There are growing needs for short-range, wireless communications in a number of diverse fields including but not limited to radio frequency identification (RFID), secure intra-person data transfer, implanted medical therapies and health monitoring, and collecting data from inaccessible sensors. However, communicating information wirelessly over modest distances (from a few cm up to several meters or even a few km) has remained problematic for a variety of reasons.
For two centuries voice and data have been transmitted via electromagnetic (EM) waves, either guided between a telegraph line and ground or propagating in the atmosphere on radio waves. Concurrently, electrical power has been transformed by electromagnetic (EM) devices (generators and motors). The transmitters of these technologies are based on Ampere's law in which a current through a coil generates a magnetic dipole field close to the coil; far from the coil (a distance greater than the wavelength), the field consists of both electric and magnetic field components with strengths in fixed relation to each other such that as the field propagates, it loses strength with distance on the order of r−2. Alternatively, an electric dipole antenna can be used to transmit EM waves that are electric dipole waves close to the antenna and propagating EM waves far from it. The receiver of EM waves can be either a magnetic coil operating on the basis of Faraday's law or an electric dipole antenna. The laws of EM wave propagation were developed by Hertz and formalized mathematically in Maxwell's equations.
Wireless power transmission is generally done by inductive means, using coil-to-coil transfer. Historically, implanted medical devices have relied on externally driven flat coils, transmitting over a distance of a few cm to an embedded receiver coil [Van Schuylenberg, 1996; Schroeppl, 1998; Mann, 1999]. Low frequencies (typically in the range 30 kHz to 150 kHz) are used because of the low absorption of this band in body tissue. However, it is known that inductive coupling becomes increasingly less efficient as the size of the induction coils decreases.
Kurs et al. [2007] describe a wireless power transfer system based on two large induction coil antennae operating at about 1 GHz. At this frequency, the displacement charge in the coils (acting like dipole antennas) also contributes to the magnetic field generated by the current in the coils (acting like magnetic loop antennas). Power transmission of 60 W over about 3 meters distance is demonstrated. The hollow copper coils are about 0.6 m in diameter and require significant drive power. The skin depth of Cu at 1 G Hz is of order 2 μm, so there is considerable I2R loss in the Cu coil; all of the current is confined to a few microns at the surface of the coil.
Prior methods of communicating information for RFID or from inside the body to outside receivers are based on RF (frequencies of 125 kHz and 13.56 MHz) and make use of inductive or electric dipole antennas. For example, Yamada et al (2005) describe a method based on inductive coupling at 13.56 MHz. This frequency is an Industrial Science Medical (ISM) band using pulse-interval modulation (which provides inherently low data rates) to compensate for the high attenuation of RF radiation in body tissue. Their system consists of a large external coil and an implanted energy supply (charged wirelessly from outside the body by a small implanted pickup coil).
Jiang-Dong et al., [PCT KR2007/004344], describe an RF (several 100 MHz) means of trans-dermal communication with electrical signals conducted through the body tissue. Data is transmitted at “2 to 3 video frames per second” and in some cases up to 30 frames/s.
Musslvand [1996] describes an infrared system for transmitting data from inside the body to outside the body, and vice versa. Baud rates of 9600 are described, and the IR transceivers are about 2.6 cm in diameter, but power requirements of the implanted device are not described.
Propagating radio-frequency (RF) EM waves face challenges in circumstances such as underground communications and communication in and around large build structures due to dielectric absorption and metallic shielding. Absorption of RF waves by moisture and body tissue also present problems for this technology.
Another challenge facing any high-frequency EM signal for ground penetration or through-building communication, is the skin effect. Soil, rocks and build materials all have finite conductivity. When the alternating magnetic field is applied to those materials, an eddy current is generated and partly cancels out of the original magnetic field. This phenomenon is characterized by the skin depth of the material, which describes the magnetic field drop to 1/e of the field strength, without the material present. The skin depth is also related to the frequency of the magnetic field. In general the lower the frequency, the greater the field penetration is. Therefore, lower carrier frequency, which is an advantage for MEs but not for coils, is always preferred unless other considerations, such as data rate or noise issues, become more important.
It is known that non-propagating or near-field magnetic communication (NFMC) is much less prone to many of the problems that RF communications face. The near field is generally defined as the range within about one wavelength of the transmitting device. However, in the near field, both E and H signal strength drops off more rapidly (on the order of r−3) than the propagating electromagnetic waves (on the order of r−2 ). For example, in free space, at a distance 100 meters from a current loop antenna which is 1 meter in diameter and with 10 ampere-turns, the magnetic field strength is calculated to be 3×10−12 Tesla or on the order of pico-Tesla, (pT). To detect such a small magnetic field is a challenge.
