on when the second internal clock 530 reaches that time specified in the preprogrammed time element of the programmed instruction.
In other constructions, the switching device 140 does not store programmed instructions in memory 535. Rather, switching device 140 may receive instructions from the signal received from the primary device 110.
Referring to
The programmed instruction and/or the first internal time are received at the slave device in step 640. If the slave device is to merely synchronously display a time, such as a clock, but does not perform any functionality, there is no need to receive a programmed instruction. In slave devices such as bells, lights, locks, etc., in addition to the first internal time, at step 642, the processor will select those programmed instructions where the packet identity byte matches an identity of the slave device. The selected programmed instruction is then stored or registered in memory at the secondary slave device in step 645. A second internal clock is then set to the first internal time at step 650 to produce a second internal time. In step 655, like the first internal clock, the second internal clock will start to increment the second internal time. The second internal time is displayed at step 665. Meanwhile, a function is identified from the preprogrammed function element at step 670. When the second internal time has incremented to match the preprogrammed time element at step 675, the function identified from the preprogrammed function element is executed in step 680. Otherwise, the secondary slave device will continue to compare the second internal time with the preprogrammed time element until a match is identified.
It will be readily understood by those of ordinary skill in the art, that both the first internal clock and the second internal clock increment, and thus keep a relatively current time, independently. Therefore, if, for some reason, the master device does not receive an updated GPS time signal, it will still be able to transmit the first internal time. Similarly, if, for some reason, the slave device does not receive a signal from the master device, the second internal clock will still maintain a relatively current time. In this way, the slave device will still display a relatively current time and/or execute a particular function at a relatively accurate time even if the wireless communication with the master device is interrupted. Additionally, the master device will broadcast a relatively current time and a relatively current programmed instruction even if the wireless communication with a satellite broadcasting the GPS signal is interrupted. Furthermore, the power interrupt modules of the master and slave devices help keep the system relatively synchronized in the event of power interruption to the slave and/or master devices.
In some constructions and in some aspects, the wireless synchronous time system 100 can include a primary device, one or more secondary devices, and one or more repeating devices. In some constructions, the primary device refers to the device that receives an initial reference time signal from a source, such as, for example, a source external to the system 100 (e.g., a GPS time signal from a GPS satellite). In these constructions, the repeating devices can be used to extend the coverage area of the system 100.
For example, in the embodiment illustrated in
As shown in
In the illustrated embodiment, the primary device 110 further includes a transmitting unit 120. The transmitting unit 120 can wirelessly transmit a signal across a first coverage area 715 to one or more secondary devices 130. As shown in
In the illustrated embodiment, the area 710 in which the system 100 operates within is larger than the first coverage area 715 of the primary device 110. Furthermore, the system 100 also includes additional secondary devices 130 that are not positioned within the first coverage area 715 of the primary device 110, such as, for example, a third secondary device 730, a fourth secondary device 740, a fifth secondary device 745, a sixth secondary device 750, and a seventh secondary device 755. In some constructions, such as the illustrated embodiment, these additional secondary devices 130 receive signals from the primary device 110 via one or more repeating devices 800.
As shown in
Also shown in
Another example of the location of the devices within the system is shown in
In some constructions, the overlapping regions of the coverage area of the primary device 110 (such as, for example, the first coverage area 715) and the coverage area of the repeating device 800 (such as, for example, the second coverage area 812) can vary for different applications. For example, the system 100 can be used to synchronize various devices 130 within a multi-story building. Even though the primary device 110 may be able to transmit throughout the entire building, repeating devices 800 can be included in order to strengthen the signals from the primary device 110.
