Field of the Invention
The present invention relates to a wiring harness routing structure.
Description of Related Art
In the related art, in the manufacturing of a vehicle wiring harness, first, fork-shaped jigs are provided along a routing path on a routing plate. Subsequently, electrical cables to which connectors, terminals, and the like are connected are routed along the routing path using the jigs. Subsequently, exterior members such as a protector and a corrugated tube are attached to the routed electrical cables. Subsequently, the exterior members and the electrical cables are fixed together with adhesive tape. After being tested for conductivity, a wiring harness manufactured in this manner is attached to a routing target in a vehicle. Patent Literature 1 (JP-A-2003-45255) discloses this type of technology.
In contrast, a beam (also referred to as a reinforcement), which is a reinforcement member to which a wiring harness is attached, is disposed in a deep portion of an instrument panel of a vehicle. In order to attach the wiring harness to the beam, for example, clips are mounted as a fixation member to an exterior member of the wiring harness, and are fixed thereto with adhesive tape or the like, and the beam is provided with clip holes with which the clips are respectively engaged. If the clips integrated with the wiring harness are respectively engaged with the clip holes of the beam, the wiring harness is fixed to the beam.
According to a related art, in the manufacturing of a wiring harness, since fork-shaped jigs are provided on a jig plate, and electrical cables are routed in a state of being hung around the jigs, there is a problem in that the manufacturing of a wiring harness requires a significant amount of labor and time.
Since the manufactured wiring harness has flexibility, there is a problem in that handling during transportation is not easy.
In order to attach a wiring harness to a beam, a fixation member such as a clip is separately required, and an operation of mounting and fixing the fixation member to the wiring harness is also required.
Accordingly, there is a problem in that an operation from when a wiring harness is manufactured until the wiring harness is routed at a routing location of an attachment target includes a large number of steps, and an attachment operation is complex.
One or more embodiments provide a wiring harness routing structure in which the manufacturing, handling, and routing of a wiring harness are easy.
In an aspect (1), one or more embodiments provide a wiring harness routing structure including a wiring harness routing member configured to be attached to a vehicle body and a protector that accommodates and holds a wiring harness. The protector has a recess shape in which the protector is open in one direction in a sectional view. At least one of the wiring harness routing member and the protector includes a fixing mechanism that fixes the protector to the wiring harness routing member. The protector and the wiring harness routing member are integrated via the fixing mechanism.
In an aspect (2), a contact surface of the protector which is in contact with the wiring harness routing member has a shape conforming to the shape of a contact surface of the wiring harness routing member.
In an aspect (3), the fixing mechanism includes a bracket that is provided in the wiring harness routing member, and a clip that is formed integrally with the protector and includes a hole portion that is engaged with the bracket.
In an aspect (4), the wiring harness includes a joint connector with a rectification function, and the protector includes a joint connector accommodation portion.
In an aspect (5), the protector includes a main cable accommodation portion that accommodates a main cable of the wiring harness, and a branch cable accommodation portion that accommodates a branch cable of the wiring harness.
According to the aspect (1), the protector has a recess shape in which the protector is open in one direction in a sectional view, and thus, the protector is capable of accommodating the wiring harness in a state where the protector is mounted with an open portion of the protector facing upward. Accordingly, it is possible to easily route the wiring harness inside the protector without using the fork-shaped jigs used in the related art.
According to the aspect (1), the protector and the wiring harness routing member are integrated via the fixing mechanism, and thus, it is easy to handle the wiring harness. At a site where wiring harnesses are routed in a vehicle, it is possible to easily route the wiring harness by simply attaching the routing member, with which the wiring harness is integrated via the protector, to the vehicle.
According to the aspect (2), the contact surface of the protector which is in contact with the wiring harness routing member has a shape conforming to the shape of the contact surface of the wiring harness routing member, and the protector is in close contact with a contact member of the wiring harness, and thus, the protector is integrated with the wiring harness routing member without the occurrence of rattling.
According to the aspect (3), the fixing mechanism with a simple configuration can be configured of the bracket provided in the wiring harness routing member, and the clip formed integrally with the protector.
According to the aspect (4), even if the wiring harness includes the joint connector with a rectification function, since the joint connector is accommodated in the joint connector accommodation portion of the protector, the joint connector is also integrated with the protector together with wiring harness. Accordingly, the joint connector does not swing around during handling, and good operability is obtained.
According to the aspect (5), even if the wiring harness includes the main cable and the branch cable, it is possible to route the wiring harness inside the protector without using the fork-shaped jigs used in the related art.
According to one or more embodiments, it is possible to provide a wiring harness routing structure in which the manufacturing, handling, and routing of a wiring harness are easy.
First embodiment is described with reference to the accompanying drawings.
As illustrated in
The wiring harness 130 includes an electrical cable (hereinafter, also simply referred to as a main cable) which is a main cable 131, and electrical cables (hereinafter, also simply referred to as branch cables) which are multiple branch cables 132 branched from the main cable 131. First ends of the main cable 131 and the branch cables 132 of the wiring harness 130 are connected to a joint connector 133 with a rectification function via connectors (not illustrated). The joint connector 133 has a substantially rectangular parallelepiped shape. The first ends of the main cable 131 and the branch cables 132 are connected to only one surface (connection surface) 133a of the joint connector 133. The wiring harness 130 includes connectors 134 at second ends of the main cable 131 and the branch cables 132, and the connectors 134 are respectively connected to various devices in the vehicle. The main cable 131 and the branch cables 132 are connected together in a predetermined state inside the joint connector 133.
The protector 140 is made of synthetic resin. As illustrated in
The joint connector accommodation portion 143 preferably fixes the joint connector 133 in a weak press-fit state. In addition, preferably, the main cable accommodation portion 141 and the branch cable accommodation portions 142 respectively fix the main cable 131 and the branch cables 132 in a weak press-fit state. In this configuration, it is possible to accommodate and hold the joint connector 133, the main cable 131, and the branch cables 132 in the protector 140 without using separate components as holding tools.
The main cable accommodation portion 141 of the protector 140 is fixed to the beam 120. For this reason, the main cable accommodation portion 141 of the protector 140 is formed into a longitudinal shape conforming to the longitudinal shape of the beam 120. A bottom surface 140a of the protector 140 is substantially flat, and can be stably mounted on a routing plate. The protector 140 has such rigidity that the protector 140 is not bent when being carried in a state where the protector 140 accommodates the wiring harness 130 and the joint connector 133.
Clips 144 are molded integrally with the protector 140 so as to attach the protector 140 to the beam 120. In the embodiment, three clips 144 are formed integrally with the protector.