Traditional coil-to-coil inductively coupled NFMC is a relatively mature and well-understood technology. However, for long distance NFMC, a few inherent drawbacks limit its performance. First, pick up coils respond to the time derivative of the magnetic field; for coils, higher frequency gives higher voltage and improved sensitivity. Operation at higher frequency brings problems for ground penetration of the magnetic field; low frequency gives better performance. Second, induction coils require many electrical turns to achieve high magnetic sensitivity; this adds resistivity, which increases electrical loss and reduces the device quality factor, Q. Lastly, the performance of a pick-up coil scales with its volume5/3, so receive coils lose efficiency rapidly with decreasing size.
In accordance with one embodiment of the invention,
an apparatus is provided comprising:
first and second devices adapted to communicate analog or digital information by wireless near-field magnetic communication (NFMC);
at least one of the first and second devices comprising a magneto-electric (ME) device having at least one magnetostrictive component bonded to at least one electroactive component.
The first device may comprise a transmit device that generates a magnetic dipole field at a carrier frequency that corresponds to a resonance frequency of the ME device.
The first device may further comprise a circuit for modulating a current or carrier frequency of the transmit device, said modulation carrying the information.
The second device may comprises an ME receiver device operable at the resonance frequency of the transmission from the transmit device.
The second device may further comprise a circuit that demodulates a voltage signal output of the ME device to reveal the information transmitted by the first device.
The ME device may further be adapted to wirelessly transmit or receive electrical power.
The ME device may have a resonance quality factor Q>100.
In one embodiment,
said first device is a transmit device and further comprises a circuit for modulating a current or carrier frequency of the transmit device, said modulation carrying the information;
said second device is an ME receiver device and further comprises a circuit for demodulating a voltage signal output of the ME receiver device to reveal the information transmitted by the first device.
The ME device may comprise a plurality of ME devices.
The ME device may include a bias magnet.
The ME device may be a thin-film deposition device.
The magnetostrictive component may be of an amorphous material.
The electro-active component may be of a hard, high Q piezoelectric material.
The piezoelectric material may be a PZT ceramic, single crystal relaxor, or quartz.
The information may be voice or data.
In a method embodiment, the method comprises:
a first device that transmits analog or digital information by wireless near-field magnetic communication (NFMC) to a second device;
the second device receiving said NFMC transmission from the first device;
wherein at least one of the first and second devices comprises a magneto-electric (ME) device having at least one magnetostrictive component bonded to at least one electro-active component.
The first device may be a transmit device that generates a magnetic dipole field at a carrier frequency that corresponds to a resonance frequency of a receiver ME device.
The second device may be an ME receiver device operable at the resonance frequency of the transmission from the transmit device.
The ME device may also wirelessly transmit and/or receive electrical power.
The information may be voice or data.
a and 4b are schematic block diagrams showing two means of connecting electrodes to the piezo to apply a voltage in order to stress the magnetic layers or to measure the voltage when the magnetic material strains; the reference numbers are directed to: 31a, 31b, 41a, 41b: magnetic layer (s); 32, 42: electroactive layers; 33a, 33b, 43a, 43b electrodes;
a, 5b and 5c are schematic block diagrams showing three examples of different ME composites; the reference numbers are directed to: 51a, 51b : magnetic and 52: electroactive components: end-to end, magnetic rods in a piezo matrix, and magnetic sheath around a piezo fiber or rod; electrodes can be applied in a variety of different ways to each of these (and other composite geometries);
a and 6b are schematic block diagrams showing two operational modes, namely low frequency bending modes, and higher frequency shear modes that can be excited in an ME device; the reference numbers are directed to: 61a, 61b, 64a, 64b magnetostrictive; 62, 63: electroactive.
a, b, c are schematic block diagrams showing three methods of constructing shear-mode ME transducers; the reference numbers are directed to: 71a, 71b: magnetostrictive; 72 electroactive; 73a, 73b: electrode;
a and 12b are schematic block diagrams showing on the left, direction of E and H fields produced by an ME antenna, and on the right, direction of Poynting vector of propagating field emanating from the ME antenna; placement of a conducting plane close to one side of the ME antenna reflects much of the power to one side of the antenna; the reference numbers are directed to: 121a, 121b magnetostrictive; 122: electroactive components; 123, 124: orthogonal E and H fields;
a and 14b are schematic block diagrams showing a chip (left,
Various embodiments will now be described for the wireless transmission of analog or digital information (e.g., voice or data) and optional power transfer accomplished with a system that includes ME receiver(s) and either coil or ME transmitter(s), plus electronics to power the transmitter and modulation and demodulation circuits to imprint information to the carrier wave and retrieve the information from it. The information may be any signal in analog or digital form and includes but is not limited to text, voice, graphics, video or other data.
