Games have provided a social context in which people can interact and have fun. One type of game that is particularly engaging socially are “circle” games, where players will gather around a central horizontal play area that is visible to all players, and interact with the central horizontal play area and with each other. Such players are often as few as two (as is the case with chess or checkers), but may be as many as a dozen or more. Board games are circle games in which the board serves as the central horizontal play area. However, there are other circle games that have a central play area that is not a board. For instance, many card games can be played directly on the surface of a table or other flat surface. Many circle games involve the players manipulating objects on or proximate the play area. For example, many circle games require the player role dice, start a timer, spin a spinner, play cards, move pieces, and so forth, depending on the game. Many circle games also involve the user maintaining a private area that is viewable to only the player (and perhaps fellow team members).
Circle games have existed for thousands of years across diverse cultures. New circle games arise to meet the social needs and interests of the community while old circle games go out of use as society loses interest. Many believe that circle games provide significantly more opportunity for social development than other types of conventional video games that are gaining in popularity. The contribution of circle games to society should not be ignored, but often is.
Circle games can provide an impetus for bringing families, friends, and other significant social groups together and fostering important human relationships. Children wait with great eagerness to engage with others in circle games. The types of circle games that individuals enjoy may change as one grows older, and may differ between population segments. Nevertheless, circle games draw human beings together with the immediate hope of engaging others in a test of skill, while the horizontal play area provides a subtle and significant side-benefit in permitting channels of communication to be opened. Many have experienced that the conversation migrates to topics beyond the scope of the game itself, often resulting in a level of conversation that is greater than particular individuals might be inclined to engage in without the circle game. The benefit to society in encouraging individuals to come together in circle games is often underestimated and not fully recognized.
Embodiments described herein relate to a distributed electronic game system that includes a flat multi-touch functional central display that is capable of receiving wireless signals from surrounding game control devices, interpreting control actions from the wireless signals, and affecting game state in response to the control actions. The central display may be positioned horizontally and may act as a central play area for circle games. In one embodiment, the central display includes general-purpose processing capability allowing the central display to be a central play area for a wide variety of board games and other circle games.
In one embodiment, the surrounding game control device might be a wireless game input device that includes an orientation sensor whose orientation affects game state. Information regarding the orientation is transmitted from the game input device itself to the central display, thereby controlling game state in the central display. One example of a wireless game input device is a die. When a die is rolled, the die may transmit information regarding its orientation to the central display, allowing the central display to determine what number was rolled, or more generally, which side is facing up. In one embodiment, a recharger is provided for recharging a power source of the die or other wireless game input device.
Alternatively or in addition, the surrounding game control devices might be one or more player consoles, each displaying private game state associated with a as subgroup of one or more players. Such players may physically interact with the player console to thereby control game state at the central display. A subset of one or more of the player consoles may be specialized game consoles, such as that of a game master, allowing for specialized control of the game state itself, or which portion of the game state is displayed at the central display.
This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In order to describe the manner in which the above-recited and other advantages and features can be obtained, a more particular description of various embodiments will be rendered by reference to the appended drawings. Understanding that these drawings depict only sample embodiments and are not therefore to be considered to be limiting of the scope of the invention, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The principles described herein relate to and/or may be used in a distributed electronic game system.
The system 100 includes a flat multi-touch functional central display 101. The central display 101 may be laid horizontally on a table or other surface and may be used as a horizontal central playing surface. For instance, the central display 101 may behave as an electronic board of a digital board game. The display 101 may be movable, or perhaps may be fixed, perhaps being built into a furniture item. Since
The system 100 also includes surrounding game control devices (also called herein “game input device”). There are eight such game input devices 102A through 102H illustrated in
The flat multi-touch functional central display 101 is capable of detecting and responding to multiple simultaneous instances of players touching the display 101, and affecting game state in response to each touch instance. The central display 101 may also have a scratch resistant coating to prevent scratching that might otherwise be caused by players touching the central display 101. The central display 101 may also receive signals from the surrounding game input devices 102, interpret control actions from the signals, and affect game state in response to the control actions.
In one embodiment, one, some, or even all of the game input devices 102 are wireless. In the case of a wireless input device, the wireless input device may communicate wirelessly with the central display 101. One or even some of the game input devices 102 may be remotely located from the central display 101. Such remotely located game input device(s) may perhaps communicate with the central display over a Wide Area Network (WAN) such as the Internet. That would enable a player to participate in the game being displayed on the central display 101 even if that player is located in a completely different part of the globe. Thus, for example, a father or mother stationed oversees might play a child's favorite board game with their child before going to bed. Or perhaps former strangers and new friends from different cultures around the globe might engage in a board game, potentially fostering cross-cultural ties while having fun. That said, perhaps all of the game input devices 102 may be local (e.g., in the same room) to the central display 101.