Flanges 122 are respectively provided at both ends of a hollow cylindrical shaft portion 121 of the beam 120 so as to fix the beam 120 to a vehicle body. A plate-shaped bracket 123 is provided in the beam 120 at a position corresponding to the clip 144 of the protector 140. A proximal portion of the bracket 123 is fixed to the shaft portion 121 with a screw 124. An engagement hole 123a is formed on a distal side of the bracket 123 so as to fix the clip.
The beam 120 is a rigid body. In the embodiment, the beam 120 is made of steel, and if required rigidity can be obtained, the beam 120 may be made of resin or a ceramic.
A slit 145 (refer to
In the embodiment, the fixing mechanism of the present invention is configured of the clips 144 of the protector 140 and the brackets 123 of the beam 120.
The protector 140 accommodating the wiring harness 130 and the joint connector 133 is mounted on the beam 120 such that the brackets 123 of the beam 120 are respectively inserted into the slits 145 of the clips 144. If the brackets 123 of the beam 120 are suitably respectively inserted into the slits 145 of the clips 144, the claw portions 146a of the lock arms 146 of the clips 144 are respectively engaged with the edge portions 123b of the engagement holes 123a of the brackets 123, and the clips 144 and the brackets 123 are unseparably fixed together. Accordingly, the protector 140 accommodating the wiring harness 130 and the joint connector 133 is reliably fixed to the beam 120. As illustrated in
Hereinafter, a method of assembling the wiring harness routing structure 110 of the embodiment will be described.
First of all, an operator connects the first ends of the main cable 131 and the branch cables 132 to the joint connector 133, and respectively connects the second ends of the main cable 131 and the branch cables 132 to the connectors 134 for various devices.
Subsequently, the operator mounts the protector 140 on a routing plate (not illustrated) with an opening portion of the protector 140 facing upward. Subsequently, the joint connector 133 is accommodated in the joint connector accommodation portion 143, and the main cable 131 is accommodated in the main cable accommodation portion 141. Subsequently, the branch cables 132 are branched from the main cable 131 via the branch cable accommodation portions 142, and the branch cables 132 are accommodated in the branch cable accommodation portions 142. In this manner, the wiring harness 130 held and branched by the protector 140 is manufactured. The joint connector 133 is accommodated such that the connection surface 133a, which is connected to the main cable 131 and the branch cables 132, faces a main cable accommodation portion 141 side. In this setting, an excessive load is not applied to the main cable 131 and the branch cables 132 routed from the joint connector 133.
Subsequently, the operator attaches the protector 140, which has accommodated the wiring harness 130, to the beam 120. Specifically, the operator assembles the protector 140 to the beam 120 such that the brackets 123 of the beam 120 are respectively inserted into the slits 145 of the clips 144 of the protector 140. If the brackets 123 are respectively inserted a suitable distance into the slits 145 of the clips 144, the claw portions 146a of the lock arms 146 of the clips 144 are respectively engaged with into the engagement holes 123a of the brackets 123, and the clips 144 and the brackets 123 are completely fixed together. Accordingly, the protector 140 accommodating the wiring harness 130 is integrally fixed to the beam 120, and the wiring harness routing structure 110 is completed.
After being tested for conductivity, a completed wiring harness routing structure 110 is transported to a location where the completed wiring harness routing structure 110 is attached to a vehicle, and is attached to a deep portion of an instrument panel of the vehicle. The attached wiring harness routing structure 110 is electrically connected to various devices via the connectors 134 of end portions of the main cable 131 and the branch cables 132.
In the wiring harness routing structure 110 of the embodiment, the protector 140 has a recess shape in which the protector 140 is open in one direction in a sectional view, and thus, the protector 140 is capable of accommodating the wiring harness 130 in a state where the protector 140 is mounted with an open portion of the protector 140 facing upward. Accordingly, it is possible to easily route the wiring harness 130 inside the protector 140 without using fork-shaped jigs used in the related art.
In the wiring harness routing structure 110 of the embodiment, the protector 140 and the beam 120 are integrated via the clips 144 and the brackets 123, and thus, it is easy to handle the wiring harness 130. At a site where wiring harnesses are routed in the vehicle, it is possible to easily route the wiring harness 130 merely by attaching the beam 120, with which the wiring harness 130 is integrated via the protector 140, to the vehicle.
As a result, according to the embodiment, it is possible to provide the wiring harness routing structure 110 in which the manufacturing, handling, and routing of the wiring harness 130 are easy.
The present invention is not limited to the aforementioned embodiment, and the embodiment can be suitably modified or improved. Insofar as an object of the present invention can be achieved, the material, shape, dimensions, and disposition location of each configuration element, and the number of configuration elements may be arbitrarily determined, and are not specifically limited.
The protector 140 of the embodiment is an integrally molded object having a substantially T shape. Alternatively, as illustrated in
In the embodiment, the fixing mechanism for fixing the protector 140 to the beam 120 is configured to use the plate-shaped brackets 123. Alternatively, round bar-shaped or square bar-shaped brackets may be used, and the slits 145 of the clips 144 may be holes with which the round bar-shaped or square bar-shaped brackets are respectively engaged.
The fixing mechanism may be provided in only one of the beam 120 and the protector 140.
A wiring harness routing member of the embodiment is the beam 120 that is disposed in a deep portion of an instrument panel. Alternatively, a wiring harness routing member may be a member through which a wiring harness is routed in a door panel, a floor panel, a ceiling panel, or the like.
The aforementioned characteristics of the wiring harness routing structure according to the embodiment of the present invention are briefly summarized and listed in [1] to [5].
[1] A wiring harness routing structure (110) includes a wiring harness routing member (beam 120) configured to be attached to a vehicle body, and a protector (140) that accommodates and holds a wiring harness (130). The protector (140) has a recess shape in which the protector (140) is opened in one direction in a sectional view. At least one of the wiring harness routing member (120) and the protector (140) includes a fixing mechanism (bracket 123 and clip 144) that fixes the protector (140) to the wiring harness routing member (120). The protector (140) and the wiring harness routing member (120) are configured to be integrated via the fixing mechanism (bracket 123 and clip 144).
[2] In the wiring harness routing structure (110) described in [1], the protector (140) includes a contact surface (140b) which is configured to be in contact with the wiring harness routing member (120). The contact surface (140b) of the protector (140) has a shape conforming to a shape of a contact surface of the wiring harness routing member (120).
[3] In the wiring harness routing structure (110) described in [1] or [2], the fixing mechanism (123 and 144) includes a bracket (123) provided with the wiring harness routing member (120), and a clip (144) formed integrally with the protector (140) and including a hole portion (slit 145) that is engaged with the bracket (123).
