1. Field of the Invention
The present invention relates to a wiring material for superconducting magnet, which exhibits excellent conductivity at low temperature(s) of, for example, 77 K or lower, especially cryogenic temperature(s) of 20 K or lower; and more particularly to a wiring material which exhibits excellent conductivity even when used in a strong magnetic field of, for example, 1 T or more.
2. Description of the Related Art
A superconducting magnet has been used in various fields, for example, MRIs (magnetic resonance imaging) for diagnosis, NMRs (nuclear magnetic resonance) for analytical use or maglev trains. There have been used, as a superconducting magnet, low-temperature superconducting coils cooled to its boiling point of 4.2 K (Kelvin) using liquid helium, and high-temperature superconducting coils cooled to about 20 K by a refrigerator.
Since it is necessary that a current is supplied to these superconducting coils in a state of being cooled, efficiently and uniformly, a wiring material (wiring material for superconducting magnet) cooled to extremely low temperatures of a boiling point 77 K of liquid nitrogen or lower is arranged on the periphery of the superconducting coils. Through the wiring material for superconducting magnet, power is supplied to the superconducting coils.
As a matter of course, such a wiring material for superconducting magnet preferably has low electrical resistivity at extremely low temperatures.
For example, JP 2009-212522A discloses a superconducting apparatus in which silver (Ag), gold (Au), rhenium (Re), platinum (Pt), copper (Cu), zinc (Zn), aluminum (Al), iron (Fe) and the like are used as wiring materials for electrically connecting members to each other. Among these metals, copper is most widely used since it is comparatively inexpensive and is easy to handle and, next, aluminum is often used. In order to ensure sufficient electrical conductivity, oxygen-free copper having a purity of 99.99% by mass or more (hereinafter sometimes referred to as “4N” (four nines) and, in the mass percentage notation which indicates a purity, notation is sometimes performed by placing “N” in the rear of the number of “9” which is continuous from the head, for example, purity of 99.9999% by mass or more is sometimes referred to as “6N” (six nines), similarly) is used as copper. There has hitherto been used, as aluminum, aluminum having a purity within a range from 99% by mass or more (2N) to about 99.99% by mass or more (4N).
JP H7-15208A and JP H7-166283A disclose high purity aluminum conductors for cryogenic temperatures, having a purity of 99.98% by mass or more, which causes little increase in electrical resistivity even when they undergo repeated strain at cryogenic temperatures.
However, a wiring material for superconducting magnet used in the vicinity of the superconducting coil, among these wiring materials for superconducting magnet, is used in a state where a strong magnetic field of, for example, a magnetic flux density of 1 T (Tesla) or more is applied. Therefore, there arises a problem that deterioration of conduction characteristics of the above-mentioned material having sufficient conductivity in the state where the magnetic field is not applied is caused by the magnetoresistance effect in such a strong magnetic field.
When conductivity decreases, heat generation occurs in a conductive pathway inside a wiring material to cause a problem that the amount of liquid helium vaporized in a cryogenic temperature container increases.
It is known that copper has remarkable magnetoresistance effect (namely, electrical resistivity remarkably increases in the magnetic field), and it is also known that aluminum also exhibits large magnetoresistance effect, although not comparable to copper.
Therefore, there have been strong demands for development of an electrical wiring material which exhibits excellent conductivity even in a strong magnetic field of, for example, a magnetic flux density of 1 T or more using metals such as copper and aluminum, which are easy to handle.
Thus, an object of the present invention is to provide a wiring material which is easy to handle and also exhibits excellent conductivity even in a strong magnetic field of, for example, a magnetic flux density of 1 T or more.
The present invention provides, in an aspect 1, a wiring material to be used in the magnetic field of a magnetic flux density of 1 T or more, including aluminum having a purity of 99.999% by mass or more.
The present inventors have found that the magnetoresistance effect can be remarkably suppressed by controlling a purity to 99.999% by mass or more even in aluminum (Al). An electrical wiring material composed of such aluminum can maintain excellent electrical conductivity even when used in a strong magnetic field of a magnetic flux density of 1 T or more.
Use of such an electrical wiring material according to the present invention enables a decrease in heat generation caused by electrical resistivity in an electrical wiring material even in a state where the magnetic field of a magnetic flux density of 1 T or more is applied from a superconducting coil. Whereby, vaporization of a coolant such as liquid helium can be suppressed and also a cross section of an electrical wiring material can be reduced, and thus enabling miniaturization of various apparatuses using a superconducting apparatus.
