1. Field of the Invention
The present invention relates to remote tracking processing, and more particularly to a networked position multiple tracking process, wherein all multi-tracking devices are networked and their location information is shared via a data link. Moreover, individual units are organized as groups and groups are further networked to facilitate the data transfer in a large area or different geographical areas.
2. Description of Related Arts
There is a demand for determining another person's or vehicle's location. There is a further demand for determining other persons' or vehicles' locations relative to a host. The current technology utilizes a monitoring center equipped with computers and communication links. The persons tracked send their location data via a communication resource to a monitoring center. The monitoring center is capable to display their current location on a display unit in real time.
The present invention provides an innovative way to implement the networked tracking of entities without a monitoring center, where an entity can be a person or a vehicle. In the present networked position multiple tracking system, all individuals each of which is given a unique identification (ID) are equal and combined in a group. Each individual can freely leave this group. The group can also receive newcomers as members after the automatic registration process.
A main objective of the present invention is to provide a networked position multiple tracking process, which is a method to organize individual members or units in a hierarchical architecture. All individual units are organized in a plurality of unit groups, and the unit groups are further organized into larger groups, and so on. Accordingly, the networked position multiple tracking process of the present invention substantially saves communication resource for a communication network and provides efficient data exchanges among big amount of individuals.
Another objective of the present invention is to provide a networked position multiple tracking process, which is a method to acquire the current location of objects in a networked group. The objects are defined as persons or vehicles. These objects' locations are displayed on a host-display, where the host is located at a center of the display so that the host knows the profile of the relative locations of its group members. The present invention allows any person or vehicle with a display unit to display their positions and the positions of any other persons or vehicles in a networked group.
It is a further objective of the present invention to provide a networked position multiple tracking process to acquire the current locations of individuals in a networked group. These individuals' locations are displayed with a map as background on the acquirer's display unit. The present invention allows any person or vehicle with a display unit to display their positions and the relative positions of any other persons or vehicles in a networked group.
It is a further objective of the present invention to provide a networked position multiple tracking process, in which a communication mechanism is designed to facilitate the data transmission among individuals. The data exchange package is also defined.
It is a further objective of the present invention to provide a networked position multiple tracking process, in which an intra-group communication mechanism is designed to facilitate the data transmission among individual groups. The intra-group data exchange package is also defined.
It is a further objective of the present invention to provide a networked position multiple tracking process, in which a self-contained miniature IMU (inertial measurement unit) is used along with a GPS (global positioning system) receiver to deliver uninterrupted positioning data for each individual.
It is a further objective of the present invention to provide an integrated communication and wireless wide area networked precision geolocation system for generic multi-agent high-performance real-time decision aids system.
In order to accomplish the above objectives, the present invention provides a system and process for networked position multiple tracking among independent individuals without a monitoring center, where an individual is a person, a vehicle, or any other property. With such networked multiple tracking system, the individuals are networked in a group, and each individual can search and track other individuals of interest.
The present networked position multiple tracking system is also capable of intra-group tracking, where each group has a group controller who is responsible for data exchange among individual groups.
The individuals' locations are overlaid on a digital map on the host's display unit. The host is at the center of the display, thus the relative locations of other individuals are displayed on the host's display unit. The networked individual can send messages to each other as well.
The typical applications of the present invention include tracking of family members; tracking of cab vehicles of a taxi company and tracking of law enforcement officials pursuing criminals or suspects. In a military environment, the soldiers in a regiment can track each other during military missions by utilizing the present invention. The pilots of aircraft in a formation can use the networked position multiple tracking system to maintain formation flight and evade potential collision.
a illustrates the interruption free self-contained coremicro Palm Navigator navigation when GPS signals are obscured.
Referring to FIGS. 1 to 10, a system of networked position multiple tracking is illustrated, wherein the networked position multiple tracking system is processed via a data link, where the data link is responsible for location and command data exchanges between individuals among a networked group. According to the networked position multiple tracking system of the present invention, the individuals are networked in a group that each individual can search and track other individuals.
The networked position multiple tracking system comprises a plurality of individual units each of which is carried by an individual carrier, which can be a person, a vehicle, or any other property. The individual units are organized as intra-groups and a predetermined number of unit groups are further networked into link-groups to facilitate the data transfer in a large area or different geographical areas.
The networked position multiple tracking system further comprises a communication mechanism in each unit-group of individual units which is designed to facilitate the data transmission among the individual units, wherein a data exchange package is also defined.
