The present invention relates to a wireless (radio) transmitting/receiving device (wireless duplexer) for preferably performing Time Division Duplexed (TDD) transmission and reception.
Along with a recent spread of mobile telephones, the service area has been developed based on a cellular communication system as a basic infrastructure for mobile networks, in which it is demanded to mount thereon a function taking into account a convenience for maintenance as the number of device or equipment adopted is increased. Also in a wireless device, the mounting demand regarding the detection of a Voltage Standing Wave Ratio (VSWR) in addition to a transmission signal level (Lt) and a reception power is being generalized.
An arrangement of a related art wireless transmitting/receiving device is depicted in
At first, in a transmission period (duration) prescribed by the TDD method the transmission/reception switch 40 is switched over to a transmitting side terminal (a) as depicted, by the TDD switching signal STDD, at which time the output of the transmitting portion 1 having received a transmission signal St toward the antenna 6 is detected in the form of a transmission signal level (transmission voltage) Lt by a detector (DET) 3 through the coupler 2. Together with this, a reflecting signal level (reflection voltage) Li of the transmission signal St reflected by the antenna 6 is detected by a detector 22 through a coupler 21.
Voltage Standing Wave Ratio (VSWR) is expressed by a function of a ratio between a traveling wave (transmission signal level Lt) and a reflection wave (reflection signal level Li), so that with these two detection values Pt and Pi a calculator 10 can calculate the voltage standing wave ratio (VSWR).
Also the transmission/reception switch 40 is switched over to a receiving side terminal (b) by the TDD switching signal STDD, at which time a reception signal level (reception voltage) Lr is detected by a detector 8 through a coupler 7, where a reception signal Sr is obtained from the receiving portion (LAN: Low Noise Amplifier) 9.
The transmission signal level Lt and the reception signal level Lr are, as depicted, converted to the transmission power Pt and the reception power Pr respectively by a power detectors 51 and 52, which will be similarly applied to the following descriptions.
On the other hand, there is an impedance matching device comprising a standing wave ratio detection section measuring voltages of each of plural positions on a transmission line from a transmission section leading to an antenna to detect a standing wave ratio, an impedance calculation section recognizing a current impedance toward the antenna when viewed from the transmission line based on the standing waves on the transmission line, a setting matching table storing a setting value of a prescribed matching element as a list for the matching of the impedance between the transmission section and the impedance of the antenna, a variable matching section provided for impedance adjustment to an input terminal of the antenna receiving transmission power from the transmission line, and an arithmetic control section controlling the impedance of the matching element of the variable matching section to be a prescribed impedance based on the current impedance and an impedance from the setting matching table (See e.g. Japanese Laid-open Patent Publication No. 08-97733).
Also, there is a radio base station testing method and tester in which RF-SWs switch routes of signals transmitted/received to/from a terminal function unit attached to a base station 100; RF-SWs connect the terminal function unit to desired radio analog units; a test function controller controls switchings of the RF-SWs according to information designated by a maintenance apparatus (OMC); a base station controller controls one or a plurality of tests according to received test class information among (1) an antenna trouble test for obtaining the voltage standing wave ratio based on the transmission power of the terminal function unit, (2) a receiver trouble test for obtaining the receiver sensitivity based on the transmission power of the terminal function unit after adjusting the packet error rate, and (3) a transmitter trouble test for obtaining transmission power from the radio analog units based on the reception power value of the terminal function unit (See e.g. Japanese Laid-open Patent Publication No. 2005-151189).
Thus in the related art depicted in
However, such a related art wireless transmitting/receiving device requires three pairs of a coupler and a detector for detecting the transmission signal level Lt, the VSWR and the reception signal level Lr. Furthermore, in case of the TDD method, the transmission period and the reception period are separated on a time axis, so that in the transmission period the receiving side circuit takes a pause while in the reception period the transmitting side circuit takes a pause, resulting in a very low circuit operation rate.
According to an aspect of the invention, a wireless transmitting/receiving device includes a coupler to provide a transmission signal to an antenna side and to provide a signal from the antenna side to a receiving side; and a detecting portion to detect a level of a reflection signal of the transmission signal received through the coupler from the antenna side in a transmission period of the transmission signal and to detect a level of a reception signal from the antenna side through the coupler in a reception period.
The above wireless transmitting/receiving device may further include a second detecting portion to detect a level of the transmission signal before inputted to the coupler.
The above detecting portion may detect the level of the reflection signal in one part of the transmission period and detect a level of the transmission signal in another part of the transmission period.
The above coupler may include a circulator.
