The techniques described herein may be used for various WLAN systems including WLAN systems that implement IEEE 802.11, WLAN systems that implement Hiperlan, etc. IEEE 802.11 is commonly used in the United States, Japan and many other countries. Hiperlan is a WLAN radio technology that is commonly used in Europe. For clarity, certain aspects of the techniques are described below for WLAN systems that implement IEEE 802.11.
WLAN systems 120 provide communication coverage for medium geographic areas such as, e.g., buildings, malls, shops, schools, etc. Each WLAN system 120 may include any number of access points that support wireless communication for any number of terminals. In
WLAN systems 120 may implement one or more IEEE 802.11 standards and may be deployed in any part of the world. 802.11b and 802.11g operate in the 2.4 GHz band and divide the frequency spectrum from 2400 to 2495 MHz into 14 staggered and overlapping frequency channels, which are numbered as channels 1 through 14. Different frequency channels are available for use in different regulatory domains. A regulatory domain may regulate IEEE 802.11 operation for one or more countries. For example, frequency channels 1 through 11 are supported in the United States and Canada, frequency channels 10 and 11 are supported in Spain, frequency channels 10 through 13 are supported in France, frequency channels 1 through 13 are supported in the rest of Europe, and frequency channels 1 to 14 are supported in Japan. Different regulatory domains may also impose different constraints on maximum output power from a station, which may be an access point or a terminal.
In 802.11d, a beacon frame may include a Country Information element. This information element may include a Country String field that indicates the country in which the access point is located, a First Channel Number field that indicates the lowest channel number in a subband described by the information element, a Number of Channels field that indicates the number of frequency channels in the subband, and a Maximum Transmit Power Level field that indicates the maximum power allowed to be transmitted. One set of First Channel Number, Number of Channels, and Maximum Transmit Power Level fields may be provided for each subband, which is a block of consecutive frequency channels that is not contiguous with another block of frequency channels.
Referring back to
A terminal (e.g., terminal 130a or 130b in
The terminal may transition to system loss state 430 upon losing the acquired WLAN system. In state 430, the terminal may perform limited scan and attempt to re-acquire the previously acquired WLAN system a particular number of times before declaring complete system loss. The terminal may return to acquired state 420 upon re-acquiring the previously acquired WLAN. The terminal may transition to complete system loss state 440 if it is unable to re-acquire the previously acquired WLAN system after the particular number of attempts. In complete system loss state 440, the terminal may perform automatic scan to detect for available WLAN systems. The terminal may transition to acquired state 420 upon detecting and acquiring a WLAN system.
As shown in
The terminal may also support various operating modes such as an idle mode and an in-traffic mode, e.g., while in acquired state 420. The terminal may be in the idle mode if it has not exchanged data with any access point for an extended period of time. The terminal may enter the idle mode after association with an access point. The terminal may be in the in-traffic mode if it is exchanging data with the associated access point. In both the idle and in-traffic modes, the terminal may periodically scan for other access points in the same WLAN system for possible handoff.
The terminal may perform automatic scan, manual scan, background scan, limited scan and/or other scan to detect for WLAN systems. The terminal may perform automatic scan upon being powered on (e.g., in power up state 410) and may also periodically perform automatic scan when no WLAN systems are acquired (e.g., in complete system loss state 440). A goal of the automatic scan may be to find a suitable WLAN system for possible communication. The terminal may perform manual scan whenever requested by a user. A goal of the manual scan may be to return a comprehensive list of all WLAN systems detected by the terminal to the user. The terminal may perform background and limited scans to detect for one or more specific WLAN systems. The terminal may perform background scan as background tasks, secondary to other communication tasks.
The terminal may maintain various lists and sets to facilitate WLAN system scanning and selection. The terms “list” and “set” may be used interchangeably. For clarity, the term “list” is used for WLAN systems, and the term “set” is used for access points in the description below. These various lists and sets may be preconfigured at the terminal and/or formed during operation.
A detected set 530 includes access points detected by the terminal. For automatic scan, the access points in detected set 530 may be restricted to be from WLAN systems in preferred list 510. A candidate set 540 includes access points in detected set 530 that meet one or more criteria and are candidates for association by the terminal. An active set 550 includes one or more access points (typically one access point) that the terminal has associated with.
