Wireless thermostatic controlled electric heating system

Information

  • Patent Grant
  • 10139843
  • Patent Number
    10,139,843
  • Date Filed
    Wednesday, February 22, 2012
    13 years ago
  • Date Issued
    Tuesday, November 27, 2018
    6 years ago
Abstract
An electric heating system controlled with a remote thermostat. The system may incorporate wireless technology and a line voltage equipment interface sub-system. The sub-system may have a line voltage relay and an antenna. The relay may be mounted within an electric heater enclosure. The antenna may be mounted directly on the enclosure. The antenna may receive temperature control signals from a transmitter of the thermostat. The signals may be processed to control a connection of the heater to power with a relay receiving the processed control signals. The control of power to the heater may maintain a temperature approximately equal to a thermostat temperature setting. The antenna and relay electronics may provide a backup control of the heater in the event of, for example, a loss of signals from the thermostat. The backup control may prevent the temperature proximate to equipment interface sub-system from approaching a freezing point.
Description
BACKGROUND

The present disclosure pertains to thermostatic controls and particularly to heating control. More particularly, the disclosure pertains to electric heating.


SUMMARY

The disclosure reveals electric heating system controlled with a remote thermostat. The system may incorporate wireless technology and a line voltage equipment interface sub-system. The sub-system may have a line voltage relay and an antenna. The relay may be mounted within an electric heater enclosure. The antenna may be mounted directly on the enclosure. The antenna may receive temperature control signals from a transmitter of the thermostat. The signals may be processed to control a connection of the heater to power with a relay receiving the processed control signals. The control of power to the heater may maintain a temperature approximately equal to a thermostat temperature setting. The antenna and relay electronics may provide a backup control of the heater in the event of, for example, a loss of signals from the thermostat. The backup control may prevent the temperature proximate to equipment interface sub-system from approaching a freezing point.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a diagram of an installation of an equipment interface sub-system, a wireless thermostat and wireless accessories which may be used to control an electric heater in a building;



FIG. 2 is a diagram of an example thermostat that may be used with the electric heater;



FIG. 3 is a diagram showing buttons of a thermostat which may be used to effect a backup heater control;



FIG. 4 is a diagram revealing an equipment interface sub-system in an enclosure of an electric heater;



FIG. 5 is a diagram of an equipment interface sub-system situated in a junction box in lieu of a heater enclosure;



FIG. 6 is a diagram of an electric heater incorporating an equipment interface sub-system with an antenna mounted on a side surface of the heater enclosure;



FIG. 7 diagram of an electric heater incorporating an equipment interface sub-system with an antenna mounted on a top surface of the heater enclosure;



FIG. 8 is a block diagram of an antenna sub-system for heater control;



FIG. 9 is a block diagram of a relay sub-system for heater control;



FIGS. 10a and 10b are schematic diagrams of an example circuit for an antenna sub-system;



FIG. 11 is a schematic diagram of an example circuit for relay sub-system;



FIG. 12 is a schematic diagram of an example power supply circuit; and



FIGS. 13a and 13b are diagrams showing connector information for the schematics of the antenna and relay sub-systems.





DESCRIPTION

When electrical contractors need to replace an existing baseboard built-in mechanical thermostat to a line voltage wall thermostat, they may face the difficulty of pulling new wires from the existing electric baseboard to a location where they will install the wall thermostat. For better temperature control, the thermostat should be put on the opposite wall from the wall of electrical heat source which may make it even more difficult and longer for contractors to run the wires especially in a retrofit application if all of the walls are closed and finished.


The present system may permit electrical contractors to provide a customer or homeowner a wall thermostat without the need to pull new wires through existing walls. The system may incorporate a battery wireless thermostat using REDLINK™ wireless technology and a line voltage equipment interface module (EIM) that can be mounted directly on an electric baseboard or be installed on a remote electrical junction box wired to a baseboard, convector or fan-forced heater. The equipment interface module may have a line voltage relay and an antenna.


A characteristic of the present system is that the antenna may be mounted directly on one of the side panels of the existing baseboard while the relay may be installed in the baseboard wiring compartment. There may be a cable with a connector that allows one to make a quick and easy connection between the antenna and the relay without the need to make conventional connection (e.g., wire screw terminal or solderless connector)


The present system may have an antenna that can be fixed outside of a baseboard through one of the knockouts normally found on either side of a baseboard side panels. This approach may be an ideal solution in retrofit application because many of the electrical baseboards available in North-America appear to have a knockout on each side panel of the baseboard.


Other systems might also have a two-component EIM structure; however, the antenna component may have to be either installed inside a wall or in the ceiling, or be wall-mounted while the relay is installed in a junction box or inside a baseboard wiring compartment. These other systems may still require an installer to provide low voltage wires from the relay to the antenna, thus resulting in additional installation steps and time.


For an OEM (original equipment manufacturer) specific design, the antenna may be made to be partially integrated inside of a baseboard without affecting the radio frequency (RF) performance (FIGS. 4-7). This design may enhance the aesthetics compared to an actual antenna housing designed to fit virtually on all baseboard retrofits. The integrated design may need to be made in partnership with an OEM so that the OEM can make a proper opening on the top of the baseboard and mount the antenna on its production line.


The present system may be for a retrofit market where customers want to replace baseboard built-in mechanical thermostats with electronic wall thermostats. The system may cover several main needs present in the actual electrical space heaters retrofit market, such as improving home comfort, improving energy savings, reducing installation time and cost, and providing convenience and ease of use


The relay and associated electronics and the antenna and associated electronics may be in the same module. For example, there may be system with two or more sub-systems. One or more sub-systems may be situated in one module. There may be a baseboard module which incorporates relay components and antenna components, for example, a relay sub-system and an antenna sub-system, respectively. An example, module like this may be fixed inside or outside the baseboard. The power electronics may be in a relay sub-system. The relay sub-system may provide 12 volts of DC to the antenna sub-system. At a request of the antenna sub-system, the relay sub-system may switch on or off the power to an electric heater such as a baseboard. Specifically, the relay and antenna sub-systems may be situated in one or more modules.


The present system, for instance, may have an operating temperature range of 0° C. to 65° C. (32° F. to 149° F.), a working temperature range of −20° C. to 65° C. (−4° F. to 149° F.), and a shipping temperature range of −35° C. to 65° C. (−31° F. to 149° F.)


The line voltage wireless system may be installed through the following steps: 1) Wire and mount the EIM to the heating device (e.g., baseboard, convector or fan-forced heater); 2) Put batteries in the wireless devices (i.e., thermostat, PCC, OAS, and so forth); and 3) Link the wireless devices to the EIM. The first requirement may be made so that the system is installed directly on the baseboard and be mounted on a remote junction box.