The networked position multiple tracking system further comprises an intra-group communication mechanism in each intra-group of unit-groups, which is designed to facilitate the data transmission among the unit-groups, wherein an intra-group data exchange package is also defined.
The networked position multiple tracking system further comprises a self-contained miniature IMU (inertial measurement unit) which is used along with a GPS (global positioning system) receiver to deliver uninterrupted positioning data for each individual unit.
Equipped with a powerful small size IMU (Inertial Measurement Unit) device, such as the coremicro® IMU invented by the American GNC Corporation, the network position multiple tracking system of the present invention is self-contained and capable of tracking personnel inside a building, where the IMU device provides continuous carrier's position information. In the open area a GPS (Global Positioning System) unit is activated to provide precision absolute location data which can be blended with the self-contained IMU data to improve the accuracy and robustness of the positioning services. Thus, the present invention provides excellent position tracking outside a building.
The IMU/GPS integrated device, in general, is costly and big in size. Weight, and large size lead to an infeasible deployment in a car or for being carried by a single individual. With the emergence of the MEMS (MicroElectronicMechanical System) technology, a miniature IMU based on MEMS technology becomes an embraceable reality.
American GNC Corporation, Simi Valley, CA, invented MEMS angular rate sensors and MEMS IMUs (Inertial Measurement Units), referring to US patents, “MicroElectroMechanical System for Measuring Angular Rate”, U.S. Pat. No. 6,508,122; “Processing Method for Motion Measurement”, U.S. Pat. No. 6,473,713; “Angular Rate Producer with MicroElectroMechanical System Technology”, U.S. Pat. No. 6,311,555; “Micro Inertial Measurement Unit”, U.S. Pat. No. 6,456,939. American GNC Corporation invented the coremicro® IMU, which is currently “The world's smallest” IMU, based on the combination of solid state MicroElectroMechanical Systems (MEMS) inertial sensors and Application Specific Integrated Circuits (ASIC) implementation. The coremicro® IMU is a fully self-contained motion-sensing unit. It provides angle increments, velocity increments, a time base (sync) in three axes and is capable of withstanding high vibration and acceleration. The coremicro® IMU is opening versatile commercial applications, in which conventional IMUs can not be applied, including land navigation, automobile navigation, personal hand held navigators, robotics, marine vehicles and unmanned air vehicles, various communication, instrumentation, guidance, navigation, and control applications.
The coremicro® IMU manufactured by the American GNC Corporation can be embodied into the networked position multiple tracking system for delivering robust location data. As shown in
The networked position multiple tracking system processes the following steps according to the present invention:
As shown in
The intelligent display 20 is used to show the host location and other relative client locations of to the individual units. The system processor 30 is responsible for sending and receiving data, retrieving map data, responding to commands, and numerical calculations. The wireless communication device 40 is used to receive and send location data and other messages.
As shown in
The Data Exchange Package is defined to include:
As shown in
As shown in
The intra-Group Data Exchange Package is defined to include:
As shown in
Each individual unit in each of the first level unit-groups is assigned with a unique individual identification (IID) to distinguish from other individual units in the same first level unit-group. Each first level unit-group in a second level intra-group is assigned with a unique first level group identification (GID) to distinguish from other first level unit-groups in the same second level intra-group. Each second level intra-group in a third level intra-group is assigned a unique second level group identification (GID) to distinguish from other second level intra-groups in the same third level intra-group. This same way of identification assignment continues for even larger groups. By this way the hierarchical architecture can trace down to every individual unit with a unique combination of GID and IID. For example, the third level intra-group 3A can be identified in
The position producer 10 outputs the host location data, i.e. the location data of the unit group controller or intra group controller, to the system processor 30. The system processor combines the host location data with the host's ID, i.e. the IID or GID, and sends them to the wireless communication device 40. The wireless communication device 40 is a combination of hardware and software and is responsible to send these data onto the network so that other individual units can access these data. The data stream sent from the unit group controller or intra group controller has an order as follows (in words):
The above motion parameters are sufficient for characterizing a ground vehicle to realize multi-tracking. When used for aircraft tracking, the message will be enhanced by adding the following information:
In order to simplify the following description regarding both the communication resources, i.e. the unit data link 60 and intra data link 70, the following term “group” represents both the “unit-group” and “intra-group” and the following term “member” represents the “individual unit” of a unit-group, the “unit group controller” of a unit-group within an intra-group, and the “intra group controller” of an intra-group within a higher level intra-group.