Since it is possible to handle like an electrical wiring material of conventional aluminum having low purity, the electrical wiring material according to the present invention is easy to handle.
The present invention provides, in an aspect 2, the wiring material according to the aspect 1, wherein the aluminum has the content of iron of 1 ppm by mass or less.
It is possible to more surely ensure conductivity in a strong magnetic field by controlling the content of iron to 1 ppm by mass or less.
The present invention provides, in an aspect 3, the wiring material according to the aspect 1 or 2, wherein the aluminum has a purity of 99.9999% by mass or more.
The present invention provides, in an aspect 4, the wiring material according to the aspect 1 or 2, wherein the aluminum has a purity of 99.99998% by mass or more.
The present invention provides, in an aspect 5, the wiring material according to any one of the aspects 1 to 4, wherein the aluminum contains an intermetallic compound Al3Fe.
According to the present invention, it is possible to provide a wiring material which is easy to handle and also exhibits excellent conductivity even in a strong magnetic field of, for example, a magnetic flux density of 1 T or more.
The wiring material according to the present invention includes aluminum having a purity of 99.999% by mass or more so as to be used in the magnetic field of a magnetic flux density of 1 T or more.
The present inventors have found, first, that aluminum having a purity of 99.999% by mass or more does not remarkably exert the magnetoresistance effect even when the magnetic field of a magnetic flux density of 1 T or more is applied, and thus electrical conductivity does not decrease. Consequently, the present invention has been completed.
As disclosed, for example, in JP 2009-242865A and JP 2009-242866A, it has been known that electrical resistivity at cryogenic temperatures, for example, liquid helium temperatures decreases as the purity of aluminum increases, like 5N (purity of 99.999% by mass or more) and 6N (purity of 99.9999% by mass or more).
As disclosed, for example, in JP 2010-106329A, aluminum having a purity of 99.999% by mass or more and also having the content of iron of 1 ppm by mass or less has also been known.
It has been known that, although aluminum enables an improvement in electrical conductivity at cryogenic temperatures in a state where the magnetic field is not applied by increasing the purity to about 4N, remarkable magnetoresistance effect is exhibited when a strong magnetic field of a magnetic flux density of 1 T or more is applied, and thus causing a decrease in conductivity. It has been considered that high conductivity cannot be obtained under a strong magnetic field also in 5N and 6N level high purity materials, similarly to the aluminum of 4N purity.
Therefore, it is considered that aluminum having a purity of 99.999% by mass or more was not used in a wiring material which is used in the magnetic field of a magnetic flux density of 1 T or more.
It is as mentioned above that the present inventors have found, first, that an increase in resistivity under a strong magnetic field, which has conventionally been conceived, does not occur in high purity aluminum of 5N or higher level.
Although details will be described in the below-mentioned examples, a drastic decrease in electrical conductivity is recognized in a strong magnetic field even in case of a high purity material of 5N or 6N or higher purity, with respect to copper which exhibits higher conductivity as compared with aluminum in a state where the magnetic field is not applied. Therefore, a phenomenon in which high electrical conductivity is maintained even in a strong magnetic field by achieving high purity of 5N or higher, found by the present inventors, is peculiar to aluminum.
In the wiring material according to the present invention, the amount of iron contained in aluminum is preferably controlled to 1 ppm by mass or less.
As will be described below for details, the reason is considered as follows: the magnetoresistance effect is more surely suppressed by controlling the amount of iron as a ferromagnetic element, and thus making it possible to surely suppress a decrease in electrical conductivity in a strong magnetic field (caused by the applied strong magnetic field).
The wiring material according to the present invention remarkably exhibits the effect by use in a state where the temperature is 77 K (−196° C.) or lower, and more preferably 20 K (−253° C.) or lower, and also the magnetic field of a magnetic flux density of 1 T or more is applied.
Details of the wiring material according to the present invention will be described below.
As mentioned above, the wiring material according to the present invention is characterized by being composed of aluminum having a purity of 99.999% by mass or more. The purity is preferably 99.9999% by mass or more, and more preferably 99.99998% by mass or more (hereinafter sometimes referred to as “6N8”) for the following reasons. That is, the higher the purity, the lesser a decrease in electrical conductivity under a strong magnetic field becomes. Furthermore, in case of the purity of 99.9999% by mass or more, the electrical resistivity may sometimes decrease in a strong magnetic field of 1 T or more as compared with the case where the magnetic field is not applied.