There may be a system which incorporates backup heat control in the wireless thermostat. When a heating device like an electric heater is controlled by a wireless thermostat and the wireless communication is lost between the thermostat and the equipment interface module that turns on and off the heating device (which may be caused by dead batteries in the wireless thermostat or by a thermostat malfunction), the electric heater may always stay off, and thus the lack of heat can cause damage to a house if the temperature is low enough, for instance, to freeze water pipes in the building.


The present wireless plus line volt equipment interface module may provide a backup heat mode in case there is, for example, a thermostat room temperature sensor malfunction, which might occur if the thermostat batteries become completely depleted, or if the wireless communication is lost between the thermostat and the EIM.


The line volt EIM may incorporate two components: 1) A relay sub-system; and 2) An antenna sub-system. The relay sub-system may convert line voltage to low voltage to supply the antenna electronics and to turn the electric heater on or off. The relay sub-system may virtually always be installed inside a junction box or a wiring compartment of an electrical baseboard. The antenna sub-system may ensure wireless communication with the thermostat, and may have a user interface (UI) to link the EIM and the thermostat together. The antenna sub-system may also have a built-in temperature sensor that will be used to control the room temperature when the system goes into the backup heat mode (due to failure or other conditions) to avoid, for instance, water freezing in pipes situated in or close to the room where the EIM and heater are installed.


One may install and wire the EIM inside a baseboard heater compartment or on a junction box located in the same or close room that the electrical heater is intended to control in terms of temperature. Batteries may be used to power the wireless thermostat. The thermostat may be wirelessly linked to the EIM.


The batteries may be removed from the thermostat, the batteries may eventually become depleted, the thermostat may malfunction for some other reason, the antenna may fail to detect the wireless signals from the thermostat, or there may be another reason for failure of heater control external to the EIM. Such failure may require a backup heater control system. So when the room temperature comes down to about 55 degrees F. in a case where the thermostat is set for a higher room or space temperature, the heater may be cycled on and off by the EIM local thermostatic control to maintain the temperature at about 55 degrees. Other temperatures may be set above a damaging temperature for the backup heat portion of the EIM.



FIG. 1 is a diagram of an installation of an EIM which may be used to control an electric baseboard heater, a convector or a fan-forced heater. The diagram may use a home 11 as an example of the installation. There may be a heater 12 with an EIM installed in it and a heater 13 with an EIM installed a remote junction box 14. An electrical panel 15 may provide power for the heaters 12 and 13.


EIM 12 and EIM 13 may receive wireless signals from thermostats 16 and 17 to provide heat control for rooms 18 and 19, respectively, of home 11. The heat control system may also incorporate a remote control device 21, an outdoor air sensor 22 or other wireless devices with wireless connections to thermostats 16 and 17. Thermostat 16 (e.g., having a temperature sensor 2) may provide wireless control signals to the EIM in heater 12 (e.g., having a temperature sensor 8), which results in controlling heater 12 so as to maintain the temperature in room 18 according to a temperature setting on thermostat 16.


Thermostat 17 may provide wireless control signals to the EIM in junction box 14. The EIM may control electrical power from the electrical panel 15 to heater 13 so as to maintain the temperature in room 19 according to a temperature setting on thermostat 17. The temperature may match the setting within a predetermined delta of difference. The delta may be, for example, plus and minus one degree. Remote control 21 may be used to provide temperature settings on thermostats 16 and 17 with wireless signals. One characteristic of the EIM for heaters 12 and 13, is such that if the thermostat 16 or 17 fail to provide a control signal to the EIM of heater 12 or 13, respectively, then heaters 12 and 13 may not turn on to maintain the temperatures in rooms 18 and 19, respectively. However, if rooms 18 and/or 19 cool down because of a lack of heat from heaters 12 and/or 13, due to a loss of communication with one of the thermostats 16 and 17 or a defective sensor of one or more of the thermostats. Then the EIM may have a default condition which results in turning on heater 12 or 13 as needed to maintain a minimum temperature, such as 55 degrees F. (13 degrees C.), in room 18 or 19, respectively. The minimum temperature may be set at another level as appropriate to prevent damage, such as frozen water pipes, in room 18 or 19 or other areas of home 11. The protection may be turned off; however, it is recommended that the protection be left on. But the protection may be turned off for reasons including the respective EIM being installed in a junction box 14 located not in the same room as the heater controlled by the EIM. This default condition may be referred to as an “anti-freeze” function.



FIG. 2 is a diagram of a thermostat 16 or 17. Equipment for a system in home 11 may be available from an entity provides an “EConnect™ Wireless Thermostat Kit TL9160AR” provided by Honeywell International Inc.



FIG. 3 shows buttons 25, 26, 27 and 28, some of which may be used to effect a backup heater control or an anti-freeze function. The function may be on by default. However, the anti-freeze protection may be turned off. With display 29 in step #1, a selection of “Anti-freeze” may be from a group of terms in an installer's setup menu in display 29. Button 28 may be pressed as needed to select “Anti-freeze” and then button 27 may be pressed to “OK” the selection. In step #2, screen 29 may show “Anti-freeze” and “On OFF”. Button 25 or 28 may be pressed to set a selection to “OFF”. Button 27 may be pressed for “OK”. Button 26 may be pressed to exit the installer's setup menu and to return to the normal thermostat screen on display 29.



FIG. 4 is a diagram revealing the EIM in heater 12. There may be antenna electronics in an enclosure/module 31. An antenna 32 may be connected to the antenna electronics and be part of enclosure 31 as it may be inside the electronics part of enclosure 31. Enclosure 31 may be mounted on heater 12. Antenna electronics of enclosure 31 may be connected via wire or wires 33 to a relay component 34 inside the housing of heater 12. Relay component 34 may be connected to a heating element of heater 12 via wires 35. Power from electrical panel 15 may be provided to heater 12 via wires.


In situations where the EIM is not situated inside and not on the heater, such as heater 13, the EIM may have a relay component 34 mounted in a junction box 14 (e.g., a 4 11/16″ (11.9 cm) square box) as shown in a diagram of FIG. 5, and an antenna electronics enclosure 31 mounted on box 14 via a threaded protrusion with a cable or wire 33 through it, mounted through a hole of a punched out knockout. Enclosure 31 may be secured to box 14 with a matching threaded locknut 36 turned on the threaded protrusion, or other securing mechanism, and tightened to the surface of a side box 14. Wire 33 may be connected to relay component 34 with a matching connector and receptacle at location 37. Wires 35 may be connected from the relay component to power from the relay panel 15 and the heating element of heater 13 outside of junction box 14.