[4] In the wiring harness routing structure (110) described in any one of [1] to [3], the wiring harness (130) includes a joint connector (133) with a rectification function, and the protector (140) includes a joint connector accommodation portion (143).
[5] In the wiring harness routing structure (110) described in any one of [1] to [4], the protector (140) includes a main cable accommodation portion (141) that accommodates a main cable (131) of the wiring harness (130), and a branch cable accommodation portion (142) that accommodates a branch cable (132) of the wiring harness (130).
The wiring harness routing structure of the first embodiment can be applied to wiring harnesses to be described below. Hereinafter, a wiring harness of a second embodiment will be described.
Field of the Invention
The second embodiment relates to a wiring harness that is formed of multiple sub-harnesses.
Description of Related Art
Patent Literature 2 and Patent Literature 3 disclose the related art relating to a wiring harness used in a vehicle. As illustrated in FIG. 1 of Patent Literature 2, typically, such a wiring harness is an aggregate of bundled multiple sub-harnesses which are respectively prepared for systems. Sub-harnesses to be bundled together differ according to the required specifications of the wiring harness.
Specifically, the required electrical components of a vehicle differ according to the type, grade, or required options of the vehicle. For this reason, circuit cables of an electricity supply cable, a ground cable, a signal cable, and a communication cable, which are connected to each electrical component, differ. A sub-harness represents a set of circuit cables for driving an electrical system which are bundled together according to electrical systems so as to cope with such a difference between the circuit cables. One wiring harness is formed by selecting sub-harnesses according to the required specifications corresponding to a vehicle type, a grade, or an option, and by bundling together the sub-harnesses.
In
For example, the wiring harness WH can be formed as an assembly in which three sub-harnesses, that is, the sub-harness A2, the sub-harness B2, and the sub-harness C illustrated in
In the example illustrated in
(1) The wiring harness WH is formed of a combination of three sub-harnesses, that is, the sub-harness A1, the sub-harness B1, and the sub-harness C.
(2) The wiring harness WH is formed of a combination of three sub-harnesses, that is, the sub-harness A2, the sub-harness B1, and the sub-harness C.
(3) The wiring harness WH is formed of a combination of three sub-harnesses, that is, the sub-harness A1, the sub-harness B2, and the sub-harness C.
(4) The wiring harness WH is formed of a combination of two sub-harnesses, that is, the sub-harness A1 and the sub-harness B1.
(5) The wiring harness WH is formed of a combination of two sub-harnesses, that is, the sub-harness A2 and the sub-harness B1.
(6) The wiring harness WH is formed of a combination of two sub-harnesses, that is, the sub-harness A1 and the sub-harness B2.
As such, a wiring harness corresponds to specifications which differ according to a vehicle type, a grade, or an option. As illustrated in FIG. 1 of Patent Literature 2, such a wiring harness is routed in a reinforcement. There is a wiring harness referred to as an instrument panel wiring harness.
The aforementioned current wiring harness or sub-harness includes standard circuits (illustrated by solid lines in
More sub-harnesses having different part numbers have to be prepared to the extent that the number of circuits selectively added to a sub-harness increases. Since the sub-harnesses A1 and A2 of the sub-harness group SHG illustrated in
In a case where a sub-harness is formed of a combination of standard circuit cables and selective circuit cables, the number of sub-harnesses which have to be managed tends to increase as the number of electrical components increases, or the number of vehicle types, the number of grades, or the number of options increases.
The second embodiment of the present invention is made in light of the aforementioned problem, and an object of the present invention is to provide a wiring harness in which it is possible to prevent an increase in the number of part numbers of sub-harnesses which have to be prepared in advance.
In order to achieve the aforementioned object, a wiring harness according to the second embodiment has the following characteristics in (1) to (5).
In an aspect (1), one or more embodiments provide a wiring harness including a first sub-harness including first circuit cables, a second sub-harness including second circuit cables, and a circuit substrate on which a circuit pattern, which can be connected to the first sub-harness and the second sub-harness, is formed. When the first sub-harness and the second sub-harness are connected to the circuit substrate, the first circuit cables and the second circuit cables are conductively connected together via the circuit pattern.
In an aspect (2), the circuit substrate includes multiple connection portions which can be attachably and detachably connected to end portions of multiple sub-harnesses including the first sub-harness and the second sub-harness.
In an aspect (3), the circuit pattern is formed on the circuit substrate so as to correspond to a difference between the types of multiple sub-harnesses including the first sub-harness and the second sub-harness which are connected according to required specifications.
In an aspect (4), the circuit substrate is a printed substrate that includes an electrical insulating substrate and a foil-shaped conductive pattern sticking to at least one surface of the substrate.
In an aspect (5), the circuit substrate is a multi-layer printed substrate which includes multiple electrical insulating layers that are disposed while being superimposed on top of each other in a thickness direction, and in which the multiple foil-shaped patterns electrically separated from each other are respectively formed at the boundaries and on front surfaces of the multiple electrical insulating layers.
According to the aspect (1), it is possible to control the existence and non-existence of connection between the first circuit cables and the second circuit cables, and the connection states of branch cables of the circuit cables via the circuit pattern inside the circuit substrate. Accordingly, even if various types of connection states are required in the entirety of the wiring harness, it is possible to simplify the configuration of each of the first sub-harness and the second sub-harness, and it is possible to reduce the number of types of sub-harnesses which have to be prepared in advance. In a case where a wiring harness is formed to connect a long distance path in its entirety, it is possible to use the first sub-harness and the second sub-harness of relatively short lengths.
According to the aspect (2), it is possible to easily realize a wiring harness with a configuration suitable for desired specifications merely by mounting multiple selected sub-harnesses on the circuit substrate via the connection portions.
According to the aspect (3), it is possible to realize a wiring harness suitable for various specifications via the configuration of the circuit pattern on the circuit substrate and the configurations of the first sub-harness and the second sub-harness which are selectively connected.
According to the aspect (4), it is possible to easily realize the circuit pattern that connects together the first circuit cables of the first sub-harness and the second circuit cables of the second sub-harness.
According to the aspect (5), insulating states of multiple independent circuit cables can be maintained at locations where the circuit cables intersect each other. As a result, it is possible to form a circuit pattern with a complex configuration, and it is possible to cope with an increase in the number of electrical cables of a wiring harness.
