Wishbone style control arm assemblies and methods for producing same

Information

  • Patent Grant
  • 11203240
  • Patent Number
    11,203,240
  • Date Filed
    Friday, April 19, 2019
    5 years ago
  • Date Issued
    Tuesday, December 21, 2021
    2 years ago
Abstract
Wishbone-style control arm assemblies for a vehicle and methods for assembling the same are disclosed. A control arm assembly includes a first elongated segment having a first connection feature at one end of the first segment. The control arm assembly includes a second elongated segment having a second connection feature at one end of the second segment. Opposite longitudinal ends of the first and second segments may include third and fourth connection features, respectively, that are configured to interface with the vehicle. The first and second connection features are aligned to form an aperture that extends at least partially through the first and segment connection features, through which a bushing is press-fit and then swaged to form a strong connection that reduces or eliminates the need for mechanical fasteners or adhesive bonds. The bushing connection independently enables the control arm to maintain a secure connection between segments during operation of the control arm when assembled in the vehicle.
Description
BACKGROUND
Field

The present disclosure relates generally to techniques for manufacturing vehicle components, and more specifically to wishbone-style control arm assemblies and methods for producing the same.


Background

Control arms are hinged links that couple a vehicle frame to the suspension, such as through the steering knuckle that holds the wheel. Different shapes and configurations of control arms are available. Depending on various factors like the frame and suspension types, multiple control arms may be implemented in a single vehicle.


Conventionally, wishbone-style control arms are manufactured using complex machining operations that result in a significant amount of material waste. For example, large blocks of material may be machined down to ultimately form the links or segments. A significant amount of residual material is often left over, which may be discarded or may result in recycling and other costs.


Furthermore, conventional wishbone-style control arm members are connected using mechanical connectors and fasteners, adhesives, welds, and other more complex connection methods. The use of these mechanical components, and sophisticated assembly techniques add complexity to the part. Fasteners and other mechanical connection methods also result in the undesirable addition of mass to the part. Conventional control arm assemblies are relatively heavy and unwieldy, and can adversely affect performance and fuel consumption requirements.


As demands for increased fuel economy and superior driving efficiency are continually increasing, so too is the need for manufacturers to minimize the size and mass of constituent parts of a vehicle without sacrificing structural and functional integrity.


SUMMARY

Various aspects of a wishbone-style control arm assembly are disclosed. In one aspect of the disclosure, a method for assembling a control arm for a vehicle includes providing a first segment having a first connecting feature and a second segment having a second connecting feature, aligning the first and second connecting features to form an aperture, press-fitting a bushing into the aperture, and swaging the press-fitted bushing, wherein the press-fitting and the swaging maintain, via the bushing, an independent connection between the first and second segments sufficient to accommodate expected operating loads when the control arm is assembled into the vehicle.


In another aspect of the disclosure, a method for assembling a control arm for a vehicle includes additively manufacturing a first segment comprising a first connection feature and a second segment comprising a second connection feature, aligning the first and second connection features in a manner that causes an aperture to extend at least partially through the first and second connection features, press-fitting a bushing into the aperture; and swaging the press-fitted bushing, wherein the press-fitting and the swaging maintain, via the bushing, an independent connection between the first and second segments sufficient to accommodate expected operating loads when the control arm is assembled into the vehicle.


In another aspect of the disclosure, a control arm assembly for a vehicle includes a first segment comprising a first connection feature at one end, a second segment comprising a second connection feature, the first and second segments being engaged together to form an aperture extending at least partially through the first and second connection features, and a bushing press fit and swaged through the aperture to thereby form a generally wishbone shaped base at the one end, the bushing being configured to provide an independent connection between the first and second segments sufficient to accommodate expected operating loads when the control arm is assembled into the vehicle.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective illustration of a three-piece wishbone-style control arm according to an aspect of the disclosure.



FIG. 2. is a perspective illustration of the three-piece wishbone-style control arm separated into its constituent parts.



FIG. 3 depicts a cross-sectional view which shows the integration of the two segments and the bushing to form a connecting portion of the wishbone-style control arm member.





