Embodiments of the invention relate to a commercial modem/router and a wireless system of data communications. The method and system generally uses two radio transceivers for an inexpensive data and communication device usable without the need for construction or hardwiring.
Hybrid fiber coaxial networks (HFC networks) are typically used for delivery of television signals to subscribers. Each subscriber represents either an individual or a business and is connected to the cable TV HFC network through a trunk and branch configuration to individual subscribers.
The HFC network can also carry a connection to the Internet, voice, fax and data. To date, customers in business have had great challenges in connecting to the HFC network. The present invention was designed to meet that need.
A need has long existed to expand the serviceable market to provide Internet, voice, fax, and data connectivity. The present invention addresses the need to a less expensive and faster technique to permit customers to access these services over cable in commercial facilities.
Another need in the business was to have a system that can be used through a window so that no roof rights are required by a client for connecting to the HFC network.
The detailed description will be better understood in conjunction with the accompanying drawings, wherein like reference characters represent like elements, as follows.
The present embodiments are detailed below with reference to the listed Figures.
A detailed description will now be provided. Each of the appended claims defines a separate invention, which for infringement purposes is recognized as including equivalents to the various elements or limitations specified in the claims. Depending on the context, all references below to the “invention” may in some cases refer to certain specific embodiments only. In other cases it will be recognized that references to the “invention” will refer to subject matter recited in one or more, but not necessarily all, of the claims. Each of the inventions will now be described in greater detail below, including specific embodiments, versions and examples, but the inventions are not limited to these embodiments, versions or examples, which are included to enable a person having ordinary skill in the pertinent art to make and use the inventions, when the information in this patent is combined with available information and technology. Various terms as used herein are defined below. To the extent a term used in a claim is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in printed publications and issued patents.
Wirelessly communicating is preferably radio based communication, but can include infrared, laser based or light based communication. In addition, other electromagnetic frequency communication (microwave) frequency can be used within the scope of this invention.
The method uses a system that is illustrated as a single particular communications channel in
The method and system generally includes wirelessly communicating information from a bidirectional high speed data modem/router in a housing via an Ethernet connection on a first radio transceiver communicating with a second radio transceiver at a customer's premises, wherein the housing connects to a supporting strand which supports a coaxial cable carrying a RF spectrum signal and AC power.
In an embodiment, wherein the housing can contain a bidirectional high speed data modem operably connected to a first radio transceiver, a first radio processor card, and a switching power supply, wherein the housing is operably connected to a supporting strand and wherein the supporting strand simultaneously supports a coaxial cable carrying an RF spectrum signal and an AC power signal.
The method and system generally includes splitting the signal with an RF/power splitter from the coaxial cable into the RF spectrum signal and the AC power.
The method and system further includes transmitting the RF spectrum signal from the splitter into the bidirectional high speed data modem/router and generating a digital Ethernet signal from the modem/router to the first radio transceiver.
The method and system can further includes at least one heating and cooling device adapted to heat and cool contents of the housing.
In addition, the method and system can include converting the AC power to a DC power supply using a converter and stepping down the voltage with a switching power supply.
In addition, the method and system can include the first radio processor card that is adapted to send a signal from the first radio transceiver and then to the first antennae and beam the signal from the first antennae to a second antennae.
The method and system also includes communicating the signal from the second antennae to a second radio transceiver and then to a second radio processor card to a client device.
Further, the method and system includes using the power from the switching power supply (to run the modem/router and the radio transceiver, as well as a plurality of heating and cooling devices, wherein the plurality of heating and cooling devices are adapted to heat or cool the contents of the housing.
The method and system also includes communicating the signal from the first radio transceiver to a first antenna, beaming the signal from the first antenna to a second antenna and communicating the signal from the second antenna to a second radio transceiver to a client device.
The method and system also includes communicating the signal from the first radio transceiver to a first antenna, beaming the signal from the first antenna to a second antenna and communicating the signal from the second antenna to a plurality of electronic devices comprising radio transceivers.
A wireless communication device for communicating information from a bidirectional high speed data cable modem via an Ethernet connection using a first radio transceiver at a first location and communicating with a second radio transceiver at a customer's premises can be used with the present method and system.