FIG. 6 is a diagram of a heater 41 having an antenna electronics component/sub-system 31 mounted to the housing of heater 41 in a similar manner as component 31 is mounted to the housing of heater 12. Antenna 32 may be situated inside the housing of component 31 on heater 41. Relay component 34 may be situated within the housing of heater 41, but proximate to component 31.



FIG. 7 is a diagram of a heater 42 having an antenna electronics component/sub-system 31 mounted to the housing of heater 41 in a similar manner as component 31 is mounted to the housing of heater 12, but rather on the top instead on the side of the housing. Antennas 32 may be situated inside the housing of component 31. The relay component 34 may be situated within the housing of heater 42, but proximate to component 31.



FIG. 8 is a block diagram of antenna sub-system or component 31. A chip antenna 32 may be connected to a SPDT switch 51. Switch 51 may be controlled by a connection from an application microcontroller 52. Controller may, for example, incorporate an MSP430F5524 chip having a 16 bit processor, 64 KB of flash memory and 6 KB of RAM. Switch 51 may be connected to a transceiver 53 having 915 MHz frequency hopping. A 26,000 MHz oscillator crystal 54 may be connected to transceiver 53. Transceiver 53 may be connected to microcontroller 52. A crowbar and power switch 55 may convey power, for instance at 3.3 volts, from a non-isolated step-down switching power supply 56 to transceiver 53. Switch 55 may be controlled by microcontroller 52. Power from supply 56 may also be provided to microcontroller 52. A DC voltage of about 12 volts may be provided from an interconnect cable-to relay sub-system or component 65 to supply 56.


An RX, TX, FFT (fast Fourier transform) circuit 57 may be connected to microcontroller 52. BSL (bootstrap loader programming) and JTAG (joint test action group fuse blowing) circuits 58 and 59, respectively, may be connected to microcontroller 52. A 32.768 kHz oscillator crystal and thermistor 62 may be connected to microcontroller 52. One or more LEDs and a push button switch 64 may be connected to microcontroller 52. An output of microcontroller may provide drive signals via sub-system 65 to relay sub-system 34.



FIG. 9 is a block diagram of relay sub-system 34. Relay and triac drive signal lines 71 may be provided from antenna sub-system 31 via interconnect cable 65 to a cold switch 72. A power line 73 (i.e., a first line of power) may be provided to switch 72 and power may be provided from the switch, as indicated by drive signals 71, to wiring 70 which is connected to an external load, such as a baseboard heater 12 or 13 (FIG. 1). Another power line 74 (i.e., the second line of power) may be connected to wiring 70 for connection to the external load. Lines 73 and 74 may be connected to a full-wave rectifier 75. A rectified power of the lines may go from rectifier 75 to a step-down switching power supply 76. An output of power supply 76 may be 12 volts which may be provided to the interconnect cable 65, which in turn may be provided to cold switch 72, and to power supply 56 noted herein.



FIGS. 10a and 10b show a schematic of an example circuit for antenna sub-system 31. A 16 bit processor or microcontroller 52 is shown with components connected to it, such as antennas 32 an LED indicator 63, drive lines 71 with electrostatic discharge protection, push button 64, oscillator crystal 61, temperature reading circuitry or thermistor 62, and RF power circuitry 78. FIG. 10a shows a left side portion and FIG. 10b shows a right side portion of microcontroller 52. Lines 79 are continuous between FIGS. 10a and 10b in the same order as shown. Various components and circuitry may be built from the schematic of FIGS. 10a and 10b to obtain an example antenna sub-system 31.


Temperature reading item 62 may utilize temperature measurement with an ADC (analog to digital converter) having 12 bit resolution. If, for example, an RF link is lost for 14 minutes, then the antenna sub-system may control the ambient heater temperature at 13° C.±2° C. (55° F.±3.6° F.).



FIG. 11 shows a schematic of an example circuit for relay sub-system 34. Power may come in to sub-system 34 on lines 73 and 74. There may be a surge protection device 81 connected across the power lines. There may be a thermal cut-off circuit 82 for protection against an overload, such as a short-circuit in the circuitry of sub-system 34. Power lines 73 and 74 may be connected to the cold switch 72 which may incorporate a relay 83 and triac 84. Drive lines 71 may be connected to circuitry for items 83 and 84. Power from line 73 may be provided to a line 85 by the relay and triac. Line 85 may be connected via wiring (FIG. 9) along with line 74 to a load such as a baseboard heater 12 or 13 (FIG. 1). Power line 73 after the thermal cut-off 82 may be connected along with line 74 to a flyback switching power supply 77. Supply may incorporate the full wave rectifier 75 and the step-down switching power supply 76. Supply 77 may provide 12 volt DC power for some of the circuitry and items of components 31 and 34. FIG. 12 is a diagram of a circuit schematic for the 12 volt to 3.3 volt power switching supply 56 (FIG. 8). Supply 56 may provide 3.3 volt DC power for some of the circuitry and items of components 31 and 34. FIGS. 13a and 13b show connector information, respectively, in blocks 91 and 92 for the schematics of sub-systems 31 and 34.


To recap, a wireless thermostat system for an electric heater may incorporate a thermostat, an antenna sub-system and a relay sub-system connected to the antenna sub-system. The thermostat may have a wireless transmitter. The antenna sub-system may incorporate an antenna for detecting signals from the wireless transmitter and a first electronic circuit having an input connected to the antenna. The relay sub-system may incorporate a second electronic circuit having an input connected to an output of the first electronic circuit, a relay with an input connected to an output of the second electronic circuit, and an output for connecting power to an input of an electric heater.


The first electronic circuit may incorporate a temperature sensor and a low limit circuit connected to the temperature sensor. If a signal from the temperature sensor to the low limit circuit indicates a temperature below a predetermined temperature, then the low limit circuit may provide a signal via the second electronic circuit to the relay for connecting power to the electric heater. The predetermined temperature may be set above freezing. The low limit circuit may selectively be activated or deactivated.


The thermostat may further incorporate a temperature setting mechanism and a third electronic circuit connected to the temperature setting mechanism and the wireless transmitter. The transmitter may transmit one or more signals which are received by the antenna sub-system. The one or more signals may indicate a temperature setting on the temperature setting mechanism. The first electronic circuit may provide a signal to the second electronic circuit to have the relay connect power to the electric heater to maintain a temperature at the temperature setting on the temperature setting mechanism.


The system may further incorporate a thermostat remote control device. The remote control device may wirelessly make one or more selections from a group consisting of a temperature setting on the temperature setting mechanism and activation or deactivation of a low limit circuit.