The content of iron in aluminum is preferably 1 ppm by mass, and more preferably 0.1 ppm by mass or less.
The reason is that a decrease in conductivity in a strong magnetic field can be suppressed more surely, as mentioned above.
There are still many unclear points in the mechanism in which a decrease in electrical conductivity in a strong magnetic field can be suppressed by controlling the content of iron to 1 ppm by mass or less. However, predictable mechanism at the moment is considered as follows. That is, iron is likely to be influenced by a strong magnetic field since it is a ferromagnetic element and, as a result, when iron exists in the content of more than 1 ppm by mass, an influence exerted on the electrical conductivity increases, and thus the electrical conductivity under a strong magnetic field may decrease. When the content of iron is 0.1 ppm, an influence due to the ferromagnetic material can be excluded almost completely. However, this predictable mechanism does not restrict the technical scope of the present invention.
Ni and Co are known as ferromagnetic elements other than iron. However, since these elements are easily removed in a known process for highly purification of aluminum, the numerical value of the content is out of the question. However, the contents of these Ni and Co are also preferably 1 ppm or less, and more preferably 0.1 ppm or less.
The purity of aluminum can be defined in some methods. For example, it may be determined by the measurement of the content of aluminum. However, it is preferred that the purity of aluminum is determined by measuring the content (% by mass) of the following 33 elements contained as impurities in aluminum and subtracting the total of these contents from 100%, so as to determine the purity of aluminum with high accuracy in a comparatively simple manner.
Herein, 33 elements contained as impurities are lithium (Li), beryllium (Be), boron (B), sodium (Na), magnesium (Mg), silicon (Si), potassium (K), calcium (Ca), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), zirconium (Zr), molybdenum (Mo), silver (Ag), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), barium (Ba), lantern (La), cerium (Ce), platinum (Pt), mercury (Hg), lead (Pb) and bismuth (Bi).
The contents of these elements can be determined, for example, by glow discharge mass spectrometry.
Such high purity aluminum may be obtained by using any purification (refinement) method. Some purification methods for obtaining high purity aluminum according to the present invention are exemplified below. However, the purification method is not limited to these methods as a matter of course.
It is possible to use, as one of methods of obtaining high purity aluminum, a three-layer electrolysis process in which commercially available aluminum having comparatively low purity (for example, with special grade 1 of 99.9% purity as specified in JIS-H2102) is charged in an Al—Cu alloy layer and is used as an anode in a molten state, and an electrolytic bath containing aluminum fluoride and barium fluoride therein is arranged thereon, and thus high purity aluminum is produced on a cathode.
In the three-layer electrolysis process, aluminum having a purity of 99.999% by mass or more can be mainly obtained. It is possible to suppress the content of iron in aluminum to 1 ppm by mass or less, comparatively easily.
For example, a unidirectional solidification process can be used so as to further increase a purity of the high purity aluminum obtained by a three-layer electrolysis process.
The content of Fe and the respective contents of Ti, V, Cr and Zr can be selectively decreased by the unidirectional solidification process.
It has been known that the unidirectional solidification process is, for example, a method in which aluminum is melted in a furnace tube using a furnace body moving type tubular furnace and then unidirectionally solidified from the end by pulling out a furnace body from a furnace tube, and that the contents of the respective elements of Ti, V, Cr and Zr selectively increase at the side of the solidification initiation end, and also the content of Fe selectively increases at the side of the solidification completion end (opposite side of the solidification initiation end). Therefore, it becomes possible to surely decrease the contents of the respective elements of Fe, and Ti, V, Cr and Zr by cutting off the side of solidification initiation end and the side of the solidification completion end of the obtained ingot. It may be determined, which specific portion of the ingot obtained by the unidirectional solidification process must be cut, by analyzing the contents of elements at appropriate intervals along a solidification direction so that only portion, where the total content of the contents of Fe, and Ti, V, Cr and Zr is sufficiently decreased, is allowed to remain.
There is no particular limitation on the order of implementation of purification by the three-layer electrolysis process and purification by the unidirectional solidification process. Usually, purification is implemented by the three-layer electrolysis process, and then purification is implemented by the unidirectional solidification process. Purification by the three-layer electrolysis process and purification by the unidirectional solidification process may be implemented, for example, alternately and repeatedly, or any one of or both purifications may be repeatedly implemented, respectively. It is particularly preferred that purification by the unidirectional solidification process is repeatedly implemented.
