The present invention relates to improvements in or relating to wireless terminals, particularly, but not exclusively, to wireless terminals operating in accordance with protocols including frequency division duplex (FDD) systems, such as GSM, DCS and UMTS, having separate transmit and receive frequency bands.
Typically cellular telephones have a common antenna for receiving and transmitting signals within a relatively wide bandwidth. Various antenna arrangements are known in the art which have a wide enough bandwidth to cover both the transmitter and receiver frequencies used the FDD system.
U.S. Pat. No. 5,659,886 discloses in its preamble that in conventional mobile units for digital radio communication, both the receiver and transmitter are connected to a common receive/transmit antenna via a transmitting passband filter and a receiving passband filter. These filters may be fabricated as dielectric filters or acoustic wave filters. Since such components are difficult to fabricate as integrated circuits and also they are relatively bulky, this patent specification proposes that the transmitting bandpass filter be replaced by an isolator in order to reduce bulk. In the specific examples described, the common antenna comprises an external whip antenna. Isolators are themselves are regarded as being inefficient devices because they can dissipate power reflected from the antenna.
Wireless terminals, such as mobile phone handsets, sometimes have an internal antenna, such as a Planar Inverted-F Antenna (PIFA) or similar. Such antennas are small (relative to a wavelength) and therefore, owing to the fundamental limits of small antennas, narrow band. However, cellular radio communication systems such as UMTS require a PIFA to have a fractional bandwidth of 13.3%. To achieve such a bandwidth from a PIFA for example requires a considerable volume, there being a direct relationship between the bandwidth of an antenna and its volume, but such a volume is not readily available with the current trends towards small handsets. Hence, because of the limits referred to above, it is not feasible to achieve efficient wide band radiation from small antennas in present-day wireless terminals.
It is an object of the present invention to cover wanted frequency bands lying within a relatively wide bandwidth from a relatively small volume common receive/transmit antenna.
According to one aspect of the present invention there is provided a wireless terminal for use in the transmitting and receiving frequency bands of a frequency duplex system, comprising transmitting and receiving stages and signal propagating means coupled to the transmitting and receiving stages, wherein the signal propagating means comprises an antenna structure having sufficient bandwidth to cover the larger one of the transmitting and receiving frequency bands, a receiving filter and a transmitting filter coupled by respective feeds to the antenna structure.
According to a second aspect of the present invention there is provided a module for use in a wireless terminal operable in the transmitting and receiving frequency bands of a frequency duplex system, comprising signal propagating means including an antenna structure having sufficient bandwidth to cover the larger one of the transmitting and receiving frequency bands, a receiving filter and a transmitting filter coupled by respective feeds to the antenna structure and having terminals for connection to the RF stages the wireless terminal.
The present invention is based on recognition of the fact that filters can be used to make a narrow band antenna structure reusable at different frequencies lying in a pass band bridging the transmitter and receiver pass bands of a FDD system.
In an embodiment of the invention the antenna structure comprises a PIFA. The PIFA may include two differential slots which separate the PIFA into a central element and two outer elements which are interconnected at one end. A free end of the central element is connected to a ground plane and the free ends of the two outer elements are connected respectively to the transmitting and receiving filters.
The filters may be solid state filters such as Bulk Acoustic Wave (BAW) and Surface Acoustic Wave (SAW) filters.
The present invention will now be described by way of example, with reference to the accompanying drawings, wherein:
In the drawings the same reference numerals have been used to indicate corresponding features.
Referring to
A receiver section Rx of the transceiver comprises a low noise amplifier 28 coupled to the signal propagating structure 24, by way of a matching/frequency tuning network 25 and a receiver filter 26. An output of the low noise amplifier 28 is coupled to a frequency down-converter comprising a multiplier 30 and a signal generator 32, such as a frequency synthesiser. The frequency down-converted signal is demodulated in a demodulator (DEMOD) 34 and its output is applied to a signal processing stage (SPR) 36 which provides an output signal on a terminal 38. The operation of the transceiver is controlled by a processor 40.
Referring to
The PIFA 24 has two differential slots 42, 44 extending lengthwise for part of the distance from one edge to the other. The result is analogous to a comb having three prongs or elements PR1, PR2 and PR3 interconnected at one of their ends and free at the other of their ends. The middle element PR2 is connected by a common shorting pin 46 to the ground plane GP of the PCB. The element PR1 is coupled by a pin 48 to the output of the transmitter filter 22 (
The differential slots 42, 44 can also be used to tune the resonant frequency of the antenna. Asymmetric slots, that is, slots of different lengths and/or different shapes, will give different resonant frequencies for the two feeds, viz. the pins 48, 50.
The differential slots are not essential but without them there is a potential problem of the inductance in the coupling to the filter feeding the shorting pin 46. The slots increase the differential mode reactance and facilitates isolation of the unused port, that is, the receiver port in the transmit mode and visa-versa in the receive mode. This is illustrated in
Referring to
The receiver filter 24 comprises a balanced, BAW lattice type of filter having a balanced input for connection to a 50 ohm source impedance 70 which in the embodiment shown in
It is evident that an acceptable performance is achieved in both the transmitter and receiver bands using an antenna that is too small to cover both bands simultaneously. In the combination shown in
In the present specification and claims the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. Further, the word “comprising” does not exclude the presence of other elements or steps than those listed.
From reading the present disclosure, other modifications will be apparent to persons skilled in the art. Such modifications may involve other features which are already known in the design, manufacture and use of wireless terminals and component parts therefor and which may be used instead of or in addition to features already described herein.
Number | Date | Country | Kind |
---|---|---|---|
0208130.5 | Apr 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB03/01396 | 4/1/2003 | WO | 10/5/2004 |