The wireless communication device can comprise a housing containing a bidirectional high speed data modem operably connected to a first radio transceiver, a first radio processor card, and a switching power supply. The device can further have a splitter adapted to engage the coaxial cable and split the RF spectrum signal from the AC power. The device can also have at least one heating and cooling device adapted to heat and cool contents of the housing.
Returning to
The supporting strand (18) described in the invention is shown in detail in
Returning now to
The RF spectrum signal is communicated to a bidirectional high speed data cable modem/router (12) which is can be a DOCSIS cable modem/router, such as a model PCX 100 manufactured by Toshiba of Tokyo Japan, or can be a similar data over cable system interface specification (DOCSIS) modem/router, such as those available from Cisco of Sunnyvale Calif. or Motorola of Arizona.
The cable modem/router (12) communicates with a first processor PCB (105) which can accommodate either one or two radio transceivers (15) over a cable (100) in an embodiment. The radio transceiver can be any wireless device or 802.11X wireless device, such as an Orinoco Wireless networks radio transceiver or a Dell model 1150 True Mobile 11 Mbps Wireless LAN adapter or another compatible 802.11X receiver as known to one skilled in the art.
The first processor PCB (105), power supply (30), radio transceiver (15) and the cable modern/router (12) can be temperature regulated using first heating and/or cooling device (34) and optionally a second heating and/or cooling device (36). The first radio transceiver, cable modem/router, and heating and cooling devices in the housing (13) can all be powered from an AC to DC power supply (30) that can provide a plurality of DC power supplies (29a, 29b, 29c, 29d, and 2e) to each of these units.
The power results from the AC power being split from the coaxial cable then can be transmitted to a switching power supply such as a switching power supply from Integrated Power Design, which can convert and regulate the AC to DC power. The outputs are between about 0.1 volts to about 48 volts of DC current. One or more outputs of the switching power supply can have this voltage. In the embodiments, the outputs are between about 9 volts to about 12 volts each. The first processor card (105) can communicate with a radio transceiver (15).
The first radio transceiver (15) can further communicate with a first antenna (101) via an RF cable (102). Antennas manufactured by Arc Wireless of Denver, Colo. can be used in the invention, but additional antennas can also be used.
The first antenna (101) can wirelessly communicates with a second antenna (103) at a client's premise (17). The second antenna can communicate with a second radio transceiver (16) that can further communicate to a second processor card (106) that can further communicate to a client device (305) via an Ethernet cable (104).
In an embodiment, the first antenna can be fastened to a pole mounting bracket (82) that in turn can be further fastened to a utility pole for stability. The second antenna either can be roof mounted or mounted behind a non-metallic wall or window for communicating with the first antenna.
The method (300) can generally includes wirelessly communicating information from a bidirectional high speed data cable modem/router in a housing via an Ethernet connection on a first radio transceiver communicating with a second radio transceiver at a customer's premises, wherein the housing connects to a supporting strand that supports a coaxial cable carrying a RF spectrum signal and AC power.
The method can generally includes splitting (302) the signal with an RF/power splitter from the coaxial cable into the RF spectrum signal and the AC power.
The method can further include transmitting (304) the RF spectrum signal from the splitter into the bidirectional high speed data cable modem/router and generating a digital Ethernet signal (306) from the modem/router to the first processor card and the first radio transceiver.
In addition, the method can include converting (308) the AC power to DC power using a converter and stepping down the voltage with a switching power supply. The switching power can then be used to supply power to the modem/router, processor and the radio transceiver, as well as a plurality of heating and cooling devices (310). The heating and cooling devices can be adapted to heat or cool the contents of the housing.
Continuing with
In an embodiment, the cable modem/router can perform half duplex communications. However, full duplex communications can also be appropriate depending upon a specific application.
Power to operate the radio processor card (106) and the antenna (103) can be provided by a power over Ethernet system that includes an AC switching power supply (20 I) connected to a power cord (202), which is connected to an Ethernet power inserter (203), which delivers power across the Ethernet cable (104) to the processor card affiliated with the antenna (103). An antenna communicates with the second processor card and carries the bidirectional signal to the client's device (205) that can attach to a hub, switch, router or other Ethernet connection.