In such way, aluminum having a purity of 99.9999% by mass or more can be obtained by using the three-layer electrolysis process in combination with the unidirectional solidification process. It is also possible to suppress the content of iron in aluminum to 1 ppm by mass or less, and more preferably 0.1 ppm by mass or less in a comparatively easy manner.
Furthermore, a zone melting process can be used so as to obtain aluminum having high purity, for example, a purity of 99.99998% by mass or more. When the zone melting process is appropriately used, the content of iron in aluminum can be suppressed to 1 ppm by mass or less, and more preferably 0.1 ppm by mass or less, more surely.
In particular, it is effective to use a purification method of aluminum through the zone melting process invented by the present inventors (method described in Japanese Patent Application No. 2010-064544. The disclosure of Japanese Patent Application No. 2010-064544 is incorporated by reference herein.).
In order to prevent impurities from diffusing into heated aluminum when removing impurities in aluminum by zone melting purification process, it is preferred that an alumina layer is formed in advance on a surface of a boat in which aluminum is placed, and also zone melting purification is performed in vacuum under a pressure of 3×10−5 Pa or less, and more preferably from 3×10−6 Pa to 2×10−5 Pa, so as to surely separate impurities from molten aluminum.
It is preferred to carry out a pretreatment, in which a surface layer of an aluminum raw material to be subjected to zone melting purification is dissolved and removed in advance, before zone melting purification is performed. There is no particular limitation of the pretreatment method, and various treatments used in the relevant technical field can be used so as to remove the surface layer of the aluminum raw material.
Examples of the pretreatment include an acid treatment, an electrolytic polishing treatment and the like.
The above-mentioned boat to be used in the zone melting purification process is preferably a graphite boat, and is preferably baked in an inert gas or vacuum in advance after formation of the above-mentioned alumina layer.
The width of the melting section where aluminum is melted during the zone melting purification is preferably adjusted to w×1.5 or more w×6 or less based on a cross sectional size w of the aluminum raw material.
An aluminum raw material to be used in the purification is obtained by using the three-layer electrolysis process in combination with the unidirectional solidification process and, for example, high purity aluminum having a purity of 99.9999% by mass or more is preferably used.
In case of zone melting, for example, the melting section is moved from one end of a raw aluminum toward the other end by moving a high frequency coil for high frequency heating, and thus the entire raw aluminum can be subjected to zone melting purification. Among impurity metal element components, peritectic components (Ti, V, Cr, As, Se, Zr and Mo) tend to be concentrated to the melting initiation section and eutectic components (26 elements as a result of removal of peritectic 7 elements from the above-mentioned 33 impurity elements) tend to be concentrated to the melting completion section, and thus a high purity aluminum can be obtained in the region where both ends of the aluminum raw material are removed.
After moving the melting section during a predetermined distance, like a distance from one end to the other end in a longitudinal direction of an aluminum raw material, high frequency heating is completed and the melting section is solidified. After the solidification, an aluminum material is cut out (for example, both ends are cut off) to obtain a purified high purity aluminum material.
When a plurality of aluminum raw materials are arranged in a longitudinal direction (in a movement direction of the melting section), it is preferred that the aluminum raw materials in a longitudinal direction are brought into contact with each other to treat as one aluminum raw material in a longitudinal direction, and then the melting section is moved from one end (i.e., one of two ends where adjacent aluminum raw materials are not present in a longitudinal direction among ends of the plurality of aluminum raw materials) to the other end (i.e., the other one of two ends where adjacent aluminum raw materials are not present in a longitudinal direction among ends of the plurality of aluminum raw materials).
The reason is that ends of the aluminum raw material contacted with each other are united during zone melting, and thus a long aluminum material can be obtained.
As mentioned above, after zone melting (zone melting purification) from one end to the other end of the aluminum raw material, zone melting can be repeated again from one end to the other end. The number of repeat times (number of passes) is usually 1 or more and 20 or less. Even if the number of passes is more than the above range, an improvement in the purification effect is restrictive.
In order to effectively remove the peritectic 7 elements, the number of passes is preferably 3 or more, and more preferably 5 or more. When the number of passes is less than the above range, peritectic 7 elements are less likely to moved, and thus sufficient purification effect is not obtained.