The relay sub-system may be situated within a housing of the electric heater. The antenna sub-system may be situated on an external panel of the housing of the electric heater. The antenna sub-system may be fixed outside of the external panel through a knockout found on the external panel. Wire connections between the antenna sub-system and the relay sub-system may be through the knockout.


The relay sub-system may be situated within a junction box. The antenna sub-system may be situated on the junction box with connections to the relay sub-system made through a knockout on a side of the junction box. The relay sub-system may further be wired between electric power and the heater.


A method for implementing a wireless thermostat system for an electric heater, may incorporate providing a wireless thermostat, providing an antenna sub-system having an antenna and a first electronic circuit connected to the antenna, providing a relay sub-system having a relay and a second electronic circuit connected to the relay, mounting the relay sub-system in a housing of an electric heater, connecting an output of the relay to an input of the electric heater, mounting the antenna sub-system on a surface of a side of the housing, and connecting an input of the relay sub-system to the antenna sub-system.


The method may further incorporate punching out a knockout on the surface of the side of the housing, and running wires for connecting the antenna sub-system to the relay sub-system through a hole resulting from punching out the knockout on the surface of the side. The hole may be used for securing the antenna sub-system to the side of the housing. The surface may be an external surface.


A temperature setting on the wireless thermostat may be transmitted by the thermostat with signals through a wireless medium. The signals may be received by the antenna and processed by the first electronic circuit into drive signals. The thermostat may have a temperature indicator. The drive signals may be conveyed to the second electronic circuit to be provided to the relay which provides an electric power connection to the electric heater as indicated by the drive signals to bring the temperature on the temperature indicator to a magnitude that matches the temperature setting within a predetermined delta of difference.


The first electronic circuit may incorporate a temperature limit circuit, a temperature sensor connected to the temperature limit circuit, and a temperature limit setting input device connected to the temperature limit circuit. If a temperature indication from the temperature sensor is less than a temperature limit set on the temperature setting input device, then a limit drive signal may be conveyed to the second electronic circuit to be provided to the relay which connects the electric heater to power as indicated by the limit drive signal to bring the temperature indication from the temperature sensor within a predetermined delta to the temperature limit set on the temperature setting input device.


A wireless thermostatic mechanism for electric heating may incorporate an antenna sub-system, a thermostat having a wireless connection to the antenna sub-system, and a relay sub-system having a wired connection to the antenna sub-system. The relay sub-system may connect electrical power to an electric heater.


The mechanism may further incorporate a temperature sensor connected to the antenna sub-system. If the wireless connection is lost between the thermostat and the antenna sub-system, then the antenna sub-system may provide a signal to the relay to connect electrical power to the electric heater sufficient to maintain a predetermined temperature in a space where the antenna sub-system is situated.


The relay sub-system may be situated inside of a housing of the electric heater. The antenna sub-system may be attached to a surface on the housing of the electric heater. The relay sub-system may have an overload switch which disengages electrical power to the heater in the event that the power usage of the electric heater exceeds a predetermined amount.


The antenna sub-system may incorporate an antenna, a transceiver connected to the antenna, and a microcontroller connected to the transceiver. The relay sub-system may have a power supply and a power switch having an input terminal connected to the power supply and an output connected to the transceiver and the microcontroller.