The identification number assignment module 31 assigns the unique identification number (IID or GID) to each member involved in the networked position multiple tracking processing. Each member can be recognized by the assigned IID or GID.
The communication resource assignment module 32 assigns communication resource to each member in a group, where communication resource is an opportunity for a networked position multiple tracking device to send data onto the network. For a time-division-multi-address (TDMA) configuration, the communication resource is a piece of time slot assigned to a specific individual during which this individual can send data out. For a frequency-division-multi-address (FDMA) configuration, the communication resource is a radio frequency which the member uses to transmit data. For a code-division-multi-address (CDMA) configuration, the communication resource is a random pseudo number sequence used to identify member in a networked group.
The communication resource recycling module 33 releases communication resource assigned to a specific individual unit when this member leaves the networked group. This step is very important in that the communication resource can be reused by other potential member after one member leaves the group.
The communication resource management is a very important issue in the present invention. The above three steps represent a very competitive group communication mechanism with communication resource assignment and releasing operations. In a TDMA communication network, each member is assigned a piece of time for data transmission. For instance, the required position update rate for each member is once per second (1 Hertz) and required time period for a member to transmit position data is 100 milliseconds. The number of maximum allowed members in a group with this TDMA configuration is 10. When there are less than 10 members in this group, the position transmission rate would be higher. If there are more than 10 members in this group, the position transmission rate would be lower than 1 Hz.
To illustrate the advantage of the efficient communication resource management of the present invention, a more detailed example is provided. In a TDMA configuration communication network, there are 5 members. The required position update rate for each member is still once per second (1 Hertz). The time period for a member to transmit position data is 100 milliseconds. The total time period for all the five members to transmit their position data is 0.5 seconds and meets the position update rate requirement. The communication network capacity can allow another five members to join in. The communication network can not handle more 10 members and meets the 1 Hz position update rate. If we do not have communication resource releasing operation, the communication network can only allow another five members to join in even when one or more members leave this group. With the communication resource releasing operation of the present invention, the communication network can allow another 5+N members to join in when N (N<=5) members leave this group.
As shown in
When new partner members are found, the following additional steps are included:
When absent partner member or members are found, the following additional step is included:
The unit-group and intra-group communication mechanisms can be built on several wireless communication specifications that offer wireless connectivity in various ways. Data rate transfers and range are among the most salient characteristics among wireless products. Several of the wireless solutions are briefly outlined below.
Infrared Data Association (IrDA): This communication system is created through a web of infrared light. It can only be used in open spaces since it is unable to penetrate walls or any other solid surface.
Digital Enhanced Cordless Telecommunications (DECT): Characterized by a “handover” process that uses two radio links during each connection and selects the best of the two for the communication process. If the portable device moves out of range of the base station, the handover process allows for the range to be increased by allowing the portable device to use another nearby range station.
IEEE 802.11: Uses three physical (PHY) layer specifications and one Medium Access Control (MAC) specification. The MAC works in two configurations one is the “Independent Configuration” and the second is the “Infrastructure Configuration”. The Independent Configuration is an ad-hoc network where stations communicate with one another without infrastructure support. In the Infrastructure Configuration stations communicate through access points and their communication scheme creates a wide area coverage. The MAC provides encryption and service scanning. The three PHY include “Frequency Hop Spread Spectrum”, “Direct Sequence Spread Spectrum” and “Baseband IR”. One of its biggest defaults is its very slow frequency hopping rates.
IEEE 802.11b : The PHY layer is extended in this version to provide 5.5 and 11 Mb/s, in addition to the 1 and 2 Mb/s data rates.
HOMERF: Strong in the home wireless networking market and based on the specifications created by the HRFWG. HOMERF deals in the market of communications between mobile devices and PC's.
Shared Wireless Access Protocol (SWAP): Able to carry both voice and data traffic. Voice “re-transmission” takes place first. Data packets are transmitted on several links in the IIDdle of the transmission and finally a voice transmission is received at the end. SWAP is designed to be low cost by using more relaxed radio specifications while maintaining the same frequency-hopping scheme of Bluetooth technology. SWAP is operable as either an add-hoc network or as a managed network.
High Performance Radio Local Area Network (HIPERLAN): HIPERLAN has two specifications, H1 and H2. It is said to work well in building propagation, and high-rate medium range multimedia. Both specifications are expensive to implement.
Bluetooth: Bluetooth wireless technology has several key factors that make it a feasible alternative for the Advanced Personal Communicator Prototype. Some of the more pronounced traits that favor this technology are outlined below:
Applications providing Bluetooth services must do so through the Bluetooth Protocol Stack. The Bluetooth protocol stack is made up of the following layers: Radio, Baseband, Link Controller, Link Manager, Host Controller Interface (HCI), L2CAP, RFCOMM/SDP and Application layer.