In one embodiment, the cable modem/router (12) communicates with a Wide Area network (“WAN”) connection (20). In another embodiment, the processor card (16) communicates with a client device (205) such as a PC or Local Area network (“LAN”) connection.
In one embodiment, the bidirectional high speed data modem/router is a data over cable system interface specification (OOCSIS) modem/router. The DOCSIS modem/router can have a functionality consisting of automatic registration, encryption, and automatic assignment of IP addresses.
In one embodiment, the client device can be a computer, a local area network (LAN), a network hub, a remote terminal unit for monitoring remote equipment, a digital camera, a fax, a phone, an Ethernet switch, a router, and combinations thereof.
The computer can be any micro processing device that includes processing and memory functions, such as a personal digital assistant, a notebook computer, a processor-equipped cellular phone or any other similar device.
The computer can further include a co-processor module, which includes a digital signal processor (DSP) to enhance processing capabilities and capacity of the computer. The DSP of the co-processor module can serve a variety of functions and operations, such as, supplying added encryption/decryption, communications, protocol handling and location capabilities, e.g., global positioning system calculations, for example. The co-processor module is particularly suited for enabling and enhancing operations of the computer according to the protocols and ASP services systems and methods described herein.
In one embodiment, the method and system can further include a housing to encase the splitter, first radio transceiver, converter, switching power supply and communication links. The housing can be formed of a material such as molded plastic, a metal, a composite material, weatherproof sealed coated laminate or combinations thereof.
In another embodiment, the method and system can further include a second transceiver disposed in the housing in parallel communication with the bidirectional high speed data modem/router. For example, the modem/router can be connected to the strand independent of connection to a utility pole.
In one embodiment, the housing can further include a detector for detecting a first location of the client device. For example, the detector is a computer. The invention is capable of the bi-directional transmission of such information that may be one or more signals such as data, phone, fax, video, audio, USB, Internet, multimedia or any combination thereof.
Examples of electronic devices (501a, 501b, 501c, 501d, and 501e) can be laptops, PCs computers, personal digital assistants (PDA), personal electronic devices communicating with satellites, cell phones, GPS location devices, or other mobile electronic devices that can interface to networks. The radio transceiver card installed in the electronic devices can be card rated IEEE 802.11b or 802.11g card or a similar type card.
The method and system creates a public access area known as a “hot spot” from the housing. The housing can contain modems and other equipment to connect to the electronic devices for public high speed internet access. The method and system can additionally include authentication techniques to enable access by a user using a defined protocol, such as a set of email addresses.
The method and system can also be adapted to comprise a technique, such as management techniques, billing techniques, accounting techniques, reporting techniques, and combinations thereof. These techniques can enable additional reports on at least one of the electronic devices.
The method and system can also include the unique features including
a. capable of incorporating any cable modem/router into the device that meets the enclosures size and power requirements;
b. capable of providing point-to-point and or point-to-multipoint transmission of secure non 802.11X signal using inexpensive 802.11X hardware;
c. usable as a standard 802.11X access point allowing users to access high speed internet and/or local area networks wirelessly;
d. usable as a 802.11X “Hot Spot” device with the ability to communicate with a AAA appliances or any other 802.11X wireless device and allow clients high speed internet access through various means of authentication such as, but not limited to a user's email address or credit card information;
e. ability to change operation of the device to any of the above through changes in software switches; and
f. usable as a unique pole mounting bracket that allows for a stable mounting of the antenna that in most cities does not require a permit because no contact with the utility pole itself is made.
The method and system can use a wireless communication system. The system communicates the information using a first radio transceiver at a first location and sends the information to a second radio transceiver at a customer's premises.
The system can include a housing containing a bidirectional high speed data modem/router operably connected to a first radio transceiver, a first radio processor card, and a switching power supply. The housing can be operably connected to a supporting cable strand. The supporting cable strand can simultaneously support a coaxial cable carrying an RF spectrum signal and an AC power signal. The system can have at least one heating and cooling device to heat and cool contents of the housing.
The system can also include a splitter adapted to engage the coaxial cable and split the RF spectrum signal from the AC power.
The first radio processor card can be adapted to send a signal from the first radio transceiver, send the same signal to the first antenna, and then beam the signal from the first antenna to a second antenna.