The antenna sub-system may further incorporate a temperature sensor connected to the microcontroller for detecting a near-freeze condition. The microcontroller may provide a drive signal to the relay sub-system to connect the electric heater to power to prevent a freeze condition.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Claims
  • 1. A wireless thermostat system for an electric heater, comprising: a thermostat having a first temperature sensor;an equipment interface module (EIM) separate from the thermostat and wirelessly connected to the thermostat, the EIM comprising: an antenna sub-system; anda relay sub-system connected to the antenna sub-system; andwherein:the thermostat comprises a wireless transmitter;the antenna sub-system comprises: an antenna for detecting signals from the wireless transmitter; anda first electronic circuit having a second temperature sensor and an input connected to the antenna;the relay sub-system comprises: a second electronic circuit having an input connected to an output of the first electronic circuit; anda relay with an input connected to an output of the second electronic circuit, and having an output for connecting power to an input of an electric heater;the EIM is configured to control the electric heater in response to control signals received from the thermostat, the control signals being based on temperature sensed with the first temperature sensor; andthe EIM is configured to control the electric heater independent of the thermostat when the second temperature sensor senses a temperature below a predetermined temperature.
  • 2. The system of claim 1, wherein the first electronic circuit comprises: a low limit circuit connected to the second temperature sensor; andwherein if a signal from the second temperature sensor to the low limit circuit indicates a temperature below the predetermined temperature, then the low limit circuit provides a signal via the second electronic circuit to the relay for connecting power to the electric heater.
  • 3. The system of claim 2, wherein the predetermined temperature is set above freezing.
  • 4. The system of claim 2, wherein the low limit circuit can selectively be activated or deactivated.
  • 5. The system of claim 1, wherein the thermostat further comprises: a temperature setting mechanism; anda third electronic circuit connected to the temperature setting mechanism and the wireless transmitter.
  • 6. The system of claim 5, wherein: the transmitter transmits one or more signals which are received by the antenna sub-system;the one or more signals indicate a temperature setting on the temperature setting mechanism; andthe first electronic circuit provides a signal to the second electronic circuit to have the relay connect power to the electric heater to maintain a temperature at the temperature setting on the temperature setting mechanism.
  • 7. The system of claim 5, further comprising: a thermostat remote control device; andwherein the remote control device can wirelessly make one or more selections from a group consisting of a temperature setting on the temperature setting mechanism and activation or deactivation of a low limit circuit.
  • 8. The system of claim 1, wherein: the relay sub-system is situated within a housing of the electric heater; andthe antenna sub-system is situated on an external panel of the housing of the electric heater.
  • 9. The system of claim 8, wherein: the antenna sub-system is fixed outside of the external panel through a knockout found on the external panel; andwire connections between the antenna sub-system and the relay sub-system are through the knockout.
  • 10. The system of claim 1, wherein: the relay sub-system is situated within a junction box;the antenna sub-system is situated on the junction box with connections to the relay sub-system made through a knockout on a side of the junction box; andthe relay sub-system is further wired between electric power and the heater.
  • 11. A wireless thermostatic mechanism for electric heating, comprising: an equipment interface module (EIM) comprising: an antenna sub-system having a first temperature sensor; anda relay sub-system having a wired connection to the antenna sub-system, wherein the relay sub-system connects electrical power to an electric heater;a thermostat having a second temperature sensor and having a wireless connection to the antenna sub-system of the EIM;the EIM is configured to control the electric heater in response to control signals received from the thermostat, the control signals being based on temperature sensed with the second temperature sensor; andthe ELM is configured to control the electric heater independent of the thermostat when the first temperature sensor senses a temperature below a predetermined temperature.
  • 12. The mechanism of claim 11, further comprising: wherein if the wireless connection is lost between the thermostat and the antenna sub-system, then the antenna sub-system provides a signal to the relay to connect electrical power to the electric heater based on measurements taken from the first temperature sensor and sufficient to maintain the predetermined temperature in a space where the EIM is situated.
  • 13. The mechanism of claim 11, wherein: the relay sub-system is situated inside of a housing of the electric heater; andthe antenna sub-system is attached to a surface on the housing of the electric heater.
  • 14. The mechanism of claim 11, wherein the relay sub-system comprises an overload switch which disengages electrical power to the heater in the event that the power usage of the electric heater exceeds a predetermined amount.
  • 15. The mechanism of claim 11, wherein: the antenna sub-system comprises: an antenna;a transceiver connected to the antenna; anda microcontroller connected to the transceiver; andthe relay sub-system comprises: a power supply; anda power switch having an input terminal connected to the power supply and an output connected to the transceiver and the microcontroller.