According to the wiring harness of the second embodiment, it is possible to prevent an increase in the number of part numbers of sub-harnesses which have to be prepared in advance. That is, since it is possible to switch the existence and non-existence of connection between the first circuit cables and the second circuit cables, and the connection states of branch cables of the circuit cables via the circuit pattern inside the circuit substrate, even if various types of connection states are required in the entirety of the wiring harness, it is possible to simplify the configuration of each of the first sub-harness and the second sub-harness. In a case where a wiring harness is formed to connect a long distance path in its entirety, it is possible to use the first sub-harness and the second sub-harness of relatively short lengths.
According to the wiring harness, it is possible to realize a wiring harness suitable for desired specifications by selecting a suitable circuit substrate from the first circuit substrate and the second circuit substrate, and by combining together the circuit substrate and at least two of the first sub-harness, the second sub-harness, and a third sub-harness. That is, it is possible to easily cope with requirements according to specifications via replacement of the circuit substrate.
One or more embodiments described below is read through with the accompanying drawings, details become further apparent.
Hereinafter, wiring harnesses of the second embodiment will be specifically described with reference to the drawings.
The wiring harness 100 illustrated in
Specifically, a connector 22 connected to a first end of the standard sub-harness 20 prepared in advance is connected to a substrate side connector 12a of the connection unit 10. A connector 31 connected to a first end of the standard sub-harness 30 prepared in advance is connected to a substrate side connector 12b of the connection unit 10. A connector 41 connected to a first end of the standard sub-harness 40 prepared in advance is connected to a substrate side connector 12c of the connection unit 10. A connector 52 of the optional sub-harness 50 is connected to a substrate side connector 12d of the connection unit 10. A connector 62 of the optional sub-harness 60 is connected to a substrate side connector 12e of the connection unit 10. A connector 72 of the optional sub-harness 70 is connected to a substrate side connector 12f of the connection unit 10. A connector 81 of the optional sub-harness 80 is connected to a substrate side connector 12g of the connection unit 10.
That is, all end portions of the three standard sub-harnesses 20 to 40 and the four optional sub-harnesses 50 to 80 are physically connected to the connection unit 10. Accordingly, electrical cables of the standard sub-harnesses 20 to 40 and the optional sub-harnesses 50 to 80 can be electrically connected to each other via a circuit pattern (to be described later) provided in the connection unit 10.
The wiring harness 100 illustrated in
<Description of Each Configuration Element>
<Description of Connection Unit 10>
The connection unit 10 illustrated in
The circuit pattern 11a is formed of a foil-shaped conductive pattern such as a copper foil sticking to a front surface or a rear surface of the electrical insulating substrate 11b, or boundary surfaces between layers in a thickness direction. As illustrated by dotted lines in
The connection unit 10 illustrated in
In order to protect the connection unit 10, or to prevent electrical contact between the circuit pattern 11a and peripheral circuits, it is also considered that the connection unit 10 is configured to be accommodated in a suitable housing. The connection unit 10 may be configured such that the periphery of the connection unit 10 is covered with electrical insulating resin or the like.
<Description of Standard Sub-Harness>
The standard sub-harness 20 illustrated in
Each of the electrical cables 23a, 23b, and 23c is configured such that the periphery of a conductor such as a stranded wire is coated with electrical insulating resin or the like. The thickness of the conductor or the thickness and material of the coating of each of the electrical cables 23a, 23b, and 23c is suitably determined according to a current value or a voltage value which changes according to specifications. In the example illustrated in
The standard sub-harness 40 illustrated in
Each of the six electrical cables of the electrical cable group 44 is used as an electricity supply cable, a ground cable, a signal cable, a communication cable, or the like.
The standard sub-harness 30 illustrated in
In the standard sub-harness 30 illustrated in
<Description of Optional Sub-Harness>
The optional sub-harness 50 illustrated in
The optional sub-harness 60 illustrated in
The optional sub-harness 70 illustrated in
The optional sub-harness 80 illustrated in
Basically, there is one type of each of the optional sub-harnesses 50, 60, 70, and 80; however, as necessary, two or more types of each of the optional sub-harnesses 50, 60, 70, and 80 may be prepared.
<Advantages of Wiring Harness 100 of First Example of Second Embodiment>
Each of various sub-harnesses of a wiring harness in the related art includes various standard circuit cables which are common to all vehicles, and various optional circuit cables which are selectively added according to a vehicle type, a grade, or the existence and non-existence of various options. For this reason, the number of part numbers of sub-harnesses which have to be prepared exponentially increases to the extent that the number of selective circuit cables provided in a wiring harness increases. In contrast, in the wiring harness 100 illustrated in
In the wiring harness 100 illustrated in
Since the shapes of the sub-harnesses become simplified which include a small number of branch cables, it is possible to increase similarity between the shapes of multiple sub-harnesses. This means that the sub-harnesses have high versatilities. As a result, a sub-harness can be used in common, for example, a sub-harness can be used in a wiring harness at multiple locations, or a sub-harness used in a wiring harness can be used in a separate wiring harness. This means that a common sub-harness can be used in various wiring harnesses.
The reason a sub-harness can be used in common as described above is that the circuit substrate 11 serves to connect together circuit cables. The circuit substrate 11 has not only a so-called joint function for connecting together circuit cables, but also a rectification function for adjusting a connection relationship in which multiple circuit cables which have to be connected together are selected. If circuit substrates having different circuit patterns are prepared, it is possible to arbitrarily switch a connection relationship between circuit cables.
This means that the required specifications of a wiring harness is switched by a circuit pattern of a circuit substrate. A sub-harness can be used in common, and since specification change functions are consolidated into a circuit substrate, a wiring harness can be used in common in various grades and options of vehicles, and a wiring harness can be used in common in various vehicle types. A wiring harness in the related art is designed for each vehicle type, and in contrast, the designing of the wiring harness 100 illustrated in
Hereinafter, advantages of the wiring harness 100 in terms of operation efficiency in the manufacturing of a wiring harness will be ascertained. Each of the multiple standard sub-harnesses 20 to 40 of the wiring harness 100 is realized by connecting together two electrical cables, one of which forms the sub-harness (A1, A2, or B2 in
A wiring harness 100A illustrated in
The connection unit 10A is selectively used to form the wiring harness 100A, and the connection unit 10B is selectively used to form the wiring harness 100B. The connection unit 10A illustrated in
Specifically, a connector 22 connected to a first end of the standard sub-harness 20 prepared in advance is connected to a substrate side connector 12a of the connection unit 10A or 10B. A connector 31 connected to a first end of the standard sub-harness 30 prepared in advance is connected to a substrate side connector 12b of the connection unit 10A or 10B. A connector 41 connected to a first end of the standard sub-harness 40 prepared in advance is connected to a substrate side connector 12c of the connection unit 10A or 10B. A connector 52 of the optional sub-harness 50 is connected to a substrate side connector 12d of the connection unit 10B. A connector 62 of the optional sub-harness 60 is connected to a substrate side connector 12e of the connection unit 10. A connector of the optional sub-harness 70 is connected to a substrate side connector 12f of the connection unit 10. A connector 81 of the optional sub-harness 80 is connected to a substrate side connector 12g of the connection unit 10.