According to another aspect of the invention, a wireless transmitting/receiving device includes a first selecting portion to select a transmission signal to an antenna and a reception signal from the antenna; a detecting portion to detect a reflection signal of the transmission signal on a transmitting side in a transmission period; and a second selecting portion to select the transmission signal in the transmission period and to select a reception signal detected on a receiving side in a reception period.
This wireless transmitting/receiving device may further include a calculator to calculate a standing wave ratio from the transmission signal and the reflection signal.
In the above wireless transmitting/receiving device, a part of the transmission period may include a part of one transmission period and the remaining part of the transmission period may include the remaining part of the one transmission period. Alternatively, a part of the transmission period may include a part of overall transmission periods and the remaining part of the transmission period may include the remaining part of the overall transmission periods.
It is to be noted that the first selecting portion may include a transmitting/receiving switch, the detecting portion may include a coupler and a detector and the second selecting portion may include a two-point switch and a feedback AGC circuit.
Also, the above wireless transmitting/receiving device may further include a selector selecting the transmission signal and the reception signal from the first selecting portion respectively in the transmission period and the reception period.
The object and advantages of the embodiment will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention as claimed.
When the TDD switching mode presents a transmission period TX as depicted in
In the presence of the circulator 4 during this transmission period, the reflection signal level Li is given to the switch 11 by the coupler 7 and the detector 8 on the receiving side through the bandpass filter 5 and the circulator 4 from the antenna 6. The switch 11 is switched over to the side of the terminal (a) by the TDD switching signal STDD as depicted in FIG. 1C-(b), so that the reflection signal level Li is given to the calculator 10 from the switch 11. Therefore, with the ratio of both, the calculator 10 calculates the VSWR.
On the other hand, in a reception period RX the switch 11 is switched over to the side of a terminal (b) (FIG. 1C-(b)) opposite to the position depicted by the TDD switching signal STDD, so that the reception signal level Lr is now detected also by the coupler 7 and the detector 8.
Therefore, in this embodiment, the coupler 7 and the detector 8 are used for the detection of the reflection signal level in the transmission period and used for the detection of the reception power in the reception period, thereby enabling the operation rate of the detection circuit to be enhanced and the detection of the transmission signal level Lt, the VSWR and the reception signal level Lr to be realized with two pairs of a coupler and a detector.
It is to be noted that although in the above Japanese Laid-open Patent Publication No. 2005-151189 a circulator is used for the detection of VSWR, the circulator in this Publication merely serves to couple a reflection wave, so that a reception wave is mixed in the coupling path, increasing the VSWR, which appears to be a fault state. According to in this embodiment, however, the receiving side circuit is used for the reflection wave measuring circuit exclusively used for the detection of the VSWR in the above Japanese Laid-open Patent Publication No. 2005-151189, thereby simplifying the circuit arrangement.
This embodiment [2] depicted in
The feedback AGC circuit 13 performs an optimized distortion compensation with a closed loop control composed of a variable attenuator (ATT) 131, a detector 132 and a comparator (COMP) 133, where the transmission power coupled by the coupler in the transmitting side circuit is attenuated (distortion compensated) by the variable attenuator 131 and then detected by the detector 132, the detected value being compared with a reference voltage (control voltage) REF at the comparator 133 of which output feedback controls the variable attenuator 131, thereby performing the feedback type distortion compensation to the transmission signal level Lt. As a result, the output of the detector 132 and the reference voltage REF are to have a certain mutual relationship (e.g. consistency), so that the transmission signal level Lt is provided to the calculator 10 in such a form where an input variation of the detector 132 is suppressed.
The other operations are the same as the above embodiment [1].
Therefore in this embodiment as well, the coupler 7 and the detector 8 are allocated for the detection of the reflection power in the transmission period TX while allocated for the detection of the reception signal level Lr in the reception period RX, thereby enhancing the operation rate of the detection circuit, so that the detection of the transmission signal level Lt, the VSWR and the reception signal level Lr can be achieved by two pairs of a coupler and a detector.
This embodiment [3] depicted in
The switch 12 is adapted to be controlled by the TDD switching signal STDD synchronized with the TDD switching mode to perform a switchover between the coupler 2 and the receiving portion 9 to respectively provide the transmission signal and the reception signal to the feedback AGC circuit 13. Also the switch 11 having received the TDD switching signal STDD is switched over to output the transmission signal level Lt or the reception signal level Lr provided by the feedback AGC circuit 13 in the same manner as the above embodiment [1]. Namely, the switches 11 and 12 are adapted to be jointly switched over from the terminal (a) to the terminal (b) by the TDD switching signal STDD.