The central display 101 includes a public display area 111. Note that the public display area 111 is only abstractly represented in
The central display 101 also includes game logic 112 that is capable of rendering all or at least a portion of the public game state 113 on the public display area. A reception mechanism in the form of wireless transceiver 114 receives control information from surrounding game input devices 102. A game incorporation mechanism 115 identifies the control information received from the game input devices 102 and alters a game state based on the control information.
In one embodiment, the central display 101 incorporates functionality of a general-purpose computing system with a hard drive 121, memory 122, general-purpose processor(s) 123, speakers 124, a video driver 125, a wireless transceiver 126 (such as a BLUETOOTH® transceiver), and so forth (see ellipses 127). In that case, the game logic 112, portions of the reception mechanism 114 stack, and the game incorporation mechanism 115 may be software-implemented. The game state 113 may be represented as data within the hard drive 121, memory 122 and/or video driver 125. The wireless transceiver 126 is capable of receiving multiple signals simultaneously.
In the display 200, there are a number of built-in cameras 212A through 212H (referred to collectively as “cameras 212”). In this case, there are eight illustrated cameras (two on each of the four sides of the display 200), although the display 200 may have any number of cameras. The cameras 212 are each capable of capturing a video image and may be adjustable. Thus, for example, in a game with eight local players, each camera may be adjusted to capture the video of a corresponding player. The display 200 may include logic that renders the captured video, or portions thereof, on the public display area 211 of the display 200. The logic might also cause all or portions of that video to be transmitted to game input devices (such as player consoles) so that the video may also be displayed at the various game input devices. In one embodiment, the cameras may fold into the display 200 edge. For instance, in
The orientation-sensing game input device 300 includes an orientation sensor 301 that, when active, outputs a spatial orientation signal representing a spatial orientation of the game input device. The orientation sensor 301 is rigidly attached to the game input device 300. The orientation sensor 301 is able to detect how the game input device 300 is oriented with respect to vertical, and/or how the game input device is oriented with respect to north. In one embodiment, the orientation sensor 301 is an accelerometer. Alternatively or in addition, the orientation sensor 301 may be a compass that generates a direction signal indicating a geographical orientation. The orientation-sensing device may also potentially have a Global Positioning System (GPS) that allows the orientation-sensing device 300 to detect a global position of the orientation-sensing device 300 in global coordinates.
A transmission mechanism 302 is communicatively coupled to the orientation sensor 301 so as to receive the spatial orientation signal from the orientation-sensor 301 and transmit spatial orientation information present in the spatial orientation signal to the flat multi-touch functional display 101. In one embodiment, the transmission mechanism 302 may accomplish this using acoustics, but preferably accomplishes this using wireless electromagnetic radiation. A suitable protocol for transmission of the spatial orientation information is BLUETOOTH®. As an example, if the orientation-sensing device 300 is a multi-sided die, and if the orientation sensor 301 is a tri-axial accelerometer, the spatial orientation signal may indicate or at least include enough information to infer which side of the die is facing up. As another example, if the orientation-sensing device is a playing card or a coin, and if the orientation sensor is a uni-axial accelerometer, the spatial orientation signal may indicate or at least include enough information to infer whether the playing card is face up or face down, or which side of the coin is facing up. As a final example, if the orientation-sensing device 300 is a domino tile, and the orientation sensor 301 is an accelerometer, the spatial orientation signal may convey whether the domino tile were face up or face down. Furthermore, if the orientation sensor 301 is also a compass, the spatial orientation signal may convey which direction the domino was oriented on the table.
The transmission mechanism 302 may also transmit other useful information. For instance, the transmission mechanism may transmit a locally-unique and perhaps globally-unique identifier. This may be especially useful in a case where there are multiple orientation-sensing devices 300 being used in a game. For instance, if the orientation-sensing devices 300 were each six-sided die, the central device could confirm what die was rolled, and the associated rolled value of that specific die, even if multiple dice were rolled.
The orientation-sensing device 300 might also transmit other information identifying characteristics of the device 300. For instance, if the device 300 were a coin, the device 300 might transmit a device type identifier that identifies the device as a coin, and so forth for other types of devices. The device 300 might also transmit information from which the central device might infer other characteristics of the device as well, such as color, size, shape, which might be helpful where such characteristics have an impact on game state.
In one embodiment, the device 300 might transmit information that helps the central display interpret the impact on the game of the orientation of the device 300. For instance, one die might have a quality of 36 in which the actual value input by the roll result is to be 36 times the number rolled. Such quality information may be included with the transmission. In one embodiment, the transmission mechanism 302 includes a reliable transmission mechanism in which transmissions are acknowledged by the central display, or else the information is retransmitted according to a particular protocol.
There are many example game input devices that may incorporate orientation-sensing capability with suitable modification in accordance with the broad scope of the principles described herein. Several examples have already been given including a multi-sided die, a playing card, a coin, and a domino tile. Other examples include, but are by no means limited to, the following:
1) a game piece miniature;
2) bottle caps;
3) plastic bone pieces;
4) cans;
5) tokens;
6) blocks;
7) house or hotel pieces;
8) marbles;
9) jewels;
10) treasure chest lid;
11) jelly beans;
12) checker pieces;
13) any type of wood game piece;
14) any type of plastic game piece;
15) any type of metallic game piece;
16) and many more.