DETAILED DESCRIPTION

This disclosure presents three-piece wishbone-style control arms for vehicles that overcome the above-referenced obstacles, and methods for assembling the same. Two elongated control arm segments are manufactured with connecting features at respective ends of the segments. A connecting feature on an end of one segment is aligned with a complementary connecting feature on an end of the other segment to form an aperture that extends at least partially through the aligned connecting features. A third stabilizing structure, such as a bushing, is press fit into the aperture (or plurality thereof) defined by the aligned connecting features. The bushing is then swaged to form a permanent, wishbone-shaped connection between the two segments. The result is a streamlined control arm having a generally simple configuration that requires minimal mass and that is conducive to providing axial load paths in a vehicle while minimizing out-of-plane loads (with respect to the control arm geometry).


The disclosed control arm assembly reduces or altogether eliminates the necessity of separate mechanical fasteners or additional mounting points. The assembly also eliminates the requirement of stiffening ribs and the resulting mass penalty that may otherwise be necessary to accommodate adhesive-based connections. In an embodiment, the segments and corresponding connection features are additively manufactured. Additively manufacturing the segments provides significant flexibility for effecting design changes and for adding design characteristics such as ridges or recesses to maximize the fidelity of press-fitting or swaging operations.


Conventional wishbone-style control arms use two control arm members along with mechanical connectors to couple the chassis to the suspension. One of the control arm members may be connected to the frame using bushings, and the other control arm member may be connected to the steering knuckle via a ball joint. Bushings are cylindrical linings that reduce friction and allow vertical up-and-down movement of the suspension while holding the knuckles, spindles, and axles firmly onto the vehicle. Ball joints may function as a pivot between the wheels and the suspension to facilitate the up-and-down movement. Control arms synchronize the wheel motion with the vehicle body while concurrently preventing excessive forward/rearward or other out-of-plane movement with respect to the control arm geometry that may otherwise occur as the vehicle encounters potholes, bumps and other obstacles.


Conventional control arm assemblies have excessive mass as noted above. Some of these assemblies involve a single, integral chunk of metal in a generally “V” or wishbone shape that include a number of sophisticated mechanical fasteners, bearings, and/or bushings. These larger metal structures can be unduly bulky and are generally not streamlined, and as such they add mass to the vehicle. In conventional embodiments where the control arm assemblies have separate links or segments, the links/segments are often large and cumbersome, and rely on welding and potentially heavy mechanical fasteners to interconnect with each other.


Further, where welding is used to connect the members of the control arm assembly, heat-affected zones (HAZ) may reduce the strength and integrity of the components. HAZ refers to a non-melted area of metal adjacent the weld that has experienced weakening in its material properties as a result of exposure to welding's high temperatures. To mitigate the adverse effects of HAZ, parts incorporating welding often include additional physical components to reinforce HAZ or to distribute HAZ away from the critical load paths. The incorporation of these components into the control arm results in additional mass and occupies additional space. Likewise, where adhesives are used, the control arm members are typically fitted with additional mechanical structures to ensure fidelity of the adhesive bonds.



FIG. 1 is a perspective illustration of a three-piece wishbone-style control arm 100 according to an aspect of the disclosure. The control arm 100 includes a first segment, 102, a second segment 104 and a bushing 106 that is press fit and swaged at the aperture created by the alignment of the first and segment segments 102, 104, which may be located at or near the respective ends of the first and second segments 102, 104. More specifically, the ends of segments 102, 104 that form the wishbone base include connecting features that when aligned, define an aperture that acts as a receptacle for the bushing 106. The aperture may extend through the connection features, for example, in a direction that is generally perpendicular to the longitudinal directions of the segments. At the opposite end of each segment 102 and 104, respective circular structures 101 and 103 can be used to provide connecting features at those ends to interface with the relevant structures of the vehicle (e.g., the frame and suspension components). In other embodiments, structures 101 and 103 may include different types of geometrical structures for interfacing with the vehicle. In an embodiment, structures 101 and 103 have generally simple interfaces, such as elliptical loops composed of the segments' material, to minimize the mass and complexity of the control arm 100.



