1. Field of Invention
The invention is directed to bottom hole assemblies having a mill or cutting tool rotatably driven by a hydraulically actuated motor in the bottom hole assembly to abrade or cut away an object disposed in oil and gas wells, and in particular, to bottom hole assemblies disposed on wireline that permit axial movement of a portion of the bottom hole assembly below an anchor point within the well to facilitate engagement of the mill or cutting tool with the object.
2. Description of Art
In the drilling, completion, and workover of oil and gas wells, it is common to perform work downhole in the wellbore with a tool that has some sort of cutting profile interfacing with a downhole structure. Examples would be milling a downhole metal object with a milling tool or cutting through a tubular with a cutting or milling tool. Such milling may be necessary to remove an object or “fish” disposed within the wellbore. In general, milling operations are performed using a mill tool attached to threaded pipe or coiled tubing through which a fluid such as drilling mud is pumped. The fluid causes a hydraulically actuated motor disposed above the mill tool to rotate which, in turn, causes the mill tool to rotate and the object to be abraded or cut away. To facilitate cutting, a hydraulically actuated anchor can be included in the threaded pipe or coiled tubing string to stabilize the string within the well.
Broadly, the bottom hole assemblies disclosed herein are run-in to a wellbore on a wireline as opposed to threaded pipe or coiled tubing. Disposed within the bottom hole assemblies is an axial compression device that permits axial movement of a lower portion of the bottom hole assemblies disposed below an anchor or packer. The lowermost ends of the bottom hole assemblies include a cutting or milling tool such as a mill or shoe that is rotated to cut away or abrade an object disposed in the wellbore. The axial movement of the lower portion of the bottom hole assemblies facilitates cutting the object disposed within the wellbore by providing an increase in downward force on the object to facilitate maintaining engagement of the mill with the object.
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
Referring now to
In the embodiment of
As shown in the embodiment of
Swivel 36 is disposed below fishing neck 34 to reduce any residual torque through wireline 32 back to the surface of the well. Disposed below swivel 36 is wireline accelerator 38 and wireline jar tool 40, both of which facilitate retrieval of bottom hole assembly 30 during fishing operations in the event bottom hole assembly 30 becomes stuck within production tubing 18. Below wireline jar tool 40 is drain sub 42 having drain sub port 44 which allows fluid flow from production tubing 18 to the inner diameter or bore 43 of bottom hole assembly 30. Below drain sub 42 is packer 46 which can be a pack-off or mechanical or electrical set packer. Packer 46 forces the fluid flow from production tubing 18 into drain sub 42.
Below packer 46 is hydraulic actuated anchor 47 (shown in the run-in position in
Below screen sub 50 is axial compression device 60 which allows for axial movement of a portion of bottom hole assembly 30 within production tubing 18 below packer 46 and/or anchor 47. Axial compression device 60 has an expanded position (
Disposed in bottom hole assembly 30 below axial compression device 60 is hydraulic mud motor 62 which rotates mill or shoe 70 and, below motor 62 is a junk basket such as venturi jet basket 64 having ports 66. As discussed in greater detail below, venturi jet basket 64 captures any debris created by mill 70 during cutting or abrading operations by mill 70.
In operation of the embodiment of
After being disposed within production tubing 18 as shown in
Ports 19 are disposed below the location of packer 46 and anchor 47 so that pumping of fluid down production tubing 18 can be continued until object 80 is cut away. Thus, ports 19 facilitate circulation of fluid downward through bottom hole assembly 30. Ports 19 can be disposed in production tubing 18 through any device or method known in the art. For example, a perforation gun can be used to create ports 19.
After object 80 is removed from within production tubing 18, axial compression device 60 will return to its extended position (
Referring now to
In the embodiment of
Operatively associated with tractor 155 is wireline jar tool or slack joint 161 which is a mechanical two part tool that has free axial travel caused by activation of tractor 155.
Below tractor 155 is third drain sub 162 having port 163 to allow fluid flow from production tubing 18 to lower bore 159 of bottom hole assembly and, thus, into motor 164 and venturi jet basket 165 having port 166.
Flow of fluid from production tubing to inside motor 164 and venturi jet basket 165 is facilitated by packer 167 disposed below third drain sub 162. Packer 167 can be actuated mechanically in a similar manner as packer 146. Packer 167 is in axial sliding engagement with the inner wall of production tubing 18 so that axial compression and extension of slack joint 161 by actuation of tractor 155 causes packer 167 to slide axially within production tubing 18. Thus, packer 167 directs fluid flow into port 163 of third drain sub 162 and functions as a piston within production tubing 18 to facilitate movement of the lower portion of bottom hole assembly 130 below slack joint 161.