In this embodiment, the transmission/reception switch 40 as well as the switches 11 and 12 are initially switched over to the terminal (a) as depicted, in synchronization with the transmission period TX in the TDD switching mode depicted in
In the transmission period TX, the reflection signal level Li is outputted to the detector 22 from the coupler 21 through the bandpass filter 5 and the transmission/reception switch 40 from the antenna 6 and then sent to the calculator 10 from the detector 22. Therefore, the calculator 10 can calculate the voltage standing wave ratio (VSWR) by using the transmission signal level Lt and the reflection signal level Li received in the transmission period TX.
On the other hand, when the TDD switching mode depicted in
Thus, in this embodiment the feedback AGC circuit 13 is applied for the detection of the transmission power in the transmission period TX and for the detection of the reception power in the reception period RX, enabling the operation rate of the detection circuit to be enhanced and the detection of the transmission signal level Lt, the VSWR and the reception signal level Lr to be realized with two pairs of the detection circuits.
This embodiment [4] depicted in
Namely, the circulator 4 is used for connecting the transmitting side circuit and the receiving side circuit to the antenna 6 as with the embodiment [2] in
The switch 12 is switched over between the terminals (a)-(b) by a binary (1 bit) switching signal SW1 as depicted in
From the terminal (1) of the switch 14 the transmission signal level Lt is provided to the calculator 10 through the holding circuit 15, from the terminal (2) the reflection signal level Li is provided to the calculator 10 through the holding circuit 16 and from the terminal (3) the reception signal level Lr is provided to the power detector 52.
It is to be noted that the switch 12 in response to the binary switching signal SW1 connects its terminal (a) to the coupler 2 in one part (TX1) of the transmission period TX while in the other part (TX2) of the transmission period TX the switch 12 connects its terminal (b) to the receiving portion 9. Also in the reception period RX the receiving portion 9 remains to be connected to the terminal (b).
Also in the switch 14, with the ternary switching signal SW2, the feedback AGC circuit 13 is connected to the terminal (1) in the transmission period TX1, the feedback AGC circuit 13 is connected to the terminal (2) in the transmission period TX2 and the feedback AGC circuit 13 is connected to the terminal (3) in the reception period RX.
Thus in this embodiment, three kinds of detections, i.e. the detection of the transmission signal level (traveling wave level) Lt, the detection of the reflection signal level (reflection wave level) Li and the detection of the reception signal level Lr are made by the switch 14 through the feedback AGC circuit 13 from the switch 12.
In case of the TDD system, the transmission period and the reception period are separated and alternately allocated on a time access, where a period TX depicted in
First, during the transmission period TX a signal from the coupler 2 is inputted to the feedback AGC circuit 13 in the transmission signal level detecting period TX1 (switching state (1)). Power information extracted from the feedback AGC circuit 13 is inputted to the holding circuit 15 by the switch 14, at which the value is held and provided to the calculator 10 as a detected value of the transmission signal level Lt, and is concurrently provided as a monitor output.
Then, in the reflection signal level detecting period TX2, a signal of the receiving portion 9 is inputted to the feedback AGC circuit 13 by the switch 12. A signal inputted to the receiving side circuit in the transmission period TX2 is a transmission wave reflected by the bandpass filter 5 and the antenna 6 due to mismatching and passed through the circulator 4, which is inputted to the holding circuit 16 through the switch 14 and provided to the calculator 10 as a detected value of the reflection wave signal level Pi. The detected values held by the holding circuits 15 and 16 are given to the calculator 10 to determine the power ratio and outputted as the VSWR to be monitored.
During the reception period RX, the reception wave passes through the circulator 4, so that the signal of the receiving portion 9 is inputted to the feedback AGC circuit 13 through the switch 12, which is outputted by the switch 14 to be monitored as a detection result of the reception signal level Lr.
The above noted power detection timings can be summarized as follows:
(1) Transmission Period TX1
The switch 12 is connected to the terminal (a) by the switching signal SW1, in which the transmission signal level Lt is outputted from the feedback AGC circuit 13 through the terminal (a) from the coupler 2. The transmission signal level Lt is then held at the holding circuit 15 through the terminal (1) of the switch 14 in the transmission period TX1 as depicted in
(2) Transmission Period TX2
The switch 12 is switched over from the terminal (a) to the terminal (b) by the switching signal SW1, whereby the reflection signal level Li in the transmission period TX2 is outputted from the feedback AGC circuit 13 through the circulator 4—the receiving portion 9—the terminal (b) of the switch 12. At this time, the switch 14 is switched over from the terminal (1) to the terminal (2) by the switching signal SW2 as depicted in
(3) Reception Period RX
While remaining to be connected to the terminal (b) by the switching signal SW1, when the switch 12 transfers the reception signal from the receiving portion 9 to the feedback AGC circuit 13 from the terminal (b), the reception signal level Lr is outputted from the feedback AGC circuit 13. At this time, the switch 14 is switched over from the terminal (2) to the terminal (3) by the switching signal SW2 as depicted in
Then by reading out the transmission signal level Lt and the reflection signal level Li respectively held at the holding circuits 15 and 16 at timings T1 and T2 depicted in
It is to be noted that the transmission period TX1 and the reflection period TX2 may be ½ of the transmission period TX as depicted in
Normally, transmission/reception switchover timings in the TDD system may be made variable in order to flexibly keep the capacity variability which is a merit of the TDD system. For example in a WiMAX system, the transmission timing is made variable between 50%-75%. Also, the frame length has a prescribed value of 5 ms, so that the transmission signal level detecting period TX1 may be fixed to 1.25 ms and the remaining period may be allocated for the reflection signal level detecting period TX2. In this case, the reflection signal level detecting period TX2 assumes 1.25 ms-2.5 ms depending on the transmission/reception ratio.