While radio frequency (RF) communication has achieved great success over the past few decades, it still faces challenges in circumstances such as underground communications and or reception through large build structures due to dielectric absorption and metallic shielding. Near-field magnetic communication (NFMC), on the other hand, is very well suited for those environments. So far NFMC has been achieved through coil-to coil inductive coupling.
The present invention is a new means for wireless transfer of information (it also is capable of wireless transfer of electrical power) over modest distances from cm to a few km, depending on the components used. The information transfer occurs between an induction coil and an ME device or between magneto-electric (ME) devices.
An artificial or engineered ME device is a composite device that can function as an antenna for transmitting and/or receiving electromagnetic waves. ME composite devices are generally comprised of:
One or more layers of magnetostrictive material,
One or more layers of piezoelectric material,
Optional permanent or semi-hard magnetic material layer or layers for magnetic bias.
An example of an ME antenna is illustrated in
Typically the transmit antenna, driven at the carrier frequency, is driven so that either the amplitude or frequency of the carrier wave is modulated in a pattern that replicates the information (e.g., data or voice) to be transmitted. The output voltage of the ME receiver is processed by a demodulating circuit to reconstruct the information.
The transmitter and receiver of the data are not connected by wires and may be separated by a distance that depends on i) the power and size of the transmitter, ii) the data rates required and iii) the engineering and materials design of the transmitter and receiver, one or both of which is an ME device. In addition to the three factors cited above, the communication range can be enhanced without scarifying data rate and using excessive power, by the use of high-sensitivity magnetoelectric (ME) transducers. The advantages of ME receivers over induction coil receivers are summarized as follows:
One embodiment of an ME-based wireless NFMC system is illustrated in
Table 1 lists some preferred materials for use in the magnetic and electroactive components of the ME device and their relevant parameters. The sensitivity of an ME receiver (i.e., the output voltage per unit of strength of the magnetic near-field to be sensed) depends on the magnetoelastic stress coefficient, B1, and the effective anisotropy field, Haeff, of the magnetic layer, the stress-voltage coefficient, gij, of the electroactive component, and the quality factor, Q, of the ME device.
The design of the ME transceiver devices can be varied by several means to tailor the data transmission frequency, range and data rate. These design changes include, but are not limited to the following factors.
Here n depends on the boundary conditions on the ME in longitudinal motion. The extensional mode in a 1 mm ME device is in the range 1-2 MHz. Bending modes occur at much lower frequencies than extensional modes and they depend on the width and thickness as well as the length of the ME element (see
For a 1 mm-long cantilever the bending mode is at about 100 kHz. The exact values of these frequencies depend on the modulus and density, relative layer thicknesses, hi, as well as other dimensions.
Resonance modes that depend mainly on the ME thickness (or thicknesses of individual layers), such as shear modes (see
The advantages of g15 or other shear modes for ME communications devices is that they can be driven at much higher frequencies without changing the length of the ME structure. This is because the frequency of these shear modes can depend on the piezo thickness or width, as well as its length.
Shear modes can be excited in MEs in which the top and bottom electrodes 73a, 73b applied to top and bottom magnetostrictive layers 71a, 71b stress the piezo 72 in opposite senses in the field (
A simplification of
Thus, there are many parameters that can engineered to control, tailor and refine the performance of ME transducers and they will be chosen based on the desired application, environment, operating frequency and expected range of transfer for the wireless data (and power) to take place. It is also possible to transfer data at one frequency and power at another.
Inductive Transmitter
A major design consideration for a resonant magnetic-dipole transmission antenna is the trade-off between the magnetic field that can be generated by a given current, and the antenna inductance; both increase as the number (N) of turns increases, varying like N and N2, respectively. If the inductance is too high, the terminal voltage of the coil could exceed the capacitor voltage rating (the capacitor is needed for resonance of the inductive coil). On the other hand, if the number of turns is reduced, a given field strength could require a larger current than would be practical for power transistors. A 3-turn, 18 inch diameter inductive transmit coil adapted for long-range communication is suitable. The major advantage of this antenna is that it has low inductance, L≈3 uH, and it can be driven directly by a linear amplifier. The coil windings are made of 9 strands of Litz wire, each of these containing 550 strands of 44 AWG copper wire. The large cross-sectional area of copper reduces the DC resistance, while the insulated, fine strands reduce the AC resistance by reducing the skin effect. The calculated DC resistance is 16 mΩ and AC resistance is 19 mΩ at 75 kHz.