The reason is as follows. When a plurality of aluminum raw materials are arranged in contact with each other in a longitudinal direction, when the number of passes is less than 3, a shape (especially, height size) of the purified aluminum after uniting becomes un-uniform, and thus the melting width may sometimes vary during purification and uniform purification is less likely to be obtained.
The ingot of the high purity aluminum obtained by the above-mentioned purification method is formed into a desired shape using various methods.
The forming method will be shown below. However, the forming method is not limited thereto.
When a wiring material to be obtained is a plate or a wire, rolling is an effective forming method.
The rolling may be performed using a conventional method, for example, a method in which an ingot is passed through a pair of rolls by interposing into the space between these rolls while applying a pressure. There is no particular limitation on concrete techniques and conditions (treatment of materials and rolls, treatment time, reduction ratio, etc.) in case of rolling, and these concrete techniques and conditions may be appropriately set unless the effects of the present invention are impaired.
There is no particular limitation on the size of the plate and wire rod to be finally obtained by rolling. As for preferable size, the thickness is from 0.1 mm to 3 mm in case of the plate, or the diameter is from 0.1 mm to 3 mm in case of the wire rod.
When the thickness is less than 0.1 mm, sufficient conduction characteristics required as the wiring material may be sometimes less likely to be obtained since a cross section decreases. In contrast, when the thickness is more than 3 mm, it may sometimes become difficult to deform utilizing flexibility. When the thickness is from 0.1 mm to 3 mm, there is an advantage such as easy handling, for example, the material can be arranged on a side surface of a curved container utilizing flexibility.
As a matter of course, the shape obtainable by rolling is not limited to the plate or wire and, for example, a pipe shape and an H-shape can be obtained by rolling.
The rolling may be hot rolling or warm rolling in which an ingot is heated in advance and then rolling is performed in a state of being set at a temperature higher than room temperature, or may be cold rolling in which the ingot is not heated in advance. Alternatively, hot rolling or warm rolling may be used in combination with cold rolling.
In case of rolling, it is also possible to be cast or cut the material into a desired shape in advance. In case of casting, for example, a conventional method may be employed, but is not limited to, for example, a method in which high purity aluminum is heated and melted to form a molten metal and the obtained high purity aluminum molten metal is solidified by cooling in a mold. Also, there is no particular limitation on the conditions or the like in case of casting. The heating temperature is usually from 700 to 800° C., and heating and melting is usually performed in vacuum or an inert gas (nitrogen gas, argon gas, etc.) atmosphere in a crucible made of graphite.
Forming Method Other than Rolling
Wire drawing or extrusion may be performed as a forming method other than rolling. There is no limitation on the shape obtained by drawing or extrusion. For example, drawing or extrusion is suited to obtain a wire having a circular cross section.
A desired wire shape may be obtained by rolling before drawing to obtain a rolled wire (rolled wire rod) and then drawing the rolled wire.
The cross section of the obtained wire is not limited to a circle and the wire may have a noncircular cross section, for example, an oval or square cross section.
The desired shape may also be obtained by cutting the ingot, except for drawing or extrusion.
Furthermore, the molded article of the present invention obtained by the above forming method such as rolling may be optionally subjected to an annealing treatment. It is possible to remove strain, which may be usually sometimes generated in case of cutting out a material to be formed from the ingot, or forming, by subjecting to an annealing treatment.
There is no particular limitation on the conditions of the annealing treatment, and a method of maintaining at 400 to 600° C. for one or more hours is preferable.
When the temperature is lower than 400° C., strain (dislocation) included in the ingot is not sufficiently decreased for the following reason. Since strain (dislocation) serves as a factor for enhancing electrical resistivity, excellent conduction characteristics may not be sometimes exhibited. When the heat treatment temperature is higher than 600° C., solution of impurities in solid, especially solution of iron into a matrix proceeds. Since solid-soluted iron has large effect of enhancing electrical resistivity, conduction characteristics may sometimes deteriorate.
More preferably, the temperature is maintained at 430 to 550° C. for one or more hours for the following reason.
When the temperature is within the above range, strain can be sufficiently removed and also iron exists as an intermetallic compound with aluminum without being solid-soluted into the matrix.
The following reasons are also exemplified.