  • 16. The mechanism of claim 15, wherein: the antenna sub-system further comprises the first temperature sensor connected to the microcontroller for detecting a near-freeze condition; andthe microcontroller provides a drive signal to the relay sub-system to connect the electric heater to power to prevent a freeze condition.
  • 17. A wireless thermostatic mechanism for electric heating, comprising: an equipment interface module (EIM) comprising: an antenna sub-system having a temperature sensor; anda relay sub-system having a wired connection to the antenna sub-system, wherein the relay sub-system connects electrical power to an electric heater;a thermostat having a wireless connection to the antenna sub-system of the EIM; andwherein: the antenna sub-system comprises:an antenna;a transceiver connected to the antenna; anda microcontroller connected to the transceiver; andthe relay sub-system comprises: a power supply; anda power switch having an input terminal connected to the power supply and an output connected to the transceiver and the microcontroller;the EIM is configured to control the electric heater in response to control signals received from the thermostat, the control signals being based on temperature sensed by the thermostat; andthe EIM is configured to control the electric heater independent of the thermostat when a temperature sensed by the ELM is below a predetermined temperature.
US Referenced Citations (443)
Number Name Date Kind
3464673 Cargo et al. Sep 1969 A
3665159 Becker et al. May 1972 A
3899713 Barkan et al. Aug 1975 A
3942028 Baker Mar 1976 A
4078720 Nurnberg Mar 1978 A
4079366 Wong Mar 1978 A
4093943 Knight Jun 1978 A
4151387 Peters, Jr. Apr 1979 A
4174807 Smith et al. Nov 1979 A
4197571 Grunert Apr 1980 A
4206872 Levine Jun 1980 A
4224615 Penz Sep 1980 A
4232819 Bost Nov 1980 A
4257555 Neel Mar 1981 A
4264034 Hyltin et al. Apr 1981 A
4274045 Goldstein Jun 1981 A
4296334 Wong Oct 1981 A
4298946 Hartsell et al. Nov 1981 A
4300199 Yoknis et al. Nov 1981 A
4308991 Peinetti et al. Jan 1982 A
4316256 Hendricks et al. Feb 1982 A
4332352 Jaeger Jun 1982 A
4337822 Hyltin et al. Jul 1982 A
4337893 Flanders et al. Jul 1982 A
4373664 Barker et al. Feb 1983 A
4379483 Farley Apr 1983 A
4382544 Stewart May 1983 A
4384213 Bogel May 1983 A
4386649 Hines et al. Jun 1983 A
4388692 Jones et al. Jun 1983 A
4431134 Hendricks et al. Feb 1984 A
4446913 Krocker May 1984 A
4479604 Didner Oct 1984 A
4503471 Hanajima et al. Mar 1985 A
4504778 Evans Mar 1985 A
4506827 Jamieson et al. Mar 1985 A
4556169 Zervos Dec 1985 A
4585164 Butkovich et al. Apr 1986 A
4606401 Levine et al. Aug 1986 A
4621336 Brown Nov 1986 A
4622544 Bially et al. Nov 1986 A
4641013 Dunnigan et al. Feb 1987 A
4646964 Parker et al. Mar 1987 A
4692596 Payne Sep 1987 A
4706177 Josephson Nov 1987 A
4717333 Carignan Jan 1988 A
4725001 Carney et al. Feb 1988 A
4745300 Kammerer et al. May 1988 A
4745311 Iwasaki May 1988 A
4806843 Mertens et al. Feb 1989 A
4811163 Fletcher Mar 1989 A
4829779 Munson et al. May 1989 A
4837731 Levine et al. Jun 1989 A
4881686 Mehta Nov 1989 A
4918439 Wozniak et al. Apr 1990 A
4939995 Feinberg Jul 1990 A
4942613 Lynch Jul 1990 A
4948040 Kobayashi et al. Aug 1990 A
4969508 Tate et al. Nov 1990 A
4992779 Sugino et al. Feb 1991 A
4997029 Otsuka et al. Mar 1991 A
5005365 Lynch Apr 1991 A
5012973 Dick et al. May 1991 A
5025134 Bensoussan et al. Jun 1991 A
5036698 Conti Aug 1991 A
5038851 Mehta Aug 1991 A
5053752 Epstein et al. Oct 1991 A
5065813 Berkeley et al. Nov 1991 A
5081411 Walker Jan 1992 A
5086385 Launey et al. Feb 1992 A
5088645 Bell Feb 1992 A
5118963 Gesin Jun 1992 A
5120983 Samann Jun 1992 A
5140310 DeLuca et al. Aug 1992 A
5161606 Berkeley et al. Nov 1992 A
5170935 Federspiel et al. Dec 1992 A
5172565 Wruck et al. Dec 1992 A
5181653 Foster et al. Jan 1993 A
5187797 Nielsen et al. Feb 1993 A
5192874 Adams Mar 1993 A
5210685 Rosa May 1993 A
5221877 Falk Jun 1993 A
5226591 Ratz Jul 1993 A
5230482 Ratz et al. Jul 1993 A
5238184 Adams Aug 1993 A
5251813 Kniepkamp Oct 1993 A
5259445 Pratt et al. Nov 1993 A
5272477 Tashima et al. Dec 1993 A
5277244 Mehta Jan 1994 A
5289047 Broghammer Feb 1994 A
5294849 Potter Mar 1994 A
5329991 Mehta et al. Jul 1994 A
5348078 Dushane et al. Sep 1994 A
5351035 Chrisco Sep 1994 A
5361009 Lu Nov 1994 A
5386577 Zenda Jan 1995 A
5390206 Rein et al. Feb 1995 A
5404934 Carlson et al. Apr 1995 A
5414618 Mock et al. May 1995 A
5429649 Robin Jul 1995 A
5439441 Grimsley et al. Aug 1995 A
5452197 Rice Sep 1995 A
5462225 Massara Oct 1995 A
5482209 Cochran et al. Jan 1996 A
5495887 Kathnelson et al. Mar 1996 A
5506572 Hills et al. Apr 1996 A
5526422 Keen Jun 1996 A
5537106 Mitsuhashi Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5566879 Longtin Oct 1996 A
5570837 Brown et al. Nov 1996 A
5579197 Mengelt et al. Nov 1996 A
5590831 Manson et al. Jan 1997 A
5603451 Helander et al. Feb 1997 A
5654813 Whitworth Aug 1997 A
5668535 Hendrix et al. Sep 1997 A
5671083 Connor et al. Sep 1997 A
5673850 Uptegraph Oct 1997 A
5679137 Erdman et al. Oct 1997 A
5682206 Wehmeyer et al. Oct 1997 A
5711785 Maxwell Jan 1998 A
5732691 Maiello et al. Mar 1998 A
5736795 Zuehlke et al. Apr 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5782296 Mehta Jul 1998 A
5801940 Russ et al. Sep 1998 A
5810908 Gray et al. Sep 1998 A
5818428 Eisenbrandt et al. Oct 1998 A
5833134 Ho Nov 1998 A
5839654 Weber Nov 1998 A
5840094 Osendorf et al. Nov 1998 A
5862737 Chin et al. Jan 1999 A
5873519 Beilfuss Feb 1999 A
5886697 Naughton et al. Mar 1999 A
5899866 Cyrus et al. May 1999 A
5902183 D'Souza May 1999 A
5903139 Kompelien May 1999 A
5909429 Satyanarayana et al. Jun 1999 A
5915473 Ganesh et al. Jun 1999 A
5917141 Naquin, Jr. Jun 1999 A
5917416 Read Jun 1999 A
D413328 Kazama Aug 1999 S
5937942 Bias et al. Aug 1999 A
5947372 Tieman Sep 1999 A
5950709 Krueger et al. Sep 1999 A
6009355 Obradovich et al. Dec 1999 A
6013121 Chin et al. Jan 2000 A
6018700 Edel Jan 2000 A
6020881 Naughton et al. Feb 2000 A
6032867 Dushane et al. Mar 2000 A