FIG. 2 shows a perspective illustration of the three-piece wishbone-style control arm 200 separated into its constituent parts. As is apparent from the illustration of the separate elements of FIG. 2 and the combined elements of FIG. 1, the elongated segments 202 and 204 are configured to be assembled together like a clevis and tang in a clevis type fastener. Segment 202 includes connection feature 208. More specifically, the segment 202 having the pair of opposing elliptical/circular rings 208 bound at one portion to the body of segment 202 may be analogous to a clevis. Segment 204 includes a corresponding connection feature 210. The segment 204 having the single elliptical/circular ring 210 bound to the body of segment 204 (e.g., via a ridge 216 extending vertically from the segment) may be analogous to a tang. As described below, the first and second segments 202 and 204 are properly aligned to form an aperture running through connection features 208 and 210, and then connected via the bushing 206, the latter of which may be analogous to a clevis pin. The connection features may alternatively be manufactured to form other shapes or alternative connection types other than the clevis-tang connection type described herein.


A method for assembling the control arm according to various embodiments of the present disclosure is described. First, segments 202 and 204 (FIG. 2) are assembled. In one embodiment, the segments 202 and 204 are machined from bulk metal sections comparable in size to the segment. Thus, when the segment is machined, the amount of remaining scrap metal is kept to a minimum.


In other embodiments, the segments 202, 204 may be additively manufactured using powder bed fusion (PBF) or any other suitable 3-D printing technology. The use of AM to manufacture the segments 202, 204 accords the manufacturer significant flexibility to customize its parts. That is, the manufacturer can determine the segments' optimal sizes, mass, and material density and can easily modify these properties using computer-aided design (CAD) files to represent the 3-D control arm assembly. The manufacturer can develop individual attributes for the segments like the precise desired length and thickness of the segments at different points and can modify the corresponding CAD files when a different design is desired. The connectors and recesses may be strategically deployed in a manner that facilitates the effectiveness of the press-fitting and swaging operations and that is optimal for the vehicle into which the control arm will be assembled. Further, while the segments may generally benefit from their simplicity, the use of AM can allow the manufacturer to incorporate lattice elements or other supports to branch out from the segments for distributing the expected load more efficiently.


The ends of each segment that are determined to form the base of the wishbone may be additively manufactured to produce connection features such as the clevis-like structure and the tang, for mating with the clevis, as generally described above and as shown in FIG. 2 using the respective double and single circular rings 208 and 210. While the embodiment of FIG. 2 shows one configuration of the clevis-tang connection features, other configurations are also possible and the end connectors may be designed to vary from the circular rings. For example, square, elliptical, or arbitrary shapes may be used. In another embodiment, the clevis-like connector may be fork-shaped, or the connection features may adopt a configuration different from that of a clevis-tang connection.


After the segments 202, 204 are manufactured, they are then assembled together. Segment 202 includes a pair of opposed circular members 208 that extend from the body 212 of segment 202. In an embodiment, the circular members 208 are integrally formed with the body 212 such that both components are part of the same structure as originally assembled. Segment 204 includes a single circular member 210 that extends from the body 214 of segment 204. The circular member 210 is connected to a ridge 216, where the ridge abuts the body 214 of segment 204. In an embodiment, the circular member 210 is integrally formed with the body 214.


The connection features 208 and 210 that form the base of the wishbone may be aligned to form the aperture into which the bushing 206 is press fit. The connection feature, e.g., circular member 210, is inserted into and aligned between circular members 208, such that a generally flush and open cylindrical shape is created inside the joined circular members 208 and 210. As is shown in more detail in the cross-sectional view of the interface between members 202 and 204 of FIG. 3, the interior surface of one or more of circular members 208 and 210 may be manufactured to include indentations, recesses or other features that are integrated within these elements to increase the effectiveness of the subsequent press-fitting and swaging operations.


The circular members 208, 210 are pinned together using bushing 206. In an embodiment, following the alignment of the circular members 208 and 210, the bushing 206 is press-fit into the generally cylindrical area internal to the circular members 208 and 210. Advantageously, the press-fit operation relies on pressure and friction without the need for adhesive or other mechanical components that would otherwise add undesired mass and complexity to the system.


After press-fitting, the bushing 206 is swaged using a suitable swage tool. Using swaging, the bushing's 206 dimensions are changed by forcing the bushing into the cylindrical area internal to the circular members 208 and 210. The swaging secures the connection between the two segments 202, 204. Swaging is a time-efficient process that provides a secure and permanent connection between segments 202 and 204 without adding additional mass or mechanical connectors to the control arm 200.