As an intermetallic compound of iron and aluminum, for example, plural kinds such as Al6Fe, Al3Fe and AlmFe (m≈4.5) are known. It is considered that the majority of (for example, 50% or more, and preferably 70% or more in terms of volume ratio) of an intermetallic compound of iron and aluminum, which exists in a high purity aluminum material obtained after annealing within a temperature range (430 to 550° C.), is Al3Fe. Existence of Al3Fe and the volume ratio thereof can be confirmed and measured by by dissolution of a matrix (base material) using a chemical solvent, and collection by filtration, followed by observation of the residue collected by filtration using an analytical electron microscope (analytical TEM) and further analysis.
This Al3Fe has such an advantage that it scarcely exerts an adverse influence on the conductivity even in case of existing as a precipitate.
The wiring material according to the present invention may be composed only of the above-mentioned high purity aluminum having a purity of 99.999% by mass or more and may contain the portion other than the high purity aluminum, for example, protective coating so as to impart various functions.
Example 1 (purity of 99.999% by mass or more, 5N-Al), Example 2 (purity of 99.9999% by mass or more, 6N-Al) and Example 3 (purity of 99.99998% by mass or more, 6N8-Al), details of which are shown below, were produced as example samples, and then resistivity (specific electrical resistivity) was measured.
Comparative Example 1 (4N-Al) as aluminum having a purity of 4N level, and Comparative Example 2 (3N-Al) as aluminum having a purity of 3N level are shown below as Comparative Examples. The resistivity of Comparative Examples 1 and 2 was determined by calculation.
As for copper, resistivity of Comparative Example 3 (5N-Cu) as copper having a purity of 5N level was measured.
As for copper, literature data were used as Comparative Example. Comparative Example 4 is copper sample having a purity of 4N level, Comparative Example 5 is copper sample having a purity of 5N level, and Comparative Example 6 is copper sample having a purity of 6N level.
First, the method for producing a high purity aluminum used in Examples 1 to 3 is shown below.
A commercially available aluminum having a purity of 99.92% by mass was purified by the three-layer electrolysis process to obtain a high purity aluminum having a purity of 99.999% by mass or more.
Specifically, a commercially available aluminum (99.92% by mass) was charged in an Al-Cu alloy layer and the composition of an electrolytic bath was adjusted to 41% AlF3-35% BaF2-14% CaF2-10% NaF. Electricity was supplied at 760° C. and a high purity aluminum deposited at a cathode side was collected.
The contents of the respective elements in this high purity aluminum were analyzed by glow discharge mass spectrometry (using “VG9000”, manufactured by THERMO ELECTRON Co., Ltd) to obtain the results shown in Table 1.
The high purity aluminum obtained by the above-mentioned three-layer electrolysis process was purified by the unidirectional solidification to obtain a high purity aluminum having a purity of 99.9999% by mass or more.
Specifically, 2 kg of the high purity aluminum obtained by the three-layer electrolysis process was placed in a crucible (inside dimension: 65 mm in with ×400 mm in length×35 mm in height) and the crucible was accommodated inside a furnace tube (made of quartz, 100 mm in inside diameter x 1,000 mm in length) of a furnace body transfer type tubular furnace. The high purity aluminum was melted by controlling a furnace body (crucible) to 700° C. in a vacuum atmosphere of 1×10−2 Pa, and then unidirectionally solidified from the end by pulling out the furnace body from the furnace tube at a speed of 30 mm/hour. After cutting out from the position which is 50 mm from the solidification initiation end in a length direction to the position which is 150 mm from the solidification initiation end, a massive high purity aluminum measuring 65 mm in width×100 mm in length×30 mm in thickness was obtained.
The contents of the respective elements in this high purity aluminum were analyzed by glow discharge mass spectrometry in the same manner as described above to obtain the results as shown in Table 1.
After cutting into a quadrangular prism measuring about 18 mm×18 mm×100 mm or a similar shape from the 6N aluminum ingot obtained by the above-mentioned unidirectional solidification process, and further acid pickling with an aqueous 20% hydrochloric acid solution prepared by diluting with pure water for 3 hours, an aluminum raw material was obtained.
Using this aluminum raw material, a zone melting process was carried out by the following method.
A graphite boat was placed inside a vacuum chamber (a quartz tube measuring 50 mm in outside diameter, 46 mm in inside diameter, 1,400 mm in length) of a zone melting purification apparatus. A high purity alumina powder AKP Series (purity: 99.99%) manufactured by Sumitomo Chemical Company, Limited was applied to the portion, where the raw material is placed, of the graphite boat while pressing to form an alumina layer.
