The present invention relates to improvements in or relating to wireless terminals and has particular, but not exclusive, application to mobile phone handsets operating in accordance with single or dual standards, such as GSM and DCS.
Wireless terminals, such as mobile phone handsets, typically incorporate either an external antenna, such as a normal mode helix or meander line antenna, or an internal antenna, such as a Planar Inverted-F Antenna (PIFA) or similar.
Such antennas are small (relative to a wavelength) and therefore, owing to the fundamental limits of small antennas, narrowband. However, cellular radio communication systems typically have a fractional bandwidth of 10% or more. To achieve such a bandwidth from a PIFA for example requires a considerable volume, there being a direct relationship between the bandwidth of a patch antenna and its volume, but such a volume is not readily available with the current trends towards small handsets. Hence, because of the limits referred to above, it is not feasible to achieve efficient wideband radiation from small antennas in present-day wireless terminals.
A further problem with known antenna arrangements for wireless terminals is that they are generally unbalanced, and therefore couple strongly to the terminal case. As a result a significant amount of radiation emanates from the terminal itself rather than the antenna. A wireless terminal in which an antenna feed is directly coupled to the terminal case or ground conductor, thereby taking advantage of this situation, is disclosed in our co-pending International Patent Application WO02/13306 (Applicant's reference PHGB010056). The coupling may be by way of a parallel plate capacitor formed by a surface of the case and a plate mounted spaced from the surface. The terminal case acts as an efficient, wideband radiator, eliminating the need for a separate antenna. In a variant a quarter wavelength slot is provided in the case to increase the resistance of the case as seen by the RF stage, thereby increasing the radiating bandwidth of the terminal.
Although the provision of the quarter wavelength slot does enhance the performance of the wireless terminal a disadvantage is that it is difficult to achieve the length at GSM frequencies of 880 MHz to 960 MHz because of the desire to compromise between mounting relatively large components, such as display panels, on a PCB (printed circuit board) and reducing the overall size of the wireless terminal.
In an alternative approach to feeding the PCB, it is divided into two and feed it as a dipole. This has been found to work well at GSM frequencies but has the disadvantage that circuit connections can only be made across the gap by way of high impedance connections.
An object of the present invention is to facilitate the feed of signals to a PCB functioning as an antenna whilst achieving a desired bandwidth.
According to one aspect of the present invention there is provided a wireless terminal comprising a radio frequency stage having an output and signal propagation means coupled to the output, the signal propagation means comprising a folded dipole formed by an aperture in at least the ground plane of a printed circuit board, the aperture being small relative to the area of the ground plane, and feed means for coupling the output to the aperture.
According to a second aspect of the present invention there is provided an integrated RF module comprising a radio frequency stage having an output and signal propagation means coupled to the output, the signal propagation means comprising a folded dipole formed by an aperture in at least the ground plane of a printed circuit board, the aperture being small relative to the area of the ground plane, and feed means for coupling the output to the aperture.
The aperture may comprise a rectilinear portion communicating at its inner end with a transversely extending portion. As an example the aperture is T-shaped.
The present invention will now be described, by way of example, with reference to the accompanying drawings, wherein:
FIGS. 12 to 15 are sketches of a portion of a PCB showing different aperture shapes.
In the drawings the same reference numerals have been used to indicate corresponding features.
Referring to
A receiver section of the transceiver comprises a low noise amplifier 26 coupled to the signal propagator 22, optionally, by way of the diplexer 24. An output of the low noise amplifier 26 is coupled to a frequency down-converter comprising a multiplier 28 and a signal generator 30, such as a frequency synthesiser. The frequency down-converted signal is demodulated in a demodulator (DEMOD) 32 and its output is applied to a signal processing stage (SP) 34 which provides an output signal on a terminal 36. The operation of the transceiver is controlled by a processor (PROC) 38.
Irrespective of how the transceiver and the diplexer are implemented the signal propagator 22 comprises a minimal aperture folded PCB antenna (MAFPA) which is shown more clearly in
The size of the aperture 40 is small enough that this could be done on a module that is installed on another PCB having a sympathetic aperture. Thus the antenna aperture 40 and the feed 42 could be part of an integrated RF module.
The aperture 42 could be of any suitable shape besides that shown in
In
In
In practice dual band matching may be possible. Alternatively the matching can be integrated into a diplexer as shown for example in
The box 52 comprises a parallel combination of a 50 ohm resistor 66 and a 3.5 nH inductance 68, one side of which combination is connected to ground and the other side of which is coupled to one end of a 5.0 nH series inductance 70. The other side of the inductance 70 is coupled by way of a parallel combination of a 3.325 pF capacitor 72 and a 9.0 nH inductance 74 to the one side 62 of the antenna feed. The parallel combination of the capacitor 72 and the inductance 74 offers a high impedance to GSM signals.
In
An alternative method of providing dual band performance is to provide two feeds. In this way, with suitable filtering, in the GSM band the PCB could be used as a folded dipole while in the DCS mode, the PCB could be used as a directly fed notch. Additional frequency bands could also be added based on the combination of the principles outlined above.
Although the present invention has been described with reference to a dual band arrangement, the present invention can be applied to any field where radiation is required from a device with a wavelength scale PCB.
In the present specification and claims the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. Further, the word “comprising” does not exclude the presence of other elements or steps than those listed.
From reading the present disclosure, other modifications will be apparent to persons skilled in the art. Such modifications may involve other features which are already known in the design, manufacture and use of wireless terminals having a folded dipole antenna and component parts therefor and which may be used instead of or in addition to features already described herein.
Number | Date | Country | Kind |
---|---|---|---|
0206670.2 | Mar 2002 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB03/00550 | 2/12/2003 | WO |