The terminal may perform passive scan and/or active scan to detect for access points. For passive scan, the terminal listens for beacon frames transmitted by access points in WLAN systems. These beacon frames carry the BSSIDs for the transmitting access points and may further carry the SSIDs for the WLAN systems in which the access points belong, as shown in
For active scan, the terminal transmits a Probe Request frame and listens for Probe Response frames to detect for access points. Active scan may be used to discover “hidden” access points, which are access points that do not include the SSID in their beacon frames. Active scan typically consumes less battery power but requires the terminal to have regulatory information so that the Probe Request frame can be transmitted in accordance with regulatory requirements. Different regulatory domains may impose different requirements on the frequency channels on which a WLAN system can operate as well as the maximum output power level for stations. In order to comply with the requirements of all regulatory domains, the terminal may perform active scan when regulatory information is available and may perform passive scan when such information is unavailable.
In an aspect, the terminal performs multiple iterations of scan to detect for WLAN systems. The terminal may receive beacon frames and/or other frames from access points and may make received signal strength indicator (RSSI) measurements on the received frames. The RSSI measurements may also be referred to as signal strength measurements, signal measurements, pilot measurements, received power measurements, etc. The measurements for a given access point may fluctuate widely, e.g., due to changes in the wireless environment. The multiple scan iterations may be used to obtain more accurate measurements for access points. The multiple scan iterations may also be used to support different types of scan (e.g., passive scan for some iterations and active scan for other iterations), scanning of different frequency channels, scanning for different WLAN systems, etc.
For each scan iteration, a scan type is selected from among all supported scan types, as described below (block 616). A scan is then performed in accordance with the scan type, and RSSI measurements are obtained for access points received by the terminal and belonging in the WLAN system(s) in the scan list (block 618). Passive scan for a given frequency channel may be performed by (a) tuning to the frequency channel, (b) listening for beacon frames from access points for a particular time duration (e.g., 130 ms or some other duration longer than the beacon interval), (c) making RSSI measurements on received beacon frames, and (d) processing the received beacon frames to identify the transmitting access points and their WLAN systems. Active scan for a given frequency channel may be performed by (a) tuning to the frequency channel, (b) sending a Probe Request frame, (c) listening for Probe Response frames from access points for a particular time duration, (d) making RSSI measurements on received Probe Response frames, and (e) processing the received Probe Response frames to identify the transmitting access points and their WLAN systems. Passive and active scans may also be performed in other manners.
A detected set of access points is updated based on the RSSI measurements obtained from the scan, as described below (block 620). A determination is then made whether the detected set is empty (block 622). If the answer is ‘Yes’, which means that no access points were detected in the last scan iteration or all prior scan iterations, then the current scan event may be aborted. The terminal may wait a particular amount of time Twait
If the detected set is not empty and the answer is ‘No’ for block 622, then a determination is made whether all scan iterations are completed (block 626). If the answer is ‘No’, then the terminal waits a predetermined amount of time Twait
Nscan may be a fixed value, in which case Nscan scan iterations may be performed regardless of the scan results. Nscan may also be a variable value that may be dependent on the scan results. For example, if strong RSSI measurements are obtained, then the number of scan iterations may be reduced to shorten scan time while providing reliable results. Thus, block 626 may entail determining or revising the number of scan iterations to perform. If all scan iterations are completed and the answer is ‘Yes’ for block 626, then a candidate set is determined based on the RSSI measurements obtained in all scan iterations (block 630).
A scan list may be determined for each scan event in block 612 in
A scan event covers multiple scan iterations for a given scan list. The preferred list may be partitioned into multiple scan lists (e.g., for different priorities), and multiple scan events may be performed for the multiple scan lists. A full scan may cover the entire preferred list and/or other WLAN systems and may be performed with one or more scan events. If a suitable WLAN system is not detected after a full scan, then the terminal may wait a particular wait time Twait
As noted above, the terminal may perform passive scan at any time and in any location and may perform active scan only if permitted by the regulatory domain governing the current location of the terminal. Upon power up, the terminal may not know its current location or the applicable regulatory domain. The terminal may ascertain the regulatory domain in various manners.
Initially, a determination is made whether the terminal is allowed to perform active scan, e.g., based on a parameter that may be provisioned on the terminal by a service provider (block 712). If the answer is ‘No’, then the regulatory domain may be set to a default regulatory domain that does not permit active scan (block 714), and the process then terminates.