The Radio interface is made up of an on air channel medium and a digital baseband, which handles data sent by the LC and ensures a robust transmission over the channel. The Radio Interface also retrieves data from the channel for processing in higher protocol layers. Radio and baseband represent the Open Systems Interconnect (OSI) Physical layer.
The Baseband layer is where the channel coding and decoding process takes place as well as the timing control.
Link Controller (LC) performs some of the equivalent Data Link layers tasks of transmission and error suppression. The LC executes linking operations over multiple data bursts when instructed to do so by Link Manager (LM) commands.
The LM and the higher end LC are responsible for the execution of the tasks that the network layer performs. The link manager is responsible for the setup and maintenance of multiple links.
The Transport layer tasks are performed by the Host Controller Interface (HCI) which is responsible for faithful data transfer.
Logical Link Control and Adaptation Protocol (L2CAP) and the lower end of RFCOMM/SDP are responsible for the management of data flow.
RFCOMM is the equivalent of the RS-232 layer within the Bluetooth Protocol. It is predominantly responsible for data transfers.
Service Discovery Protocol (SDP) allows users to browse for services or devices such as printers. The Applications layer acts as the communication manager between two application sessions.
The Wireless Wide Area Networked Precision Geolocation System incorporates the coremicro Palm Navigator that performs network communication, improves geolocation accuracy when loss of the GPS signal occurs, and increases the tracking area coverage at the same time. The system has been integrated with the US Army's Research Development and Engineering Center's (ARDEC) CDAS FCS, Objective Force Warrior, Land Warrior and Homeland Defense applications. For all applications, this system allows personnel to be linked through an intelligent software network interface to multiple autonomous robotic vehicles and airplanes/UAVs that provide precision geolocation and other information to each other. This is one of the basic concepts of the U.S. Army's FCS.
An “open systems” architecture is built with specified interfaces, services and respective formats to support plug-and-play software and hardware components. A decision-level fusion-based, such as, object-oriented Bayesian Network, configuration accommodates complex systems and inference. A wireless communication architecture supports multi-agent communication and coordination. Using the American GNC Corporation's (AGNC) developed simulation and test tools the system is tested in the laboratory and then in the CDAS environment. The development leads to a general purpose, reusable. plug-and-play commercial software component product referred to as Reusable Component-Based Multi-agent Information Fusion and Decision Aid System.
Applications address cases where personnel, through a network, can access positioning information. There are two layers to this construct. One is a self contained network and the other a link to an application layer that monitors the network. This provides flexibility to various applications. The radio link can accommodate a Linux network which is the environment for the future warrior. It can display desired waypoints. Once the information is on the network many applications ensue. The interface to CDAS is a very fast link to a central station and then the central station can talk to CDAS. Also, CDAS can talk to the central station and send waypoints. The impact of this design includes:
System components and technical innovations include:
Referring to FIGS. 1 to 10, one of the system implementation of networked position multiple tracking which is called “wireless wide area networked precision geolocation” is illustrated, wherein the “wireless wide area networked precision geolocation” is processed via a data link, where the data link is responsible for location and command data exchanges between individuals among a networked group. According to the wireless wide area networked precision geolocation of the present invention, the individuals are networked in a group that each individual can search and track other individuals.
The wireless wide area networked precision geolocation comprises a plurality of individual units each of which is carried by an individual carrier, which can be a person, a vehicle, or any other property. The individual units are organized as intra-groups and a predetermined number of unit groups are further networked into link-groups to facilitate the data transfer in a large area or different geographical areas.
The wireless wide area networked precision geolocation further comprises a communication mechanism in each unit-group of individual units which is designed to facilitate the data transmission among the individual units, wherein a data exchange package is also defined.
The wireless wide area networked precision geolocation further comprises an intra-group communication mechanism in each intra-group of unit-groups, which is designed to facilitate the data transmission among the unit-groups, wherein an intra-group data exchange package is also defined, as shown in
The wireless wide area networked precision geolocation system processes the following steps according to the present invention:
This is a Continuation-In-Part application of a non-provisional application having an application Ser. No. 09/952,632 and filing date of Sep. 10, 2001.
Number | Date | Country | |
---|---|---|---|
Parent | 09952632 | Sep 2001 | US |
Child | 11142927 | Jun 2005 | US |