FIG. 3 depicts a cross-sectional view which shows the integration of the three structures 206, 208, and 210 to form a connecting portion of the wishbone-style control arm member. That is, FIG. 3 is a cross-sectional view of the wishbone base of the control arm of FIG. 2, in which the newly-shaped bushing 206 is press-fit and swaged into the aperture defined by the internal surface of circular members 208 and 210. As seen in the cross-sectional view of FIG. 3, the bushing 206 may include ridges 206a, external portion 217a, and upper recess 222a The internal surface of members 208 and 210 may receive the bushing as it is press-fit into place. Thereafter, the bushing may be swaged to form a simple, streamlined, yet permanent connection between the segments or links 204 (FIG. 2) and 206. In some embodiments as discussed above, members 208 and 210 correspond to a clevis-tang connection or similar interface for enabling the segments to form a strong link without undue complexity. An internal portion of member 208 may include a recess 315 to accommodate a geometrically complementary shape or ridge extending from portion 217a of bushing 206. The recess 315 may be present to receive the ridge to provide for a more secure connection between bushing 206 and member 208. In other embodiments, additional recesses may be present or a different recess may be used in member 210. During swaging or press-fitting, the ridge may be compressed into the recess to increase the overall strength of the connection. These details depend on the geometry of the bushing, the material(s) used in the bushing and corresponding connections, and therefore may vary.


The streamlined wishbone architecture described above advantageously provides axial load paths such that the forces on the control arm as installed in a vehicle are substantially parallel to the respective longitudinal axes of segments 202 and 204. This configuration minimizes loads paths that are out of the plane with respect to the control arm geometry defined by the segments 202, 204, which in turn reduces or eliminates moments. By contrast, in conventional control arms using mechanical fastening or adhesive bonds, additional components may be assembled with the control arm to mitigate out-of-plane loads. These additional components add yet additional mass to the part.