The graphite boat was baked by high frequency heating under vacuum.
The baking was carried out by heating in vacuum of 10−5 to 10−7 Pa using a high frequency heating coil (heating coil winding number: 3, 70 mm in inside diameter, frequency of about 100 kHz) used in zone melting, and moving from one end to the other end of the boat at a speed of 100 mm/hour thereby sequentially heating the entire graphite boat.
The above-mentioned 9 aluminum raw materials in total weight of about 780 g were arranged on the portion (measuring 20×20×1,000 mm), where the raw materials are placed, provided in the graphite boat. The aluminum raw materials were arranged in the form of a quadrangular prism consisting of 9 raw materials (cross sectional dimension w of aluminum raw materials=18 mm, length L=900 mm, L=w×50).
After sealing inside a chamber, evacuation was carried out by a turbo-molecular pump and an oil sealed rotary pump until the pressure reaches 1×10−5 Pa or less. Then, one end of the aluminum raw material in a longitudinal direction was heated and melted using a high frequency heating coil (high frequency coil) to form a melting section.
The output of the high frequency power source (frequency: 100 kHz, maximum output: 5 kW) was adjusted so that the melting width of the melting section becomes about 70 mm. Then, the high frequency coil was moved at a speed of 100 mm per hour thereby moving the melting section by about 900 mm. At this time, the pressure in the chamber was from 5×10−6 to 9×10−6 Pa. The temperature of the melting section was measured by a radiation thermometer. As a result, it was from 660° C. to 800° C.
Then, high frequency output was gradually decreased thereby solidifying the melting section.
The high frequency coil was moved to the melting initiation position (position where the melting section was formed first) and the aluminum raw material was heated and melted again at the melting initiation position to form a melting section while maintaining vacuum inside the chamber. Zone melting purification was repeated by moving this melting section. At the moment when zone melting purification was carried out three times (3 passes) in total at a melting width of about 70 mm and a traveling speed of 100 mm/hour of the melting section, the shape from the melting initiation section to the completion section became almost uniform, and uniform shape was maintained from then on (during 7 passes mentioned below).
Then, zone melting purification was carried out 7 passes at a melting width of about 50 mm and a traveling speed of 60 mm/hour of the melting section. The melting width was from w×2.8 to w×3.9 based on a cross sectional size w of the aluminum raw material to be purified.
After completion of 10 passes in total, the chamber was opened to atmospheric air and then aluminum was removed to obtain a purified aluminum of about 950 mm in length.
The obtained aluminum was cut out and glow discharge mass spectrometry component analysis was carried out in the same manner as described above. The results are shown in Table 1.
Then, the thus obtained high purity aluminum of Examples 1 to 3 were respectively cut to obtain materials for wire drawing each measuring 6 mm in width×6 mm in thickness×100 mm in length. In order to remove contamination elements due to cutting of a surface of the material for wire drawing, acid pickling was performed using an acid prepared at a ratio (hydrochloric acid:pure water=1:1) for 1 hour, followed by washed with running water for more than 30 minutes.
The obtained material for wire drawing was drawn to a diameter to 0.5 mm by rolling using grooved rolls and wire drawing. The specimen obtained by wire drawing was fixed to a quartz jig, maintained in vacuum at 500° C. for 3 hours and then furnace-cooled to obtain a sample for the measurement of resistivity.
Furthermore, a commercially available high purity copper having a purity of 5N level (manufactured by NewMet Koch, 99.999% Cu, 0.5 mm in diameter) as the sample of Comparative Example 3 was fixed to a quartz jig, washed with an organic solvent, maintained in vacuum at 500° C. for 3 hours and then furnace-cooled to obtain a sample for the measurement of resistivity.
With respect to the samples of Examples 1 to 3 and Comparative Example 3, the resistivity was actually measured.
After immersing the obtained sample in liquid helium (4.2 K), the resistivity was measured by varying the magnetic field to be applied to the sample from a magnetic flux density 0 T (magnetic field was not applied) to 15 T, using a the four-wire method.
The magnetic field was applied in a direction parallel to a longitudinal direction of the sample.