That is, all end portions of the three standard sub-harnesses 20 to 40 of the wiring harness 100A are physically connected to the connection unit 10A. All end portions of the three standard sub-harnesses 20 to 40 and the four optional sub-harnesses 50 to 80 of the wiring harness 100B are physically connected to the connection unit 10B. Accordingly, electrical cables of the standard sub-harnesses 20 to 40 and the optional sub-harnesses 50 to 80 can be electrically connected to each other via a circuit pattern (to be described later) provided in the connection unit 10A or 10B.
The wiring harness 100 illustrated in
That is, a difference between connection patterns of circuit cables caused by a change in wiring harness specifications changing according to the type, grade, or existence and non-existence of various options of a vehicle in which a wiring harness is mounted is absorbed by a difference between the circuit patterns of the connection units 10A and 10B. The four optional sub-harnesses 50 to 80 are selectively connected to the connection unit 10B, and as a result, the wiring harness 100A or 100B illustrated in
<Description of Each Configuration Element>
<Description of Connection Units 10A and 10B>
The connection unit 10A illustrated in
The connection unit 10B illustrated in
Each of the circuit patterns 11Aa and 11Ba is formed of a foil-shaped conductive pattern such as a copper foil sticking to a front surface or a rear surface of the electrical insulating substrate 11b, or boundary surfaces between layers in a thickness direction. As illustrated by dotted lines in
Many wirings in each of the circuit patterns 11Aa and 11Ba are electrically separated from each other, and portions of the wirings are electrically connected to each other. In a case where multiple wirings are required to be electrically separated from each other at intersecting locations on a plane illustrated in
The connection units 10A and 10B illustrated in
In order to protect the connection units 10A and 10B, or to prevent electrical contact between the circuit patterns 11Aa and 11Ba and peripheral circuits, it is also considered that the connection units 10A and 10B are configured to be respectively accommodated in suitable housings. The connection units may be configured such that the peripheries of the connection units are covered with electrical insulating resin or the like.
<Description of Standard Sub-Harness>
The standard sub-harness 20 illustrated in
Each of the electrical cables 23a, 23b, and 23c is configured such that the periphery of a conductor such as a stranded wire is coated with electrical insulating resin or the like. The thickness of the conductor or the thickness and material of the coating of each of the electrical cables 23a, 23b, and 23c is suitably determined according to a current value or a voltage value which changes according to specifications. In the example illustrated in
The standard sub-harness 40 illustrated in
Each of the six electrical cables of the electrical cable group 44 is used as an electricity supply cable, a ground cable, a signal cable, a communication cable, or the like.
The standard sub-harness 30 illustrated in
In the standard sub-harness 30 illustrated in
<Description of Optional Sub-Harness>
The optional sub-harness 50 illustrated in
The optional sub-harness 60 illustrated in
The optional sub-harness 70 illustrated in
The optional sub-harness 80 illustrated in
Basically, there is one type of each of the optional sub-harnesses 50, 60, 70, and 80; however, as necessary, two or more types of each of the optional sub-harnesses 50, 60, 70, and 80 may be prepared. For example, since there may be a significant difference between distances among electrical components, it is necessary to prepare the optional sub-harnesses 50 to 80 having different lengths in advance so as to form the wiring harness 100 that is mounted in multiple types of vehicles having vehicle bodies of significantly different sizes.
<Advantages of Wiring Harnesses 100A and 100B of Second Example of Second Embodiment>
In a case where the wiring harnesses 100A and 100B illustrated in
Accordingly, it is possible to form various specifications of wiring harnesses using multiple sub-harnesses of a relatively small number of types or the numbers of part numbers in common. That is, since it is possible to use a sub-harness with the same configuration in multiple specifications of wiring harnesses, it is possible to considerably reduce the number of types or part numbers of sub-harnesses which have to be prepared in advance.
The aforementioned characteristics of the wiring harness according to the second embodiment are briefly summarized and listed in [1] to [5].
[1] A wiring harness (100) includes a first sub-harness (standard sub-harness 20) including first circuit cables (electrical cables 23a, 23b, and 23c); a second sub-harness (standard sub-harness 30) including second circuit cables (electrical cables 34a, 34b, and 34c); and a circuit substrate (11) on which a circuit pattern (11a), which can be connected to the first sub-harness and the second sub-harness, is formed. When the first sub-harness and the second sub-harness are connected to the circuit substrate, the first circuit cables and the second circuit cables are conductively connected together via the circuit pattern.
[2] In the wiring harness with the configuration described in [1], the circuit substrate includes a plurality of connection portions (substrate side connectors 12a to 12g) which can be attachably and detachably connected to end portions of a plurality of sub-harnesses including the first sub-harness and the second sub-harness.
[3] In the wiring harness with the configuration described in [1], the circuit pattern is formed on the circuit substrate so as to correspond to different types of the plurality of sub-harnesses including the first sub-harness and the second sub-harness which are connected according to required specifications.
[4] In the wiring harness with the configuration described in any one of [1] to [3], the circuit substrate is a printed substrate that includes an electrical insulating substrate and a foil-shaped conductive pattern sticking to at least one surface of the substrate.
[5] In the wiring harness with the configuration described in [4], the circuit substrate is a multi-layer printed substrate which includes multiple electrical insulating layers that are disposed while being superimposed on top of each other in a thickness direction, and in which the multiple foil-shaped patterns electrically separated from each other are respectively formed at the boundaries and on front surfaces of the multiple electrical insulating layers.
The wiring harness routing structure of the first embodiment of the present invention can be applied to a wiring harness to be described below. Hereinafter, a wiring harness of a third embodiment of the present invention will be described.
Field of the Invention
The third embodiment of the present invention relates to a wiring harness that is formed of multiple sub-harnesses.
Description of Related Art
Patent Literature 2 and Patent Literature 3 disclose the related art relating to a wiring harness used in a vehicle. As illustrated in FIG. 1 of Patent Literature 2, typically, such a wiring harness is an aggregate of bundled multiple sub-harnesses which are respectively prepared for systems. Sub-harnesses to be bundled together differ according to the required specifications of the wiring harness.