Like the embodiment of
In operation of the embodiment of
After being disposed within production tubing 18 and engaged with object 180, packers 146, 167 are actuated to seal or isolate portions of production tubing 18. Actuation of packers 146, 167 can be through mechanical means. Thereafter, a fluid such as mud is pumped down production tubing 18 as indicated by the arrows shown in
Thereafter, the fluid continues to build up pressure within the inner diameter or upper bore of bottom hole assembly 130 until rupture disk 149 fails or ruptures. As a result of rupture disk 149 failing, fluid flows down through the upper bore of bottom hole assembly 130 as indicated by the arrows shown in
The downward flowing fluid then enters a lower bore of bottom hole assembly 130 by flowing through port 163 of third drain sub 162. Flow of fluid into port 163 is facilitated by second packer 167. The fluid then flows downward through motor 164 causing motor 164 to rotate which, in turn, causes mill 170 to rotate to cut or abrade object 180. The fluid exits bottom hole assembly 130 through port 166 disposed in venturi jet basket 165. Some of the fluid exiting port 166 picks up debris and carries the debris to the top of venturi jet basket 165 so that it can be captured by a debris catcher assembly below the venturi jet basket 165. Other portions of the fluid continue to flow downward, past mill 170 and out of ports 19 disposed within production tubing 18. Ports 19 are disposed below the location of packers 146, 167, and anchor 147 so that pumping of fluid down production tubing 18 can be continued until object 180 is cut away. Thus, ports 19 facilitate circulation of fluid downward through bottom hole assembly 130. As mentioned above, ports 19 can be formed through any device or method known in the art, including but not limited to, a perforation gun.
After object 180 is removed from within production tubing 18, bottom hole assembly 130 can be retrieved from production tubing 18 by retracting wireline 132. If desired, electric tractor 155 can be activated to return to its initial or run-in position before bottom hole assembly is retrieved.
It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. For example, the term “wireline” includes electric line, braided line, slickline, and the like. Moreover, the bottom hole assemblies disclosed with reference to the Figures are not limited to the components identified therein. To the contrary, one or more additional components can be included in the bottom hole assemblies such as a perforation gun or other device for creating ports 19 in the production tubing. Moreover, in some embodiments, the anchor is not required as one or more packers can provide the same functions as the anchor. Additionally, it is to be understood that the term “wellbore” as used herein includes open-hole, cased, or any other type of wellbores. In addition, the use of the term “well” is to be understood to have the same meaning as “wellbore.” Moreover, in all of the embodiments discussed herein, upward, toward the surface of the well (not shown), is toward the top of Figures, and downward or downhole (the direction going away from the surface of the well) is toward the bottom of the Figures. However, it is to be understood that the bottom hole assemblies disclosed herein may have their positions rotated in either direction any number of degrees. Accordingly, the bottom hole assemblies can be used in any number of orientations easily determinable and adaptable to persons of ordinary skill in the art. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2880804 | Fredd | Apr 1959 | A |
2942666 | True et al. | Jun 1960 | A |
3032116 | Barry | May 1962 | A |
3057406 | Patterson et al. | Oct 1962 | A |
3083774 | Peters et al. | Apr 1963 | A |
4646856 | Dismukes | Mar 1987 | A |
5331607 | Roessler | Jul 1994 | A |
5404946 | Hess | Apr 1995 | A |
6276452 | Davis et al. | Aug 2001 | B1 |
6341654 | Wilson et al. | Jan 2002 | B1 |
6345669 | Buyers et al. | Feb 2002 | B1 |
6752205 | Kutac et al. | Jun 2004 | B2 |
6886631 | Wilson et al. | May 2005 | B2 |
6915845 | Leising et al. | Jul 2005 | B2 |
8403048 | Laird et al. | Mar 2013 | B2 |
20030221830 | Leising et al. | Dec 2003 | A1 |
20040020644 | Wilson et al. | Feb 2004 | A1 |
20050126791 | Barbee et al. | Jun 2005 | A1 |
20060081380 | Hoffman et al. | Apr 2006 | A1 |
20090114389 | Dennistoun et al. | May 2009 | A1 |
20100236781 | Mytopher et al. | Sep 2010 | A1 |
20100258296 | Lynde et al. | Oct 2010 | A1 |
20110297379 | Laird et al. | Dec 2011 | A1 |
20120145394 | Jensen | Jun 2012 | A1 |
Entry |
---|
Technical Design's Stroking Pump, Technical Design, p. 1. |
TAM SlikPak flyer, TAM International, pp. 1-4. |
TAM SlikPak flyer, TAM International, pp. 1-2. |
Number | Date | Country | |
---|---|---|---|
20140360724 A1 | Dec 2014 | US |