If active scan is allowed, then a determination is made whether any access point detected in a prior passive scan supports 802.11d (block 722). One or more passive scan iteration may be performed (e.g., in block 618 in
If no 802.11d access points are detected, then a determination is made whether any base station in a cellular system or a broadcast system is detected (block 732). If the answer is ‘Yes’, then the regulatory domain may be determined based on information received from the base station (block 734), and the process then terminates.
If no base stations are detected, then a determination is made whether a position estimate is available for the terminal, e.g., based on measurements for satellites, base stations, and/or other transmitters (block 742). If the answer is ‘Yes’, then the regulatory domain may be determined based on the position estimate (block 744), and the process then terminates. If no information is available to determine the regulatory domain, then the regulatory domain may be set to the default regulatory domain (block 746), and the process then terminates.
The terminal may obtain country information based on a Mobile Country Code (MCC) broadcast by a base station in a cellular network. The MCC is defined by the International Telecommunications Union (ITU) as a 3-digit code that identifies the country in which a cellular network is deployed. Each country is assigned one or more unique MCC values by the ITU in Recommendation E.212, which is publicly available. For example, the United States is assigned MCC values of 310 through 316 (decimal). The MCC is broadcast in different manners by different cellular networks.
For a CDMA network that implements cdma2000, which covers IS-95, IS-2000, and IS-856, each base station broadcasts a Network Operator Identifier that is composed of an MCC and a Network Operator Code (NOC). A base station may broadcast the MCC in a Sync Channel Message on a sync channel or a System Parameters Message or an Extended System Parameters Message on a paging channel. For a GSM network, each base station regularly broadcasts a System Information Type 3 message carrying a Location Area Identification information element that contains a 3-digit MCC value and a 3-digit Mobile Network Code (MNC). For a UMTS network, each base station regularly broadcasts a System Information message carrying a Master Information block that contains a PLMN Identity for a Public Land Mobile Network (PLMN) in which the UMTS network belongs. The PLMN Identity is composed of a 3-digit MCC value and a 2 or 3-digit MNC value for the PLMN.
The terminal may obtain country information from a base station in a cellular network prior to performing the first scan iteration and may determine the regulatory domain based on the country information. The terminal may then perform active scan in the first scan iteration, if permitted by the regulatory domain. The terminal may also perform one iteration of passive scan to detect for access points. If any 802.11d access point is detected, then the terminal may obtain country information from the 802.11d access point and determine the regulatory domain based on the country information. The terminal may then perform active scan in subsequent scan iterations, if permitted by the regulatory domain. In general, the terminal may determine regulatory domain prior to or after performing the first scan iteration.
The terminal may initialize the regulatory domain to the default regulatory domain (which does not permit active scan) at power up. The terminal may update the regulatory domain whenever country information is available, e.g., whenever an 802.11 d access point or a base station is detected. The terminal may select the scan type for each iteration based on the regulatory domain. The terminal may maintain a table of different regulatory domains or country/region codes along with the applicable regulatory restrictions and frequency channels. The terminal may use active scan in regions where active scan is permitted and may perform active scan in accordance with the applicable regulatory restrictions on the specified frequency channels. The terminal may perform only passive scan if active scan not permitted or the regulatory domain or country/region for the current location is not known.
Various scan types may be defined based on passive scan and active scan, frequency channels, and/or other factors. For example, the following scan types may be supported:
Passive scan of all frequency channels,
Passive scan of non-overlapping frequency channels,
Passive scan of odd numbered frequency channels,
Passive scan of even numbered frequency channels,
Passive scan of frequency channels for entries in the preferred list,
Passive scan of non-overlapping frequency channels for entries in the preferred list,
Active scan of all frequency channels,
Active scan of odd numbered frequency channels,
Active scan of even numbered frequency channels,
Active scan of frequency channels for entries in the preferred list, and
Active scan of non-overlapping frequency channels for entries in the preferred list.