In some constructions, as mentioned previously, the repeating devices 80 can be equipped to retransmit the signals received from the primary device 110 to secondary devices 130 within a particular coverage area. In other constructions, the repeating devices 800 can be equipped to process the signals transmitted by the primary device 110 and transmit processed signals or different signals to the secondary devices 130 within the particular coverage area. For example, the signal sent by the primary device 110 (e.g., the primary signal) may include a time and an instruction. In some constructions, a repeating device 800, such as the first repeating device 810, can process the signal and extract the time information and the instruction. Furthermore, the repeating device 800 can be equipped to modify the instruction, remove the instruction, and/or replace the instruction with a second instruction. Also, in some constructions, the repeating device 800 can modify the time information included in the primary signal and transmit updated time information to the secondary devices 130. In these constructions, the repeating device 110 can modify the time to reflect instances of daylight savings or time zone changes, for example.
In further constructions, the repeating devices 800 can receive a second signal from the primary device 110 on a first frequency. For example, the second signal can include a time and an instruction. A repeating device 800 can receive the second signal, process the second signal and transmit a third signal at a second frequency to another device such as another repeating device 800 or a secondary device 130. The third signal can include the time and the instruction from the second signal or can include one of a modified time and a modified instruction. In some constructions, the first frequency and the second frequency may be the same frequency. The first frequency and the second frequency may also be different frequencies.
Similar to the primary device 110, the repeating device 800 can include processor 910, memory 915, a transmission unit 920, a display 925, a programmer input connector 930, a power input socket 935, a channel switch 945, a time zone switch 950, a daylight savings bypass switch 955, a power failure module 958, and an internal clock 960. In some constructions, the repeating device 800 includes fewer modules than shown and described in
In other constructions, the repeating device 800 may receive an initial reference time signal from an external source, such as a GPS satellite, and may transmit the received time signal to the primary device. For example, the repeating device 800 may be placed outdoors or in another environment that provides a clear and generally unobstructed path for the reception of an initial reference or first signal with a first time component. Upon receiving the first signal, the repeating device 800 may process the first signal, as described above, to produce a second time component. For example, the repeating device 800 may modify the first time component to account for daylight savings or time zones. The repeating device 800 may also transmit the time component of the first signal without processing it. The repeating device 800 transmits a second signal to the primary device 110 that includes the second time component. In some constructions, the repeating device 800 may receive the first signal on a first frequency and may transmit the second signal to the primary device 110 on a second frequency. The second frequency may be a lower frequency that has better material penetration than the first frequency.
Upon receiving the second signal, the primary device 110 may operate as previously described for systems without a repeating device 800. In some constructions, the primary device 110 processes the second signal to produce a third time component and transmits the third time component and a programmed instruction and/or event in a third signal to a secondary device 130. The primary device 110 may also transmit the third signal to a repeating device 800.