The presentation of this list is not intended to provide an exhaustive enumeration of the types of orientation-sensing game input devices that may be used consistent with the principles herein. The principles described herein may be applied in any game input device whose orientation has some impact on a game state. Since the types of games are limitless, and subject only to the limits of the human imagination, the types of orientation-sensing game input devices that may be altered to incorporate the features described herein are likewise limitless.
A specific concrete example of an orientation-sensing game input device will now be described with respect to
Referring to
An orientation sensor 411 (such as a tri-axial accelerometer) is embedded within the multi-sided body 401 and is structured to, when active, output a spatial orientation signal representing a spatial orientation of the game input device. A transmission mechanism 412 is also embedded within the multi-sided body 401 and communicatively coupled to the orientation sensor 411 so as to receive the spatial orientation signal and transmit spatial orientation information present in the spatial orientation signal to locations external to the multi-sided body. In one embodiment, the orientation sensor 411 and the transmission mechanism 412 are a single integrated BLUETOOTH®—enabled tri-axial accelerometer.
An electronic power source 413 is also embedded within the multi-sided body 401 and is coupled to the orientation sensor 411 and the transmission mechanism 412 so as to electronically power the orientation sensor 411 and the transmission mechanism 412. In one embodiment, the electronic power source 413 includes a rechargeable battery. There may be a plurality of electrical contacts 414A and 414B accessible from the outside of the multi-sided body 401, each establishing a corresponding electrical path 415A and 415B from the outside of the multi-sided body to the rechargeable battery. The electronic power source 413 may also be an insertable and removable battery and may even perhaps be disposable. In one embodiment, the electronic power source 413 is a non-rechargeable disposable battery that is not removable from the die. In that case, the entire die may be considered disposable, or at least converts to a normal non-transmitting die after the battery fails. In the case of a non-rechargeable battery, there would be no need for the electrical paths 415A and 415B. In the case of a removable battery, the die may have a cavity that fits the battery, and that is accessed by removing a cover that snaps into place.
A status indicator 416 may also be included and may be visible from external to the multi-sided body 401. For instance, the status indicator 416 may be on the surface of the die 400. If the multi-sided body 401 is composed of translucent material, the status indicator 416 may also be embedded within the multi-sided body 401 itself If necessary or desired, a counterweight 417 may also be positioned rigidly within the multi-sided body 401 so as to further center a center of gravity of the wireless die.
Each player, or perhaps each player team, may have an associated player console, each associated with the corresponding player or team. The player console 500 includes a private display area 501 and game logic 502 capable of rendering at least a portion a private portion of game state 503 associated with the player (or team). The player or team may use an input mechanism 504 to enter control input into the player console. A transmission mechanism illustrated in the form of a transceiver 505 transmits that control information to the flat multi-touch functional display 101, where the control information is used to alter the game state at the central display. If the player console 500 is a wireless player console, the transceiver 505 would be a wireless transceiver. The control information may also be used to control the game state at the player console, as well as to update the private display area at the player console. The transceiver 505 may also wirelessly receive information from the central display 101. The transceiver 505 may even receive wireless information transmitted by surrounding orientation-sensing devices so that the game logic 502 may update the game state 503, and potentially also update what is displayed in the private display area 501. The transceiver 505 is capable of receiving multiple orientation-sensor signals at the same time. Thus, with a single roll of the dice, the game state at the central display as well as one or more player consoles may be updated.
In one embodiment, at least one of the player consoles is different from the remaining player consoles.
The distributed game system described herein thus allows circle games to be played electronically. Traditionally, it is often teenagers that lose interest in circle games. The wireless distributed game system appeals to a teenager's keenness for a sense of technology, which has the potential to pull teenagers back into the family circle games, potentially enriching family relationships and maintaining important lines of communication.
In one embodiment, the central display 101 has an Internet connection (represented generally by the ellipses 127 in
Accordingly, a flexible game system has just been described. Having described the embodiments in some detail, as a side-note, the various operations and structures described herein may, but need, not be implemented by way of a physical computing system. Accordingly, to conclude this description, an example computing system will be described with respect to
As illustrated in
In the description above, embodiments are described with reference to acts o r that are performed by one or more computing systems. If such acts are implemented in software, one or more processors of the associated computing system that performs the act direct the operation of the computing system in response to having executed computer-executable instructions. An example of such an operation involves the manipulation of data. The computer-executable instructions (and the manipulated data) may be stored in the memory 804 of the computing system 800.
Embodiments within the scope of the present invention also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise physical storage and/or memory media such as RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other physcial medium which can be used to carry or store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.
Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described herein. Rather, the specific features and acts described herein are disclosed as example forms of implementing the claims.
The components of the computing system 800 may, for example, be used to provide functionality to game logic 112 of
Each receptacle 910 includes electrical contacts 911A and 911B, although they are only labeled in
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.