In the detection timing example depicted in
Namely, after the switch 12 has been switched over from the terminal (a) to the terminal (b) by the switching signal SW1 as depicted in
While in the power detection timing example depicted in
In such an arrangement, the holding time itself does not become a problem if a digital formed register is used for the holding circuits 15 and 16, where the reduction of the processing speed is contradictory to the updating time of the detected values, so that the number of frames required is determined by a tradeoff between them.
Also, for determining the number of frames required, from another view point it is necessary to consider the precision maintaining time for the feedback type distortion compensation. In either of the above examples, the transmission period is allocated in the transmission signal (traveling wave) level detecting period and the reflection signal level detecting period. Therefore, the feedback type distortion compensation is only operated in the transmission signal level detecting period, resulting in a free run control of open loop in the reflection signal level detecting period.
However in case of the TDD system, 25%-50% of the entire operating time originally include the reception period, so that the feedback AGC circuit 13 itself for distortion compensation is adapted to apply thereto a holdover of loop parameter so as not to be diverged even in such an open loop and the convergence is enabled even under intermittent operations. Therefore, the extension of a convergence time due to a ratio between the transmission signal level detecting periods enabling the feedback operation being relatively decreased and the followability to the characteristic variation may be evaluated.
It is conceived that while the frame length used in WiMAX is 5 ms as described above, a dominant item as a characteristic variation element is a thermal variation, which presents a very slow variable characteristic in comparison with the frame length. In consideration of the application for the monitoring update intervals as well, it is conceived that there is no case of requiring detected values corresponding to the frames, where there may be a time precision for every second update
While the above objective items are the transmission signal level Lt, the VSWR and the reception signal level Lr, burst detections are not required because the transmission signal level Lt and the reception signal level Lr depend on traffic conditions so that an averaged value at test times or the like is required. Also, the VSWR is continuously detected in the actual operation, where monitoring a time degradation such as impedance matching degradation due to water proof defect is a main object which is also an averaged or statistic item to be monitored.
According to the above described embodiments, it is possible to decrease the number of directional couplers and detectors, to enhance the operating rate of the circuits having been previously used only for the transmission period or reception period and to realize the detection of the transmission power, the VSWR and the reception power with the minimum circuit scale, thereby largely contributing to performance improvements of a TDD transmitting/receiving duplexer.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
This application is a continuation of International Application PCT/JP2007/65180 filed on Aug. 2, 2007, the contents of which are herein wholly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5715527 | Horii et al. | Feb 1998 | A |
6236840 | Aihara et al. | May 2001 | B1 |
6289216 | Koh et al. | Sep 2001 | B1 |
6952565 | Takeda et al. | Oct 2005 | B1 |
7212789 | Kuffner | May 2007 | B2 |
7379714 | Haque et al. | May 2008 | B2 |
20020032009 | Otaka et al. | Mar 2002 | A1 |
20040121742 | Abrams et al. | Jun 2004 | A1 |
20040137854 | Ge | Jul 2004 | A1 |
20050107080 | Hasegawa et al. | May 2005 | A1 |
20060035600 | Lee et al. | Feb 2006 | A1 |
20070066224 | d'Hont et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
08097733 | Apr 1996 | JP |
10-173547 | Jun 1998 | JP |
10173547 | Jun 1998 | JP |
10224314 | Aug 1998 | JP |
11-122132 | Apr 1999 | JP |
11122132 | Apr 1999 | JP |
2001-16044 | Jan 2001 | JP |
2001016044 | Jan 2001 | JP |
2002-164832 | Jun 2002 | JP |
2002164832 | Jun 2002 | JP |
2005151189 | Jun 2005 | JP |
2006093990 | Apr 2006 | JP |
0128113 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100159851 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2007/065180 | Aug 2007 | US |
Child | 12697986 | US |