D422594 Henderson et al. Apr 2000 S
6059195 Adams et al. May 2000 A
6081197 Garrick et al. Jun 2000 A
6084523 Gelnovatch et al. Jul 2000 A
6089221 Mano et al. Jul 2000 A
6101824 Meyer et al. Aug 2000 A
6104963 Cebasek et al. Aug 2000 A
6119125 Gloudeman et al. Sep 2000 A
6121875 Hamm et al. Sep 2000 A
6140987 Stein et al. Oct 2000 A
6141595 Gloudeman et al. Oct 2000 A
6145751 Ahmed Nov 2000 A
6149065 White et al. Nov 2000 A
6152375 Robison Nov 2000 A
6154081 Pakkala et al. Nov 2000 A
6167316 Gloudeman et al. Dec 2000 A
6190442 Redner Feb 2001 B1
6192282 Smith et al. Feb 2001 B1
6196467 Dushane et al. Mar 2001 B1
6205041 Baker Mar 2001 B1
6208331 Singh et al. Mar 2001 B1
6216956 Ehlers et al. Apr 2001 B1
6236326 Murphy May 2001 B1
6259074 Brunner et al. Jul 2001 B1
6260765 Natale et al. Jul 2001 B1
6285912 Ellison et al. Sep 2001 B1
6288458 Berndt Sep 2001 B1
6290140 Pesko et al. Sep 2001 B1
D448757 Okubo Oct 2001 S
6315211 Sartain et al. Nov 2001 B1
6318639 Toth Nov 2001 B1
6321637 Shanks et al. Nov 2001 B1
6330806 Beaverson et al. Dec 2001 B1
6344861 Naughton et al. Feb 2002 B1
6351693 Monie et al. Feb 2002 B1
6356038 Bishel Mar 2002 B2
6385510 Hoog et al. May 2002 B1
6394359 Morgan May 2002 B1
6397612 Kernkamp et al. Jun 2002 B1
6398118 Rosen et al. Jun 2002 B1
6448896 Bankus et al. Sep 2002 B1
6449726 Smith Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
D464948 Vasquez et al. Oct 2002 S
6460774 Sumida et al. Oct 2002 B2
6466132 Caronna et al. Oct 2002 B1
6478233 Shah Nov 2002 B1
6490174 Kompelien Dec 2002 B1
6502758 Cottrell Jan 2003 B2
6507282 Sherwood Jan 2003 B1
6512209 Yano Jan 2003 B1
6518953 Armstrong Feb 2003 B1
6518957 Lehtinen et al. Feb 2003 B1
6546419 Humpleman et al. Apr 2003 B1
6556899 Harvey et al. Apr 2003 B1
6566768 Zimmerman et al. May 2003 B2
6574537 Kipersztok et al. Jun 2003 B2
6578770 Rosen Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6581846 Rosen Jun 2003 B1
6587739 Abrams et al. Jul 2003 B1
6595430 Shah Jul 2003 B1
6596059 Greist et al. Jul 2003 B1
D478051 Sagawa Aug 2003 S
6608560 Abrams Aug 2003 B2
6619055 Addy Sep 2003 B1
6619555 Rosen Sep 2003 B2
6621507 Shah Sep 2003 B1
6622925 Carner et al. Sep 2003 B2
6635054 Fjeld et al. Oct 2003 B2
6685098 Okano et al. Feb 2004 B2
6702811 Stewart et al. Mar 2004 B2
6726112 Ho Apr 2004 B1
D492282 Lachello et al. Jun 2004 S
6771996 Bowe et al. Aug 2004 B2
6783079 Carey et al. Aug 2004 B2
6786421 Rosen Sep 2004 B2
6789739 Rosen Sep 2004 B2
6801849 Szukala et al. Oct 2004 B2
6807041 Geiger et al. Oct 2004 B2
6808524 Lopath et al. Oct 2004 B2
6810307 Addy Oct 2004 B1
6810397 Qian et al. Oct 2004 B1
6824069 Rosen Nov 2004 B2
6833990 LaCroix et al. Dec 2004 B2
6842721 Kim et al. Jan 2005 B2
6851621 Wacker et al. Feb 2005 B1
6868293 Schurr et al. Mar 2005 B1
6893438 Hall et al. May 2005 B2
6934862 Sharood et al. Aug 2005 B2
D512208 Kubo et al. Dec 2005 S
6973410 Seigel Dec 2005 B2
7001495 Essalik et al. Feb 2006 B2
7013845 McFarland Mar 2006 B1
D520989 Miller May 2006 S
7050026 Rosen May 2006 B1
7055759 Wacker et al. Jun 2006 B2
7080358 Kuzmin Jul 2006 B2
7083109 Pouchak Aug 2006 B2
7083189 Ogata Aug 2006 B2
7084774 Martinez Aug 2006 B2
7089088 Terry et al. Aug 2006 B2
7108194 Hankins, II Sep 2006 B1
7130719 Ehlers et al. Oct 2006 B2
D531588 Peh Nov 2006 S
7133748 Robinson Nov 2006 B2
D533515 Klein et al. Dec 2006 S
7146253 Hoog et al. Dec 2006 B2
7152806 Rosen Dec 2006 B1
7156318 Rosen Jan 2007 B1
7163156 Kates Jan 2007 B2
7188002 Chapman, Jr. et al. Mar 2007 B2
D542236 Klein et al. May 2007 S
7212887 Shah et al. May 2007 B2
7222800 Wruck et al. May 2007 B2
7225054 Amundson et al. May 2007 B2
7231605 Ramakasavan Jun 2007 B1
7232075 Rosen Jun 2007 B1
7240289 Naughton et al. Jul 2007 B2
7244294 Kates Jul 2007 B2
7261762 Kang et al. Aug 2007 B2
7263283 Knepler Aug 2007 B2
7274973 Nichols et al. Sep 2007 B2
7302642 Smith et al. Nov 2007 B2
7331187 Kates Feb 2008 B2
7341201 Stanimirovic Mar 2008 B2
7354005 Carey et al. Apr 2008 B2
RE40437 Rosen Jul 2008 E
7419532 Sellers et al. Sep 2008 B2
7435278 Terlson Oct 2008 B2
7451606 Harrod Nov 2008 B2
7452396 Terlson et al. Nov 2008 B2
7476988 Mulhouse et al. Jan 2009 B2
7489094 Steiner et al. Feb 2009 B2
7496627 Moorer et al. Feb 2009 B2
7500026 Fukanaga et al. Mar 2009 B2
7505914 McCall Mar 2009 B2
7542867 Steger et al. Jun 2009 B2
7556207 Mueller et al. Jul 2009 B2
7574283 Wang et al. Aug 2009 B2
7584897 Schultz et al. Sep 2009 B2
7594960 Johansson Sep 2009 B2
7595613 Thompson et al. Sep 2009 B2
7600694 Helt et al. Oct 2009 B2
7604046 Bergman et al. Oct 2009 B2
7617691 Street et al. Nov 2009 B2
7642674 Mulhouse et al. Jan 2010 B2
7644591 Singh et al. Jan 2010 B2
7665019 Jaeger Feb 2010 B2
7676282 Bosley Mar 2010 B2
7692559 Face et al. Apr 2010 B2
7707189 Haselden et al. Apr 2010 B2
7713339 Johansson May 2010 B2
7739282 Smith et al. Jun 2010 B1
7755220 Sorg et al. Jul 2010 B2
7770242 Sell Aug 2010 B2
7793056 Boggs et al. Sep 2010 B2
7814516 Stecyk et al. Oct 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7838803 Rosen Nov 2010 B1
7859815 Black et al. Dec 2010 B2
7865252 Clayton Jan 2011 B2
7941431 Bluhm et al. May 2011 B2
7952485 Schecter et al. May 2011 B2
7956719 Anderson, Jr. et al. Jun 2011 B2
7957775 Allen, Jr. et al. Jun 2011 B2
7984220 Gerard et al. Jul 2011 B2
7992764 Magnusson Aug 2011 B2
7992794 Leen et al. Aug 2011 B2
8032254 Amundson et al. Oct 2011 B2
8042346 Oh et al. Oct 2011 B2
8060470 Davidson et al. Nov 2011 B2
8087593 Leen Jan 2012 B2
8091796 Amundson et al. Jan 2012 B2
8110945 Simard et al. Feb 2012 B2
8136738 Kopp Mar 2012 B1
8138634 Ewing et al. Mar 2012 B2
8167216 Schultz et al. May 2012 B2
8216216 Warnking et al. Jul 2012 B2
8219249 Harrod et al. Jul 2012 B2
8239066 Jennings et al. Aug 2012 B2
8269376 Elberbaum Sep 2012 B1
8276829 Stoner et al. Oct 2012 B2
8280556 Besore et al. Oct 2012 B2
8314517 Simard et al. Nov 2012 B2
8346396 Amundson et al. Jan 2013 B2
8417091 Kim et al. Apr 2013 B2
8437878 Grohman et al. May 2013 B2
8511577 Warren et al. Aug 2013 B2
8523083 Warren et al. Sep 2013 B2