Specifically, the required electrical components of a vehicle differ according to the type, grade, or required options of the vehicle. For this reason, circuit cables of an electricity supply cable, a ground cable, a signal cable, and a communication cable, which are connected to each electrical component, differ. A sub-harness represents a set of circuit cables for driving an electrical system which are bundled together according to electrical systems so as to cope with such a difference between the circuit cables. One wiring harness is formed by selecting sub-harnesses according to the required specifications corresponding to a vehicle type, a grade, or an option, and by bundling together the sub-harnesses.
In
For example, the wiring harness WH can be formed as an assembly in which three sub-harnesses, that is, the sub-harness A2, the sub-harness B2, and the sub-harness C illustrated in
In the example illustrated in
(1) The wiring harness WH is formed of a combination of three sub-harnesses, that is, the sub-harness A1, the sub-harness B1, and the sub-harness C.
(2) The wiring harness WH is formed of a combination of three sub-harnesses, that is, the sub-harness A2, the sub-harness B1, and the sub-harness C.
(3) The wiring harness WH is formed of a combination of three sub-harnesses, that is, the sub-harness A1, the sub-harness B2, and the sub-harness C.
(4) The wiring harness WH is formed of a combination of two sub-harnesses, that is, the sub-harness A1 and the sub-harness B1.
(5) The wiring harness WH is formed of a combination of two sub-harnesses, that is, the sub-harness A2 and the sub-harness B1.
(6) The wiring harness WH is formed of a combination of two sub-harnesses, that is, the sub-harness A1 and the sub-harness B2.
As such, a wiring harness corresponds to specifications which differ according to a vehicle type, a grade, or an option. As illustrated in FIG. 1 of Patent Literature 2, such a wiring harness is routed in a reinforcement. There is a wiring harness referred to as an instrument panel wiring harness.
The aforementioned current wiring harness or sub-harness includes standard circuits (illustrated by solid lines in
More sub-harnesses having different part numbers have to be prepared to the extent that the number of circuits selectively added to a sub-harness increases. Since the sub-harnesses A1 and A2 of the sub-harness group SHG illustrated in
In a case where a sub-harness is formed of a combination of standard circuit cables and selective circuit cables, the number of sub-harnesses which have to be managed tends to increase as the number of electrical components increases, or the number of vehicle types, the number of grades, or the number of options increases.
The third embodiment is made in light of the aforementioned problem, and an object of the present invention is to provide a wiring harness in which it is possible to prevent an increase in the number of part numbers of sub-harnesses which have to be prepared in advance.
One or more embodiments provide a wiring harness according to the third embodiment has the following characteristics in (1) to (5).
In an aspect (1), one or more embodiments a wiring harness including a first sub-harness including first circuit cables a second sub-harness including second circuit cables a third sub-harness including third circuit cables; and a circuit substrate on which a circuit pattern, which can be connected to at least two of the first sub-harness, the second sub-harness, and the third sub-harness, is formed. A first circuit substrate and a second circuit substrate on which different circuit patterns are respectively formed are prepared as the circuit substrates. In a case where the first sub-harness and the second sub-harness are connected to the first circuit substrate, the first circuit cables and the second circuit cables are conductively connected together via the circuit pattern on the first circuit substrate. In a case where the first sub-harness and the third sub-harness are connected to the second circuit substrate, the first circuit cables and the third circuit cables are conductively connected together via the circuit pattern on the second circuit substrate.
In an aspect (2), the wiring harness further includes a fourth sub-harness including fourth circuit cables, in which in a case where the third sub-harness and the fourth sub-harness are connected to the second circuit substrate, the third circuit cables and the fourth circuit cables are conductively connected together via the circuit pattern on the second circuit substrate.
In an aspect (3), each of the first circuit substrate and the second circuit substrate includes multiple connection portions which are attachably and detachably connected to at least two of the first sub-harness, the second sub-harness, and the third sub-harness.
In an aspect (4), the circuit substrate is a printed substrate that includes an electrical insulating substrate and a foil-shaped conductive pattern sticking to at least one surface of the substrate.
In an aspect (5), the circuit substrate is a multi-layer printed substrate which includes multiple electrical insulating layers that are disposed while being superimposed on top of each other in a thickness direction, and in which the multiple foil-shaped patterns electrically separated from each other are respectively formed at the boundaries and on front surfaces of the multiple electrical insulating layers.
According to the aspect (1), it is possible to realize a wiring harness suitable for desired specifications by selecting a suitable circuit substrate from the first circuit substrate and the second circuit substrate, and by combining together the circuit substrate and at least two of the first sub-harness, the second sub-harness, and the third sub-harness. That is, it is possible to easily cope with requirements according to specifications via replacement of the circuit substrate.
According to the aspect (2), in a case where the second circuit substrate is selected, the third circuit cables and the fourth circuit cables can be connected together via the circuit pattern on the second circuit substrate. As a result, it is possible to easily form various types of wiring harnesses.
According to the aspect (3), the first sub-harness, the second sub-harness, and the third sub-harness are connected to the first circuit substrate or the second circuit substrate via the connection portions, and thus, the attachment and detachment of connection locations is easy, and the replacement of the circuit substrate is easy. According to the aspect (4), it is possible to easily realize the circuit pattern through which the first circuit cables of the first sub-harness are connected to the second circuit cables of the second sub-harness, and the circuit pattern through which the first circuit cables of the first sub-harness are connected to the third circuit cables of the third sub-harness.
According to the aspect (5), insulating states of multiple independent circuit cables can be maintained at locations where the circuit cables intersect each other. As a result, it is possible to form a circuit pattern with a complex configuration, and it is possible to cope with an increase in the number of electrical cables of a wiring harness.
According to the wiring harness of the third embodiment of the present invention, it is possible to prevent an increase in the number of part numbers of sub-harnesses which have to be prepared in advance. That is, since it is possible to switch the existence and non-existence of connection between the first circuit cables and the second circuit cables, and the connection states of branch cables of the circuit cables via the circuit pattern inside the circuit substrate, even if various types of connection states are required in the entirety of the wiring harness, it is possible to simplify the configuration of each of the first sub-harness and the second sub-harness. In a case where a wiring harness is formed to connect a long distance path in its entirety, it is possible to use the first sub-harness and the second sub-harness of relatively short lengths.
According to the wiring harness, it is possible to realize a wiring harness suitable for desired specifications by selecting a suitable circuit substrate from the first circuit substrate and the second circuit substrate, and by combining together the circuit substrate and at least two of the first sub-harness, the second sub-harness, and the third sub-harness. That is, it is possible to easily cope with requirements according to specifications via replacement of the circuit substrate.