With respect to Comparative Example 1 and Comparative Example 2 with the composition shown in Table 1, calculation was performed using the following equation (1) disclosed in the literature: R. J. Corruccini, NBS Technical Note, 218 (1964). In the equation (1), ΔρH is an amount of an increase in resistivity in the magnetic field. ρRT is resistivity at room temperature when the magnetic field is not applied, and was set to 2,753 nΩcm since it can be treated as a nearly given value in high purity aluminum having a purity of 3N or more. ρ is resistivity at 4.2 K when the magnetic field is not applied and largely varied depending on the purity. Therefore, the following experimental values were used: 9.42 nΩcm (RRR=285) in 4N-Al and 117 nΩcm (RRR=23) in 3N-Al. These equations are obtained when the magnetic field is perpendicular to a longitudinal direction of the sample. However, since similar equations when the magnetic field is parallel to a longitudinal direction of the sample are not obtained, these equations were used for comparison. RRR is also called a residual resistivity ratio and is a ratio of resistivity at 297 K to resistivity at a helium temperature (4.2 K).
where
H*=H/100 ρRT/ρR
H=Intensity of applied magnetic field (Tesla)
ρRT=Resistivity at room temperature when magnetic field is not applied
ρ=Resistivity when magnetic field is not applied
Citation from Literatures Relating to Resistivity
With respect to Comparative Examples 4 to 6, the resistivity was obtained from the literature: Fujiwara S. et. al., Int. Conf. Process. Mater. Prop., 1st (1993), 909-912. In these literature data, a relation between the application direction of the magnetic field and the longitudinal direction of the same is not described.
The thus derived value of_resistivity of Examples 1 to 3 and Comparative Examples 1 to 6 are shown in Table 2.
With respect to RRR, Examples 1 to 3 and Comparative Examples 1 to 3 are measured values, Comparative Examples 4 to 6 are literature data.
As is apparent from Table 2, in the sample of Comparative Example 2 corresponding to a wiring material made of a conventional aluminum (4N level), the resistivity increases as the intensity of the magnetic field (magnetic flux density) increases as compared with the case where the magnetic field is absent (0 T), and the resistivity increases by about 3 times at 15 T.
To the contrary, in Examples 1 to 3, the resistivity is small such as a tenth or less as compared with Comparative Example 2 in a state where the magnetic field is absent, and also the resistivity slightly increases even if the magnetic field increases.
In Example 1 (5N level), the resistivity at 15 T slightly increases (about 1.5 times) as compared with the case where the magnetic field is absent, and it is apparent that the increase of the resistivity caused by magnetic field is small compared with Comparative Example 2.
In Example 2 (6N level), the resistivity slightly increases (within 10%) even at 15 T as compared with the case where the magnetic field is absent. When the magnetic flux density is within a range from 1 to 12 T, the value of the resistivity decreased as compared with the case where the magnetic field is not applied, and thus remarkable magnetoresistance suppression effect is exhibited.
As for Example 3 (6N8 level), the resistivity decreases as compared with the case where the magnetic field is absent even at any magnetic flux density of 1 to 15 T, and thus remarkable magnetoresistance suppression effect is exhibited.
The electrical conductivity index of the ordinate was indicated by logarithm since samples of Examples exhibit extremely remarkable effect.
As is apparent from
As is apparent from
The reason why, the magnetoresistance suppression effect by highly purification is not exhibited in copper but is exhibited in aluminum, is unclear. However, it is deduced that it is caused by a difference in electrical resistivity factor. Namely, it is considered that a main electrical resistivity factor of the high purity copper is the scattering of conduction electrons due to grain boundaries or dislocations, and the electrical resistivity factor slightly varies even by highly purification, and thus magnetoresistance also slightly varies. On the other hand, an electrical resistivity factor of the high purity aluminum is scattering of conduction electrons by impurity atoms, and the electrical resistivity factor is decreased by highly purification. Therefore, it is considered that excellent characteristics such as little increase in electrical resistivity in the magnetic field may be exhibited in aluminum having a purity of 5N or more. However, this predictable mechanism does not restrict the technical scope of the present invention.
According to the present invention, it is possible to provide a wiring material which is easy to handle and also exhibits excellent conductivity even in a strong magnetic field of, for example, a magnetic flux density of 1 T or more.
The present application claims priority based on Japanese Patent Application No. 2011-101774. The disclosure of Japanese Patent Application No. 2011-101774 is incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2011-101774 | Apr 2011 | JP | national |