The coil shape can be clamped by adjustable rods to change the shape of the coil thus fine-tuning the inductance to match the ME resonant frequency. The tunability is about 5% around 52 uH. This coil antenna is used with a resonant driving circuit to achieve low power transmission.
Circuits
Each of the system components (ME/ME or ME/coil antenna) has its own circuit. The transmit device has a circuit to excite the ME or loop antenna.
If it is data that is being transferred, the excitation of the transmit coil (usually an ME element), must be modulated in some fashion to carry digital or analog information. In receiving data, there needs to be a means of electronically interpreting and storing the information, and in most cases, acting upon it (readout, command of other function, or alarm). If it is power that is being transferred, the circuit must match the impedance of the transmitting element and deliver the power at the resonance frequency, fr, needed for the range of transmission. In receiving power, the raw, AC signal from the receiving element may need to be rectified and conditioned, then stored or divided between use and storage.
An exemplary topology 80 of a driving circuit for a resonant coil, including modulation functionality, is illustrated in
Modulation/Demodulation
A variety of modulation schemes can be employed to imprint data on the ME carrier frequency. For example, Amplitude Shift Key (ASK) or On Off Key (OOK) modulation can be used with the following considerations:
One possible modulation circuit is 90 illustrated in
Inherent Noise of ME Receiver
A critical figure of merit for a communication receiver is the signal-to-noise ratio (SNR), which fundamentally determines the viable transmission distance for a given signal strength. Any receiver will be subject to both intrinsic and environmental noise sources. There is also intrinsic noise in a piezoelectric material, also called electrical-thermal noise, which is related to the dissipation factor, η, or loss tangent of the piezoelectric material [Rowan et al. 2005]. The dissipation factor η for piezoelectric materials is in the range of 0.001 to 0.005. This noise decreases with increasing frequency. The contribution to the intrinsic noise from the magnetostrictive material is called the magneto-mechanical noise. It is associated with magnetic loss and is represented as a complex susceptibility X=X′+iX″. In a transverse field-annealed magneto-strictive material, the magnetization change in response to an applied field is predominantly associated with lossless magnetic rotation. Any domain wall motion that takes place will contribute significantly to the magnetic noise (as well as reducing the sensitivity of the device); this may be eliminated through careful material selection and annealing techniques. The square of the total noise from ME device is determined by the sum of the squares of all the noise components.
Signal Sensitivity of ME Receiver
The voltage output V of an ME receiver at a distance r from a transmission coil antenna of radius a can be approximated as
Here S is the combined sensitivity of the ME transducer and preamplifier, N is number of turns of the transmission coil, and I is the current of the coil. If the noise floor of ME device is V0noise.The signal-to-noise ratio SNR determines data capacity. The SNR written in dB is
In
The receiving bandwidth (BW) is related to the ME receiver's quality factor Q as:
BW=fc/Q (5)
where fc is the carrier frequency. According to the Shannon-Hartley theorem, the channel capacity C in bits per second is given by
C=BW×Log2(1+SNR) (6)
Here, the signal, S is the total signal over the bandwidth and the noise, N is the total noise signal over the bandwidth, both measured in Volts. The theorem shows that when the SNR is reduced, the bit error rate increases, therefore more and more retransmission is required and the channel capacity decreases.
ME for Two-Way Communication: ME-to-Coil
It is possible to transmit data from an ME device implanted in the body or otherwise inaccessible, to an external power transmit coil or to another ME device. Using a function generator connected to a switching transistor, the ME element was subjected to alternating open-circuit/short-circuit conditions. The ME element was tuned and detuned from its resonant frequency by the changing load. The resulting change in coupling between the coil and the ME element was detected as a fluctuation in the drive current drawn by the coil, which was driven at a constant AC voltage. In
What is unique about an ME transmitter is that, in addition to the electric field generated by the polarization current between the electrodes, the magnetization change in the M layers contributes a strong magnetic component to electromagnetic wave generation even in the near field. Thus, an ME is a totally new type of EM antenna for both E and M components in the near-field as well as conventional far field EM radiation.