The present invention has been briefly described. If a form (hereinafter, referred to as an “embodiment”) for realizing the invention which will be described below is read through with the accompanying drawings, details of the present invention become further apparent.
Hereinafter, wiring harnesses of the third embodiment of the present invention will be specifically described with reference to the drawings.
The wiring harness 100 illustrated in
Specifically, a connector 22 connected to a first end of the standard sub-harness 20 prepared in advance is connected to a substrate side connector 12a of the connection unit 10. A connector 31 connected to a first end of the standard sub-harness 30 prepared in advance is connected to a substrate side connector 12b of the connection unit 10. A connector 41 connected to a first end of the standard sub-harness 40 prepared in advance is connected to a substrate side connector 12c of the connection unit 10. A connector 52 of the optional sub-harness 50 is connected to a substrate side connector 12d of the connection unit 10. A connector 62 of the optional sub-harness 60 is connected to a substrate side connector 12e of the connection unit 10. A connector 72 of the optional sub-harness 70 is connected to a substrate side connector 12f of the connection unit 10. A connector 81 of the optional sub-harness 80 is connected to a substrate side connector 12g of the connection unit 10.
That is, all end portions of the three standard sub-harnesses 20 to 40 and the four optional sub-harnesses 50 to 80 are physically connected to the connection unit 10. Accordingly, electrical cables of the standard sub-harnesses 20 to 40 and the optional sub-harnesses 50 to 80 can be electrically connected to each other via a circuit pattern (to be described later) provided in the connection unit 10.
The wiring harness 100 illustrated in
<Description of Each Configuration Element>
<Description of Connection Unit 10>
The connection unit 10 illustrated in
The circuit pattern 11a is formed of a foil-shaped conductive pattern such as a copper foil sticking to a front surface or a rear surface of the electrical insulating substrate 11b, or boundary surfaces between layers in a thickness direction. As illustrated by dotted lines in
The connection unit 10 illustrated in
In order to protect the connection unit 10, or to prevent electrical contact between the circuit pattern 11a and peripheral circuits, it is also considered that the connection unit 10 is configured to be accommodated in a suitable housing. The connection unit 10 may be configured such that the periphery of the connection unit 10 is covered with electrical insulating resin or the like.
<Description of Standard Sub-Harness>
The standard sub-harness 20 illustrated in
Each of the electrical cables 23a, 23b, and 23c is configured such that the periphery of a conductor such as a stranded wire is coated with electrical insulating resin or the like. The thickness of the conductor or the thickness and material of the coating of each of the electrical cables 23a, 23b, and 23c is suitably determined according to a current value or a voltage value which changes according to specifications. In the example illustrated in
The standard sub-harness 40 illustrated in
Each of the six electrical cables of the electrical cable group 44 is used as an electricity supply cable, a ground cable, a signal cable, a communication cable, or the like.
The standard sub-harness 30 illustrated in
In the standard sub-harness 30 illustrated in
<Description of Optional Sub-Harness>
The optional sub-harness 50 illustrated in
The optional sub-harness 60 illustrated in
The optional sub-harness 70 illustrated in
The optional sub-harness 80 illustrated in
Basically, there is one type of each of the optional sub-harnesses 50, 60, 70, and 80; however, as necessary, two or more types of each of the optional sub-harnesses 50, 60, 70, and 80 may be prepared.
<Advantages of Wiring Harness 100 of First Example of Third Embodiment>
Each of various sub-harnesses of a wiring harness in the related art includes various standard circuit cables which are common to all vehicles, and various optional circuit cables which are selectively added according to a vehicle type, a grade, or the existence and non-existence of various options. For this reason, the number of part numbers of sub-harnesses which have to be prepared exponentially increases to the extent that the number of selective circuit cables provided in a wiring harness increases. In contrast, in the wiring harness 100 illustrated in
In the wiring harness 100 illustrated in
Since the shapes of the sub-harnesses become simplified which include a small number of branch cables, it is possible to increase similarity between the shapes of multiple sub-harnesses. This means that the sub-harnesses have high versatilities. As a result, a sub-harness can be used in common, for example, a sub-harness can be used in a wiring harness at multiple locations, or a sub-harness used in a wiring harness can be used in a separate wiring harness. This means that a common sub-harness can be used in various wiring harnesses.
The reason a sub-harness can be used in common as described above is that the circuit substrate 11 serves to connect together circuit cables. The circuit substrate 11 has not only a so-called joint function for connecting together circuit cables, but also a rectification function for adjusting a connection relationship in which multiple circuit cables which have to be connected together are selected. If circuit substrates having different circuit patterns are prepared, it is possible to arbitrarily switch a connection relationship between circuit cables.
This means that the required specifications of a wiring harness are switched by a circuit pattern of a circuit substrate. A sub-harness can be used in common, and since specification change functions are consolidated into a circuit substrate, a wiring harness can be used in common in various grades and options of vehicles, and a wiring harness can be used in common in various vehicle types. A wiring harness in the related art is designed for each vehicle type, and in contrast, the designing of the wiring harness 100 illustrated in
Hereinafter, advantages of the wiring harness 100 in terms of operation efficiency in the manufacturing of a wiring harness will be ascertained. Each of the multiple standard sub-harnesses 20 to 40 of the wiring harness 100 is realized by connecting together two electrical cables, one of which forms the sub-harness (A1, A2, or B2 in
A wiring harness 100A illustrated in
The connection unit 10A is selectively used to form the wiring harness 100A, and the connection unit 10B is selectively used to form the wiring harness 100B. The connection unit 10A illustrated in
Specifically, a connector 22 connected to a first end of the standard sub-harness 20 prepared in advance is connected to a substrate side connector 12a of the connection unit 10A or 10B. A connector 31 connected to a first end of the standard sub-harness 30 prepared in advance is connected to a substrate side connector 12b of the connection unit 10A or 10B. A connector 41 connected to a first end of the standard sub-harness 40 prepared in advance is connected to a substrate side connector 12c of the connection unit 10A or 10B. A connector 52 of the optional sub-harness 50 is connected to a substrate side connector 12d of the connection unit 10B. A connector 62 of the optional sub-harness 60 is connected to a substrate side connector 12e of the connection unit 10. A connector of the optional sub-harness 70 is connected to a substrate side connector 12f of the connection unit 10. A connector 81 of the optional sub-harness 80 is connected to a substrate side connector 12g of the connection unit 10.
That is, all end portions of the three standard sub-harnesses 20 to 40 of the wiring harness 100A are physically connected to the connection unit 10A. All end portions of the three standard sub-harnesses 20 to 40 and the four optional sub-harnesses 50 to 80 of the wiring harness 100B are physically connected to the connection unit 10B. Accordingly, electrical cables of the standard sub-harnesses 20 to 40 and the optional sub-harnesses 50 to 80 can be electrically connected to each other via a circuit pattern (to be described later) provided in the connection unit 10A or 10B.