The above-described control arm assembly provides the additional benefit of optimized material placement relative to other components in the vehicle. Because the control arm geometry is selectively positioned relative to the suspension and frame of the vehicle, and the mass is minimized, these factors free up design space that can be used to package suspension components or position other structures, as necessary.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to the exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other objects besides vehicles. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. A method for assembling a control arm for a vehicle, comprising: providing a first segment having a first connecting feature and a second segment having a second connecting feature, wherein the first connecting feature and the second connecting feature each comprise one or more elliptically-shaped rings;aligning the first and second connecting features to form an aperture;press-fitting a bushing into the aperture; andswaging the press-fitted bushing,wherein the press-fitting and the swaging maintain, via the bushing, an independent connection between the first and second segments sufficient to accommodate expected operating loads when the control arm is assembled into the vehicle.
  • 2. The method of claim 1, wherein the aperture extends at least partially through the first and second connecting features.
  • 3. The method of claim 1, further comprising additively manufacturing the first and second segments.
  • 4. The method of claim 1, further comprising machining the first and second segments.
  • 5. The method of claim 1, wherein the first and second connecting features comprise respective clevis and tang fasteners.
  • 6. The method of claim 1, wherein an outer surface of the bushing comprises a ridge configured to fit into a corresponding recess present in the first or second connection feature.
  • 7. The method of claim 6, wherein the swaging further comprises compressing the ridge into the recess to increase a connection strength between the first and second segments.
  • 8. A method for assembling a control arm for a vehicle, comprising: additively manufacturing a first segment comprising a first connection feature and a second segment comprising a second connection feature;aligning the first and second connection features in a manner that causes an aperture to extend at least partially through the first and second connection features;press-fitting a bushing into the aperture; andswaging the press-fitted bushing,wherein the press-fitting and the swaging maintain, via the bushing, an independent connection between the first and second segments sufficient to accommodate expected operating loads when the control arm is assembled into the vehicle,wherein the first connection feature comprises a pair of opposing rings defining a gap therebetween, and the second connection feature comprises a ring seated in the gap, wherein the aperture is defined at least in part by inner surfaces of the ring and the opposing rings.
  • 9. The method of claim 8, further comprising additively manufacturing one or more recesses in at least one of the first and second segments, the recesses being configured to receive material from the bushing during the swaging.
  • 10. The method of claim 8, wherein the additively manufacturing further comprises forming the first connection feature as a clevis fastener and forming the second connection feature as a tang.
  • 11. The method of claim 8, wherein the additively manufacturing further comprises forming a ridge abutting a body of the second segment, a surface of the ridge arranged to receive a portion of the first connection feature during the aligning.
  • 12. A control arm assembly for a vehicle, comprising; a first segment comprising a first connection feature at one end;a second segment comprising a second connection feature, the first and second segments being engaged together to form an aperture extending at least partially through the first and second connection features; anda bushing press fit and swaged through the aperture to thereby form a generally wishbone shaped base at the one end, the bushing being configured to provide an independent connection between the first and second segments sufficient to accommodate expected operating loads when the control arm is assembled into the vehicle,wherein the first connection feature comprises a pair of opposing rings defining a gap therebetween, and the second connection feature comprises a ring seated in the gap, wherein the aperture is defined at least in part by inner surfaces of the ring and the pair of opposing rings.
  • 13. The control arm assembly of claim 12, further comprising: a third connection feature arranged at an end of the first segment opposite the first connection feature configured to interface with a first component in the vehicle, and a fourth connection feature arranged at an end of the second segment opposite the second connection feature configured to interface with a second component in the vehicle.
  • 14. The control arm assembly of claim 12, wherein the second segment comprises a ridge abutting a body of the second segment arranged between an inner portion of the second connecting feature and the second segment, the ridge configured to receive a portion of the first connecting feature.
  • 15. The control arm assembly of claim 12, wherein the first segment comprises one or more recesses in which a portion of the swaged bushing is formed.
  • 16. The control arm assembly of claim 12, wherein the first and second segments are configured to minimize out-of-plane loads with respect to a geometry of the control arm assembly.
  • 17. The control arm assembly of claim 12, wherein the first and second segments comprise additively manufactured segments.
US Referenced Citations (382)
Number Name Date Kind
3006627 Paulsen Oct 1961 A
3037271 Schilberg Jun 1962 A
3995406 Rosman Dec 1976 A
4778199 Haggerty Oct 1988 A
5203226 Hongou et al. Apr 1993 A
5564521 McLaughlin Oct 1996 A
5720833 Grube Feb 1998 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6324940 Pazdirek Dec 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6905129 Runte Jun 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
6959935 Buhl Nov 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7163219 Seksaria Jan 2007 B2
7344186 Hausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8414002 Yu Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8783993 Brunneke Jul 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9168801 Dicke Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9187166 Klahn Nov 2015 B2
9193237 Hudler Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwärzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9751370 Weifenbach Sep 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220662 Shirakami et al. Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
20040075234 Seksaria et al. Apr 2004 A1
20040155422 Buhl Aug 2004 A1
20060108783 Ni et al. May 2006 A1
20060232038 Weise Oct 2006 A1
20100181740 Kurosu Jul 2010 A1
20110033230 Brunneke Feb 2011 A1
20110133423 Jeong Jun 2011 A1
20110133425 Jeong Jun 2011 A1
20110198821 Hessing Aug 2011 A1
20130069335 Erdogan Mar 2013 A1
20130328283 Korte Dec 2013 A1
20140225343 Hudler Aug 2014 A1
20140277669 Nardi et al. Sep 2014 A1
20170057313 Paulsen Mar 2017 A1
20170113344 Schönberg Apr 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
20180001724 Hc Jan 2018 A1
20180154720 Souschek Jun 2018 A1
20180326803 Meyer Nov 2018 A1
20180361481 Tenhaeff Dec 2018 A1
Foreign Referenced Citations (41)
Number Date Country
2982528 Feb 2016 EP
5031643 Sep 2012 JP
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2012107272 Aug 2012 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (5)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
First Notification to Make Rectifications Office Action with English translation received in corresponding Chinese Application 202020576843.7 dated Oct. 28, 2020.
International Search Report & Written Opinion received in PCT/US2020/026433 dated Jun. 15, 2020.
Related Publications (1)
Number Date Country
20200331313 A1 Oct 2020 US