An ME antenna thus radiates mainly in the two directions along the axis normal to the plane containing both E and H (see
Arrays of these ME antennas may also be utilized, as well as mechanisms to steer the beams by rotating the ME device(s) or changing the relative phase of devices in an array.
Another distinctive advantage of the ME element as an antenna is that the electrical driving circuit is much more efficient, compared to that for an inductive coil. This is because the electric voltage is applied to the piezoelectric material, which has a high impedance. Therefore, the impedance of the driving circuit is easily matched to that of the ME antenna, without complex matching networks. Further, the voltage (and charge) across the piezo is in phase with its strain, but the voltage is close to 90 degrees out of phase with the current; this minimizes electrical loss in the driving process.
The following are examples of applications which can benefit from the previously described aspects of the present invention.
Radio-Frequency Identification (RFID)
Radio-frequency identification (RFID) is a means of wirelessly identifying products in a store or factory or controlling access to a site etc. for the sake of inventory control, theft deterrence or security. It is growing in use and the opportunities for it are far from exhausted. However, current practice limits the range over which labels or tags on an item can be identified and read, as well as the amount of information that can be exchanged between the item and the reader. Having a means of transmitting power simply and efficiently with a small device would greatly accelerate the implementation of this important RFID technology. By using a small inexpensive ME element in each product or item to be identified, a remote antenna (coil or ME) could deliver power to the ME label and communicate with it for a variety of purposes. ME technology appears to be more suitable to this application than pure inductive or RF communication because of its generally lower absorption and its increased efficiency at small scales.
Medical In-Vivo Wireless Monitors
A growing number of in-vivo medical therapies, such as electro-stimulation or localized, active drug delivery, for treatment or management of chronic pain, migraine, epileptic seizure, Parkinson's syndrome, to name a few, are gaining increased acceptance. The use of in-vivo electrical therapies and monitors is expanding rapidly because of the reduced cost and fewer side effects of electro-therapies and the reduced cost and more timely feedback of in-vivo patient health monitors.
Intra-Person Wireless Communications Networks
There is a growing need for more secure and efficient means of intra-personal wireless communication to link devices carried by soldiers, safety officers, rescuers, the elderly and infirmed. Near-field communication is recognized as a prime candidate to meet this need. Clearly, ME-to-ME coupling can allow communication over a wireless network over a range appropriate for this application, and do so with very little power consumption and using small devices. In this sense it can function like current “Blue-tooth” devices.
There are also many personal communications systems that could benefit from use of ME-based magnetic near-field communications. These include wireless, hands-free ear-sets for cell phones or MP3 players, replacing “blue-tooth” devices. Also applicable are smart cards for communication of personal financial or business data wirelessly to selected receivers at a short distance.
Less-Densely-Wired Integrated Circuits
There are many applications where it is desirable to conduct electricity (to either transfer data or power or both) over a small distance without a continuous wire. Power and data conductors are found with the greatest density in integrated circuits for logic and processing, as found in computer microprocessors and IC power and DSP circuits.
One application of such a discontinuous ME circuit or ME-coil system may be to replace solid conducting lines (that are prone to heating, shorts, open circuits, and electromigration) in integrated circuits (ICs). Elimination of such lines would greatly simplify the fabrication of IC chips and chip carriers, which are extremely dense in conducting lines and vias to carry power and signals. In particular the density of power conductors in ICs is one of the reasons for their high operating temperatures and, consequently, shorter time-to-failure. Such wireless ME interconnects could be used on a single chip (see
Additional Embodiments
Set forth below are various additional embodiments of the invention.
In one embodiment, a magnetic near-field communication system is provided comprising:
In this system, the ME device can also receive electrical power wirelessly from a transmit coil or from another ME device in addition to receiving information.
The system may also include one or more bias magnets adjacent to the ME device.
The carrier (resonance) frequency may be amplitude modulated (amplitude shift key, ASK or on-off key, OOK) to carry information.
The carrier (resonance) frequency may be frequency modulated (frequency shift key, FSK) to carry information.
The components may be magnetostrictive (M) and electroactive (E) layers of a composite made by a thin-film deposition or growth processing method.
A bias layer may be made by the same or other processing method.
In another embodiment, a magneto-electric (ME) composite is provided that has cylindrical symmetry and consists of either a central piezoelectric element clad in a magnetostrictive layer and having electrodes on the ends of the piezoelectric layer or discrete electrodes distributed along the length, or a cylindrically-symmetric ME device is provided comprising a central magnetostrictive metal fiber at its core, surrounded by a layer of piezoelectric material, which in turn is surrounded by a second metallic magnetostrictive metal layer, and the two magnetostrictive layers act as electrodes for the piezoelectric. One or the other of the metallic magnetostrictive layers may be replaced by a conducting layer to act as an electrode.