The system can also adapted to communicate the signal from the second antenna to a second radio transceiver and then to a second radio processor card and then to a client device.
The method can use of a device that can include a housing with a bidirectional high speed data modem/router operably connected to a first radio transceiver, a first radio processor card, and a switching power supply. The splitter can be adapted to engage the coaxial cable and split the RF spectrum signal from the AC power. The device can include at least one heating and cooling device adapted to heat and cool contents of the housing.
While these embodiments have been described with emphasis on the preferred embodiments, it should be understood that within the scope of the appended claims, these embodiments might be practiced other than as specifically described herein.
This application is a continuation of U.S. patent application Ser. No. 12/246,525, filed Oct. 7, 2008, which is: (i) a continuation of U.S. patent application Ser. No. 10/760,610, filed on Jan. 20, 2004 (now U.S. Pat. No. 7,433,361, issued Oct. 7, 2008), and (ii) a continuation of U.S. patent application Ser. No. 10/760,866, filed on Jan. 20, 2004 (now U.S. Pat. No. 7,433,343, issued Oct. 7, 2008), both of which claim priority to U.S. Provisional Patent Application Ser. No. 60/471,978 filed May 20, 2003, all of which are expressly incorporated herein by reference. U.S. Pat. No. 7,162,234 to the same inventor also claims priority to U.S. Provisional Patent Application Ser. No. 60/471,978.
Number | Name | Date | Kind |
---|---|---|---|
3359460 | Ragone et al. | Dec 1967 | A |
4837820 | Bellavia, Jr. | Jun 1989 | A |
5528582 | Bodeep et al. | Jun 1996 | A |
5581801 | Spriester et al. | Dec 1996 | A |
5737194 | Hopkins et al. | Apr 1998 | A |
5781844 | Spriester et al. | Jul 1998 | A |
5930113 | McCann | Jul 1999 | A |
6028769 | Zurek | Feb 2000 | A |
6089881 | Daoud | Jul 2000 | A |
6192230 | van Bokhorst et al. | Feb 2001 | B1 |
6199207 | Jelinek et al. | Mar 2001 | B1 |
6259933 | Bambridge et al. | Jul 2001 | B1 |
6377782 | Bishop et al. | Apr 2002 | B1 |
6411825 | Csapo et al. | Jun 2002 | B1 |
6625222 | Bertonis et al. | Sep 2003 | B1 |
6628627 | Zendle et al. | Sep 2003 | B1 |
6735450 | Remmert | May 2004 | B1 |
6785150 | Szilagi et al. | Aug 2004 | B1 |
6785513 | Sivaprakasam | Aug 2004 | B1 |
6788868 | McLain et al. | Sep 2004 | B2 |
6811447 | Pfister et al. | Nov 2004 | B2 |
6862353 | Rabenko et al. | Mar 2005 | B2 |
6870837 | Ho et al. | Mar 2005 | B2 |
6885674 | Hunt et al. | Apr 2005 | B2 |
6910148 | Ho et al. | Jun 2005 | B1 |
6931659 | Kinemura | Aug 2005 | B1 |
6957047 | Young et al. | Oct 2005 | B1 |
6980089 | Kline et al. | Dec 2005 | B1 |
7035270 | Moore, Jr. et al. | Apr 2006 | B2 |
7042897 | Sivaprakasam et al. | May 2006 | B1 |
7126417 | Bishop | Oct 2006 | B2 |
7130625 | Akgun et al. | Oct 2006 | B2 |
7149474 | Mikhak | Dec 2006 | B1 |
7162234 | Smith | Jan 2007 | B1 |
7209771 | Twitchell, Jr. | Apr 2007 | B2 |
7230935 | Proctor, Jr. et al. | Jun 2007 | B2 |
7392424 | Ho et al. | Jun 2008 | B2 |
7433343 | Smith | Oct 2008 | B1 |