It is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the above description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limited. The use of “including” and “comprising” and variations thereof herein is meant to encompass the items listed thereafter in accordance thereof as well as additional items. Although the invention has been described in detail with reference to certain embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
This patent application is a divisional of co-pending U.S. patent application Ser. No. 10/979,049, filed Nov. 2, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 09/960,638, filed on Sep. 21, 2001, now U.S. Pat. No. 6,873,573, and Ser. No. 10/876,767, filed on Jun. 25, 2004, the entire contents of all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3643420 | Haydon | Feb 1972 | A |
3681914 | Loewengart | Aug 1972 | A |
3690959 | Thompson | Sep 1972 | A |
3756012 | Kiss | Sep 1973 | A |
3811265 | Cater | May 1974 | A |
3998043 | Tamaru et al. | Dec 1976 | A |
4023344 | Mukaiyama | May 1977 | A |
4117661 | Bryant, Jr. | Oct 1978 | A |
4177454 | Shinoda et al. | Dec 1979 | A |
4182110 | Kamiwaki et al. | Jan 1980 | A |
4395135 | Frantz | Jul 1983 | A |
4490050 | Singhi | Dec 1984 | A |
4525685 | Hesselberth et al. | Jun 1985 | A |
4536093 | Yoshida | Aug 1985 | A |
4582434 | Plangger et al. | Apr 1986 | A |
4677541 | Singhi | Jun 1987 | A |
4695168 | Meister et al. | Sep 1987 | A |
4702613 | Ohtawa | Oct 1987 | A |
4713808 | Gaskill et al. | Dec 1987 | A |
4763309 | Descombes | Aug 1988 | A |
4920365 | Marx et al. | Apr 1990 | A |
4953149 | Marvosh | Aug 1990 | A |
4956826 | Coyman et al. | Sep 1990 | A |
5056070 | Shibuya et al. | Oct 1991 | A |
5089814 | DeLuca et al. | Feb 1992 | A |
5160853 | Simon et al. | Nov 1992 | A |
5274545 | Allan et al. | Dec 1993 | A |
5282180 | Burke et al. | Jan 1994 | A |
5287109 | Hesse | Feb 1994 | A |
5293355 | Widen et al. | Mar 1994 | A |
5297120 | Yuzuki et al. | Mar 1994 | A |
5319374 | Desai et al. | Jun 1994 | A |
5375018 | Klausner et al. | Dec 1994 | A |
5387903 | Cutter et al. | Feb 1995 | A |
5425004 | Staffan | Jun 1995 | A |
5440559 | Gaskill | Aug 1995 | A |
5442599 | Burke et al. | Aug 1995 | A |
5510797 | Abraham et al. | Apr 1996 | A |
5521887 | Loomis | May 1996 | A |
5594430 | Cutter et al. | Jan 1997 | A |
5617375 | Bauman et al. | Apr 1997 | A |
5661700 | Weppler | Aug 1997 | A |
5677895 | Mankovitz | Oct 1997 | A |
5717661 | Poulson | Feb 1998 | A |
5805530 | Youngberg | Sep 1998 | A |
5859595 | Yost | Jan 1999 | A |
5889736 | Fujita et al. | Mar 1999 | A |
5982147 | Anderson | Nov 1999 | A |
6018229 | Mitchell et al. | Jan 2000 | A |
6061304 | Nagata et al. | May 2000 | A |
6069848 | McDonald et al. | May 2000 | A |
6205090 | Blount et al. | Mar 2001 | B1 |
6215862 | Lopes | Apr 2001 | B1 |
6236623 | Read et al. | May 2001 | B1 |
6269055 | Pikula et al. | Jul 2001 | B1 |
6288977 | Yoshida et al. | Sep 2001 | B1 |
6288979 | Kwok | Sep 2001 | B1 |
6304518 | O'Neill | Oct 2001 | B1 |
6324495 | Steinman | Nov 2001 | B1 |
6343050 | Kwok | Jan 2002 | B1 |
6377517 | Tursich | Apr 2002 | B1 |
6449220 | Egle et al. | Sep 2002 | B1 |
6493338 | Preston et al. | Dec 2002 | B1 |
6525995 | Diehl et al. | Feb 2003 | B1 |
6678215 | Treyz et al. | Jan 2004 | B1 |
6693851 | Fujisawa et al. | Feb 2004 | B1 |
6728533 | Ishii | Apr 2004 | B2 |
6738635 | Lewis et al. | May 2004 | B1 |
6816439 | Kawahara et al. | Nov 2004 | B1 |
6873573 | Pikula et al. | Mar 2005 | B2 |
6944187 | Driediger et al. | Sep 2005 | B1 |
7042914 | Zerbe et al. | May 2006 | B2 |
7139225 | Farmer | Nov 2006 | B2 |
7145837 | Herring et al. | Dec 2006 | B2 |
20020018402 | Egle et al. | Feb 2002 | A1 |
20020098857 | Ishii | Jul 2002 | A1 |
20020186619 | Reeves et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
4405099 | Aug 1994 | DE |
19526635 | Jan 1997 | DE |
19801688 | Jul 1999 | DE |
0424772 | May 1991 | EP |
8103233 | Nov 1981 | WO |
Number | Date | Country | |
---|---|---|---|
20080212412 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10979049 | Nov 2004 | US |
Child | 12062686 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10876767 | Jun 2004 | US |
Child | 10979049 | US | |
Parent | 09960638 | Sep 2001 | US |
Child | 10876767 | US |