The magneto-electric composite may include a piezoelectric matrix with collinear rods of magnetostrictive material passing through it.
The magneto-electric composite may include a piezoelectric matrix with particles of magnetostrictive material embedded in it.
The magneto-electric composite may act as a transmitter of electrical power and/or information, as well as a receiver of information and/or power.
The magnetoelectric device may couple wirelessly to an inductive coil or loop antenna such that the two can exchange information and/or power.
In another embodiment, a method is provided for using a wireless electrical power system, including an external coil, and implanted ME device to effect information transmission from inside the body via the ME device to the external induction coil.
In another embodiment, an ME antenna is provided that can be used for both transmission and reception of near-field electromagnetic waves.
The ME antenna can be used with a conventional magnetic loop antenna or as a coupled ME/ME pair, either one transmitting and the other receiving information and/or electrical power.
The ME antenna may have a mechanical resonance frequency that is close to the dominant/carrier frequency of the electromagnetic wave.
The ME antenna may communicate power and/or information with another ME transceiver or coil at various resonance mode frequencies such as, longitudinal mode, thickness mode or shear mode etc.
In another embodiment, a series of discrete (not connected by electrical wires) ME transceivers is provided whose resonance modes are coupled so that they form a network or wireless circuit for information and/or power transmission among the multiple ME transducers.
The ME network may act in the body for delivery of power and/or information for medical therapy and/or monitoring.
The ME network may couple a distributed network of sensors.
In another embodiment, the ME devices may be used to facilitate RFID applications to transfer information and/or power wirelessly between a hand held device and an item on a shelf or in a package for the purpose of inventory control or theft detection.
In another embodiment, the ME devices may be provided in personal electronic devices and induction coil(s) are embedded or located in a pad or basket such that the personal electronic devices can be wirelessly recharged at different rates and impedances appropriate to each device. The personal devices can communicate information to the coil in the pad or basket and contain a rechargeable battery and an ME transducer.
In another embodiment, the ME devices may be electromagnetically coupled to form a winding-free (wireless) isolation transformer, or step-up transformer or step-down transformer.
In another embodiment, the ME devices are used to select signals at certain frequencies (their coupled ME resonance frequency) from a broadband transmitter.
In another embodiment, a group of ME devices is used to replace electrically conducting power and/or information interconnects in an IC chip, or between an IC chip and a chip carrier, or between IC chips, or between IC chip carriers, or from chip carriers to a board. The wireless power can be provided to or delivered to one or more ME receivers from the magnetic near field of a coil or coils outside the chip, chip carrier, or board and not connected to the ME by electrically conducting wires.
In another embodiment, the near-field flux density around an ME device is used to transfer electrical power and/or information to a nearby ME receiver or induction coil
In another embodiment, an ME antenna, driven by a time-dependent voltage or stress, is used to generate a propagating far-field electromagnetic wave.
The impedance of the field, closer than one wavelength to the ME antenna, may be between 250 Ohms and 450 Ohms or between 200 Ohms and 500 Ohms.
The ME antenna may transmit significant electromagnetic energy and/or information over an electromagnetic wave over distances greater than the range of non-radiative, near field electric or magnetic field components.
In another embodiment, ME transducers may be used to relay information (as in “blue-tooth” technology) and/or power between an ear-piece, or headset speaker and a hand-held or an otherwise remote device (cell phone, PDA, MP3 player, i-Pod, car radio, telephone land line, sensor, etc.).
In another embodiment, a ME device is used in a hearing aid to convert the acoustic-frequency magnetic field of an incoming telephone message to a voltage to directly drive the amplifier of a hearing aid.
The ME device may detect the proximity of a telephone handset in order to signal a hearing aid to switch to a lower-gain “phone” mode.
In another embodiment, the ME device may charge the batteries in a hearing aid, an implanted electrical stimulator, pump, valve, pacemaker, or other medical device.
In another embodiment, the ME device or devices may communicate information between smart cards or between a smart card and a reader for the purpose of identification, access control, exchange of business card or personal data, notification/recognition, or for credit/debit functions.
This application claims the benefit of and incorporates by reference in its entirety U.S. Provisional Application 61/135,295 filed 18 Jul. 2008.
Number | Date | Country | |
---|---|---|---|
61135295 | Jul 2008 | US |