7433361 | Smith | Oct 2008 | B1 |
7596798 | Bertonis et al. | Sep 2009 | B2 |
7598857 | Reagan et al. | Oct 2009 | B1 |
7646355 | Bishop | Jan 2010 | B2 |
7664504 | Bishop | Feb 2010 | B2 |
7669323 | Pfister et al. | Mar 2010 | B2 |
8340064 | Smith | Dec 2012 | B2 |
20020010866 | McCullough et al. | Jan 2002 | A1 |
20020061012 | Thi et al. | May 2002 | A1 |
20020147978 | Dolgonos et al. | Oct 2002 | A1 |
20030021080 | Koperda et al. | Jan 2003 | A1 |
20030033608 | Chang et al. | Feb 2003 | A1 |
20030115610 | Cho | Jun 2003 | A1 |
20030185169 | Higgins | Oct 2003 | A1 |
20030226017 | Palekar et al. | Dec 2003 | A1 |
20040151282 | Jones, III et al. | Aug 2004 | A1 |
20040204097 | Scheinert et al. | Oct 2004 | A1 |
20050144649 | Bertonis et al. | Jun 2005 | A1 |
20060159114 | Bishop | Jul 2006 | A1 |
20060217076 | Bishop | Sep 2006 | A1 |
20060217138 | Bishop | Sep 2006 | A1 |
20060251017 | Bishop | Nov 2006 | A1 |
20060252378 | Bishop | Nov 2006 | A1 |
20060280176 | Bishop | Dec 2006 | A1 |
20070028280 | Bishop | Feb 2007 | A1 |
20070155403 | Bishop | Jul 2007 | A1 |
20070167171 | Bishop | Jul 2007 | A1 |
20070198702 | Bishop | Aug 2007 | A1 |
20070213049 | Bishop | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
940006 | Aug 2001 | EP |
1214819 | Jun 2002 | EP |
1618694 | Jan 2006 | EP |
1884071 | Feb 2008 | EP |
1884072 | Feb 2008 | EP |
1908190 | Apr 2008 | EP |
1989933 | Nov 2008 | EP |
9108649 | Jun 1991 | WO |
9108650 | Jun 1991 | WO |
9108651 | Jun 1991 | WO |
9112694 | Aug 1991 | WO |
9210038 | Jun 1992 | WO |
9210062 | Jun 1992 | WO |
9326121 | Dec 1993 | WO |
9326122 | Dec 1993 | WO |
9326123 | Dec 1993 | WO |
9326124 | Dec 1993 | WO |
9326125 | Dec 1993 | WO |
9326126 | Dec 1993 | WO |
9326127 | Dec 1993 | WO |
9326128 | Dec 1993 | WO |
9326129 | Dec 1993 | WO |
9326130 | Dec 1993 | WO |
9747082 | Dec 1997 | WO |
9747168 | Dec 1997 | WO |
0052880 | Sep 2000 | WO |
0115396 | Mar 2001 | WO |
0247329 | Jun 2002 | WO |
02093315 | Nov 2002 | WO |
0282743 | Mar 2003 | WO |
0282752 | Feb 2004 | WO |
2004098117 | Nov 2004 | WO |
2004114604 | Dec 2004 | WO |
2005053210 | Jun 2005 | WO |
2006105060 | Oct 2006 | WO |
2006119452 | Nov 2006 | WO |
2006119453 | Nov 2006 | WO |
2006119454 | Nov 2006 | WO |
2007011632 | Jan 2007 | WO |
Entry |
---|
Stephen Lee, Power line access reviewed, InfoWorld: Jan. 7, 2002: vol. 24: Issue 1; p. 15. |
Peter J. Howe, Cisco, Utility to Launch Start-Up See New Way to Get Offer Net Access, The Boston Globe, Jun. 11, 2001. |
Allen Fear, Siemens SpeedStream Powerline 802.11b Wireless Access Point, Cnet.com, <URL: http://reviews.cnet.com/wireless-access-points/siemens-speedstream-powerline-802/4505-3265—7-20684674.html#reviewPage1>, product released on Nov. 7, 2002, Reviewed on Feb. 4, 2003; reiview updated on Jul. 5, 2010. |
Number | Date | Country | |
---|---|---|---|
20110075646 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
60471978 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12246525 | Oct 2008 | US |
Child | 12964194 | US | |
Parent | 10760610 | Jan 2004 | US |
Child | 12246525 | US | |
Parent | 10760866 | Jan 2004 | US |
Child | 10760610 | US |