8532190 Shimizu et al. Sep 2013 B2
8554374 Lunacek et al. Oct 2013 B2
8574343 Bisson et al. Nov 2013 B2
8613792 Ragland et al. Dec 2013 B2
8623117 Zavodny et al. Jan 2014 B2
8629661 Shimada et al. Jan 2014 B2
8680442 Reusche et al. Mar 2014 B2
8704672 Hoglund et al. Apr 2014 B2
8731723 Boll et al. May 2014 B2
8734565 Hoglund et al. May 2014 B2
8752771 Warren et al. Jun 2014 B2
8768341 Coutelou et al. Jul 2014 B2
8881172 Schneider Nov 2014 B2
8886179 Pathuri et al. Nov 2014 B2
8886314 Crutchfield et al. Nov 2014 B2
8902071 Barton et al. Dec 2014 B2
9002523 Erickson et al. Apr 2015 B2
9080784 Dean-Hendricks et al. Jul 2015 B2
9098279 Mucignat et al. Aug 2015 B2
9206993 Barton et al. Dec 2015 B2
9234877 Hattersley et al. Jan 2016 B2
9261287 Warren et al. Feb 2016 B2
9272647 Gawade et al. Mar 2016 B2
9366448 Dean-Hendricks et al. Jun 2016 B2
9374268 Budde et al. Jun 2016 B2
20010029585 Simon et al. Oct 2001 A1
20010052459 Essalik et al. Dec 2001 A1
20020011923 Cunningham et al. Jan 2002 A1
20020022991 Sharood et al. Feb 2002 A1
20020082746 Schubring et al. Jun 2002 A1
20020092779 Essalik et al. Jul 2002 A1
20020181251 Kompelien Dec 2002 A1
20030033230 McCall Feb 2003 A1
20030034897 Shamoon et al. Feb 2003 A1
20030034898 Shamoon et al. Feb 2003 A1
20030040279 Ballweg Feb 2003 A1
20030060821 Hall et al. Mar 2003 A1
20030073891 Chen et al. Apr 2003 A1
20030103075 Rosselot Jun 2003 A1
20030177012 Drennan Sep 2003 A1
20040262410 Hull Dec 2004 A1
20050040250 Wruck Feb 2005 A1
20050083168 Breitenbach Apr 2005 A1
20050270151 Winick Dec 2005 A1
20060112700 Choi et al. Jun 2006 A1
20060196953 Simon et al. Sep 2006 A1
20060242591 Van Dok et al. Oct 2006 A1
20070013534 DiMaggio Jan 2007 A1
20070045429 Chapman, Jr. et al. Mar 2007 A1
20070114293 Gugenheim May 2007 A1
20070114295 Jenkins et al. May 2007 A1
20070114848 Mulhouse et al. May 2007 A1
20070115135 Mulhouse et al. May 2007 A1
20070119961 Kaiser May 2007 A1
20070163844 Jahkonen Jul 2007 A1
20070241203 Wagner et al. Oct 2007 A1
20070277061 Ashe Nov 2007 A1
20070289731 Deligiannis et al. Dec 2007 A1
20070290924 McCoy Dec 2007 A1
20070296260 Stossel Dec 2007 A1
20080015740 Osann Jan 2008 A1
20090143880 Amundson et al. Jun 2009 A1
20090154206 Fouquet et al. Jun 2009 A1
20090165644 Campbell Jul 2009 A1
20090167265 Vanderzon Jul 2009 A1
20090206657 Vuk et al. Aug 2009 A1
20100006660 Leen Jan 2010 A1
20100026379 Simard et al. Feb 2010 A1
20100084482 Kennedy et al. Apr 2010 A1
20100204834 Comerford et al. Aug 2010 A1
20100225267 Elhalis Sep 2010 A1
20100314458 Votaw et al. Dec 2010 A1
20110073101 Lau et al. Mar 2011 A1
20110133558 Park Jun 2011 A1
20110185895 Freen Aug 2011 A1
20110251807 Rada et al. Oct 2011 A1
20110291606 Lee Dec 2011 A1
20120155137 Simard et al. Jun 2012 A1
20120235490 Lee et al. Sep 2012 A1
20120323377 Hoglund et al. Dec 2012 A1
20130060385 Leen et al. Mar 2013 A1
20130158714 Barton et al. Jun 2013 A1
20130158715 Barton et al. Jun 2013 A1
20130158717 Zywicki et al. Jun 2013 A1
20130158718 Barton et al. Jun 2013 A1
20130158720 Zywicki et al. Jun 2013 A1
20130213952 Boutin et al. Aug 2013 A1
20130238142 Nichols et al. Sep 2013 A1
20130245838 Zywicki et al. Sep 2013 A1
20130261807 Zywicki et al. Oct 2013 A1
20140062672 Gudan et al. Mar 2014 A1
20140312131 Tousignant et al. Oct 2014 A1
20140312696 Tousignant et al. Oct 2014 A1
20140312697 Landry et al. Oct 2014 A1
20150001929 Juntunen et al. Jan 2015 A1
20150001930 Juntunen et al. Jan 2015 A1
20150002165 Juntunen et al. Jan 2015 A1
20150115045 Tu et al. Apr 2015 A1
20150144706 Robideau et al. May 2015 A1
20150145347 Kim et al. May 2015 A1
20150370265 Ren et al. Dec 2015 A1
20170192061 Park Jul 2017 A1
20170235291 Foslien et al. Aug 2017 A1
Foreign Referenced Citations (19)
Number Date Country
1035448 Jul 1978 CA
3334117 Apr 1985 DE
0070414 Jan 1983 EP
0434926 Aug 1995 EP
0678204 Mar 2000 EP
0985994 Mar 2000 EP
1033641 Sep 2000 EP
1143232 Oct 2001 EP
1074009 Mar 2002 EP
2138919 Dec 2009 EP
2491692 Apr 1982 FR
2711230 Apr 1995 FR
9711448 Mar 1997 WO
9739392 Oct 1997 WO
0043870 Jul 2000 WO
0152515 Jul 2001 WO
0179952 Oct 2001 WO
0223744 Mar 2002 WO
2010021700 Feb 2010 WO
Non-Patent Literature Citations (17)
Entry
Cirrus Logic, Inc., “CS1501 Digital Power Factor Correction Control IC,” 16 pages, 2012.
International Search Report for Corresponding Application No. PCT/US2014/044229, dated Oct. 13, 2014.
U.S. Appl. No. 14/300,232, filed Jun. 9, 2014.
U.S. Appl. No. 14/301,175, filed Jun. 19, 2014.
U.S. Appl. No. 14/309,431, filed Jun. 19, 2014.
U.S. Appl. No. 14/309,553, filed Jun. 19, 2014.
U.S. Appl. No. 14/329,357, filed Jul. 11, 2014.
Hendon Semiconductors, “OM1894 Dual Sensing Precision Triac Control,” Product Specification, Rev. 2.0, 21 pages, Apr. 19, 2007.
Signetics Linear Products, “TDA1024 Zero Crossing Triac Trigger,” Product Specification, 14 pages, Sep. 1985.
Honeywell, “System Installation Guide: Important Instructions,” Honeywell International Inc., 25 pages, 2011.
http://www.dimplex.com/en/home_heating/linear_convector_baseboards/products/lpc_series/linear_proportional_convector, Dimplex Coporation, “Linear Convector LPC Series,” 2 pages, May 2011.
http://www.enernetcorp.com/, Hesse, Brad, Enernet Corporation, “Wireless Temperature Control” Article, 2011.
http://www.enernetcorp.com/t9000-wireless-thermostat.html, Enernet Corporation, “T9000 Series Wireless Fan Coil Thermostat,” Product Brochure, 2 pages, 2011.
http://www.enocean-alliance.org/en/products/regulvar_rw-ssr347-15a/, Regulvar Corporation, “RW-SSR347-15A, Relais sans fil à semi-conducteurs” 3 pages, Aug. 8, 2009.
http://www.enocean-alliance.org/en/products/regulvar_rw-tp01/, Regulvar Corporation, “RW-TP01, Capteur de température sans fil” 3 pages, Aug. 9, 2009.
http://www.forwardthinking.honeywell.com/products/wireless/focus_pro/focus_pro_feature.html, Honeywell Corporation, “Wireless FocusPRO® pages”, 2 pages, 2011.
Office Action for Canadian Application No. 2,774,907, dated Nov. 3, 2017.
Related Publications (1)
Number Date Country
20130213952 A1 Aug 2013 US