The wiring harness 100 illustrated in
That is, a difference between connection patterns of circuit cables caused by a change in wiring harness specifications changing according to the type, grade, or existence and non-existence of various options of a vehicle in which a wiring harness is mounted is absorbed by a difference between the circuit patterns of the connection units 10A and 10B. The four optional sub-harnesses 50 to 80 are selectively connected to the connection unit 10B, and as a result, the wiring harness 100A or 100B illustrated in
<Description of Each Configuration Element>
<Description of Connection Units 10A and 10B>
The connection unit 10A illustrated in
The connection unit 10B illustrated in
Each of the circuit patterns 11Aa and 11Ba is formed of a foil-shaped conductive pattern such as a copper foil sticking to a front surface or a rear surface of the electrical insulating substrate 11b, or boundary surfaces between layers in a thickness direction. As illustrated by dotted lines in
Many wirings in each of the circuit patterns 11Aa and 11Ba are electrically separated from each other, and portions of the wirings are electrically connected to each other. In a case where multiple wirings are required to be electrically separated from each other at intersecting locations on a plane illustrated in
The connection units 10A and 10B illustrated in
In order to protect the connection units 10A and 10B, or to prevent electrical contact between the circuit patterns 11Aa and 11Ba and peripheral circuits, it is also considered that the connection units 10A and 10B are configured to be respectively accommodated in suitable housings. The connection units may be configured such that the peripheries of the connection units are covered with electrical insulating resin or the like.
<Description of Standard Sub-Harness>
The standard sub-harness 20 illustrated in
Each of the electrical cables 23a, 23b, and 23c is configured such that the periphery of a conductor such as a stranded wire is coated with electrical insulating resin or the like. The thickness of the conductor or the thickness and material of the coating of each of the electrical cables 23a, 23b, and 23c is suitably determined according to a current value or a voltage value which changes according to specifications. In the example illustrated in
The standard sub-harness 40 illustrated in
Each of the six electrical cables of the electrical cable group 44 is used as an electricity supply cable, a ground cable, a signal cable, a communication cable, or the like.
The standard sub-harness 30 illustrated in
In the standard sub-harness 30 illustrated in
<Description of Optional Sub-harness>
The optional sub-harness 50 illustrated in
The optional sub-harness 60 illustrated in
The optional sub-harness 70 illustrated in
The optional sub-harness 80 illustrated in
Basically, there is one type of each of the optional sub-harnesses 50, 60, 70, and 80; however, as necessary, two or more types of each of the optional sub-harnesses 50, 60, 70, and 80 may be prepared. For example, since there may be a significant difference between distances among electrical components, it is necessary to prepare the optional sub-harnesses 50 to 80 having different lengths in advance so as to form the wiring harness 100 that is mounted in multiple types of vehicles having vehicle bodies of significantly different sizes.
In a case where the wiring harnesses 100A and 100B illustrated in
Accordingly, it is possible to form various specifications of wiring harnesses by using multiple sub-harnesses of a relatively small number of types or the numbers of part numbers in common. That is, since it is possible to use a sub-harness with the same configuration in multiple specifications of wiring harnesses, it is possible to considerably reduce the number of types or part numbers of sub-harnesses which have to be prepared in advance.
The aforementioned characteristics of the wiring harness according to the third embodiment are briefly summarized and listed in [1] to [5].
[1] A wiring harness (100A) includes a first sub-harness (standard sub-harness 30) including first circuit cables, a second sub-harness (standard sub-harness 40) including second circuit cables, a third sub-harness (optional sub-harness 50, 60, or 70) including third circuit cables, and a circuit substrate (11A or 11B) on which a circuit pattern (10a), which can be connected to at least two of the first sub-harness, the second sub-harness, and the third sub-harness, is formed. A first circuit substrate (11A) and a second circuit substrate (11B) on which different circuit patterns are respectively formed are prepared as the circuit substrates. In a case where the first sub-harness and the second sub-harness are connected to the first circuit substrate, the first circuit cables and the second circuit cables are conductively connected together via the circuit pattern on the first circuit substrate. In a case where the first sub-harness and the third sub-harness are connected to the second circuit substrate, the first circuit cables and the third circuit cables are conductively connected together via the circuit pattern on the second circuit substrate.
[2] In the wiring harness described in [1], the wiring harness further includes a fourth sub-harness (optional sub-harness 80) including fourth circuit cables, in which in a case where the third sub-harness and the fourth sub-harness are connected to the second circuit substrate, the third circuit cables and the fourth circuit cables are conductively connected together via the circuit pattern on the second circuit substrate.
[3] In the wiring harness described in [1], each of the first circuit substrate and the second circuit substrate includes multiple connection portions (substrate side connectors 12a to 12g) which are attachably and detachably connected to at least two of the first sub-harness, the second sub-harness, and the third sub-harness.
[4] In the wiring harness described in any one of [1] to [3], the circuit substrate is a printed substrate that includes an electrical insulating substrate and a foil-shaped conductive pattern sticking to at least one surface of the substrate.
[5] In the wiring harness described in [4], the circuit substrate is a multi-layer printed substrate which includes multiple electrical insulating layers that are disposed while being superimposed on top of each other in a thickness direction, and in which the multiple foil-shaped patterns electrically separated from each other are respectively formed at the boundaries and on front surfaces of the multiple electrical insulating layers.
The present invention has been described in detail with reference to the specific embodiments; however, it is apparent to persons skilled in the art that changes or corrections can be made to the embodiments in various forms insofar as the changes or corrections do not depart from the concept and scope of the present invention.
According to the present invention, it is possible to provide a wiring harness routing structure in which the manufacturing, handling, and routing of a wiring harness are easy. The present invention providing this effect is effective for a wiring harness routing structure.
Number | Date | Country | Kind |
---|---|---|---|
2014-117715 | Jun 2014 | JP | national |
2014-117716 | Jun 2014 | JP | national |
2014-117717 | Jun 2014 | JP | national |
This application is a continuation of PCT application No. PCT/JP2015/066416, which was filed on Jun. 5, 2015 based on Japanese Patent Application (No. 2014-117715) filed on Jun. 6, 2014, Japanese Patent Application (No. 2014-117716) filed on Jun. 6, 2014, and Japanese Patent Application (No. 2014-117717) filed on Jun. 6, 2014, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2015/066416 | Jun 2015 | US |
Child | 15350282 | US |