Other scan types may also be supported. The scan types available for use may be all or a subset of the supported scan types and may be dependent on regulatory domain and/or other factors. In one design, a scan type may be selected for each scan iteration, and different scan types may be selected for different scan iterations, as shown in
The detected set contains access points detected by the terminal in the multiple scan iterations for a scan event. The detected set may be updated based on RSSI measurements, filtered measurements obtained by filtering the RSSI measurements as described below, and/or other information. The detected set may be updated in various manners after each scan iteration in block 620 in
In one design, the detected set is updated after each scan iteration based on the RSSI measurements obtained in that scan iteration. A record may be created for each scan iteration and may include all access points with RSSI measurements above a detection threshold in that scan iteration. The detected set may then include Nscan records for Nscan scan iterations. These records may be used to determine which access points are detected in each scan iteration, and how often a given access point has been detected in the Nscan scan iterations.
In another design, all access points with filtered measurements above the detection threshold are included in the detected set. The filtered measurement for each access point may be updated after each scan iteration and used to determine whether or not to include the access point in the detected set for that scan iteration.
The detection threshold may be a fixed value. If the detection threshold is set to zero, then all received access points are included in the detected set regardless of their RSSI measurements. The detection threshold may also be a variable value that may be dependent on the scan iteration, as follows:
TH
det,i=max{THdet
where THdet,i is a detection threshold used to include access points in the detected set in the i-th scan iteration, THdet
In equation (1), THdet,i may be set to THdet
The detected set may also be updated in other manners. The access points in the detected set may be ordered after each scan iteration based on their RSSI or filtered measurements. Up to Nap access points with the highest measurements may be retained in the detected set after each scan iteration, where Nap may be any value.
The candidate set may be determined after all Nscan scan iterations are completed in block 630 in
In one design, access points in the detected set with filtered measurements exceeding a fixed selection threshold are included in the candidate set. This selection threshold may be any suitable value, e.g., −70, −75, −80 dB or some other value.
In another design, access points with filtered measurements exceeding a variable selection threshold are included in the candidate set. The variable selection threshold may be set as follows:
TH
sel(m)=THselinit−THsel
where THsel(m) is a selection threshold used to add access point m to the candidate set, THsel
In equation (2), THsel(m) may be set to THsel init if access point m has been detected in only one scan iteration and may be reduced by THsel
In general, the candidate set may include zero, one, or multiple access points. If at least one access point is included in the candidate set, then the “best” access point may be selected for association by the terminal. The best access point may be (a) the candidate access point with the strongest filtered measurement, (b) the candidate access point with the strongest filtered measurement among all access points included in the detected set for the longest time or the most scan iterations, or (c) an access point chosen based on a weighting between the number of scan iterations the access point is included in the detected set and the filtered measurement. The terminal may attempt to associate with the best access point. If the association with this access point is unsuccessful for any reason, then the next best access point may be selected. Association may be attempted on one candidate access point at a time, starting with the best access point, until successful association is achieved, or association with all candidate access points has been attempted.
As shown in
In another design, the wait Twait
T
wait
scan,i=max{Twait
where Twait
In yet another design, the wait Twait
T
wait scan,i=max{Twait min, Twait scan,i−1/2D
In equation (4), the wait may be set to Twait
In yet another design, the wait Twait
Twait
where Tstep,i f is a step size for the i-th scan iteration. In equation (5), the wait may be set to Twait
As also shown in
For the passive scan, a detection threshold used to include access points in the detected set, THdet
For the active scan, a detection threshold used to include access points in the detected set, THdet
If the detected set if empty after any passive scan iteration (‘Yes’ for block 820) or after any active scan iteration (‘Yes’ for block 840), then an indication that no suitable access point was found is returned (block 828). If no access points are included in the detected set for at least Npsd passive scan iterations and also for at least Nasd active scan iterations, then a no suitable access point was found indication is also returned (block 828). If at least one access point has been included in the detected set for at least Npsd passive scan iterations (‘Yes’ for block 826) and also for at least Nasd active scan iterations (‘Yes’ for block 846), then the candidate set is determined based on the RSSI measurements obtained for the detected access points (block 848).
The THdet
For a given scan event, each scan iteration may provide a set of RSSI measurements for a set of access points received or detected in that scan iteration. A scan iteration may also return an empty set if no access points are received or detected. The RSSI measurements for a given access point may fluctuate widely across different scan iterations. The RSSI measurements for each access point may be filtered to obtain a more reliable measurement for that access point. The filtering may be achieved in various manners.
In one design, the filtering is based on equal averaging, as follows:
where RSSIi(m) is an RSSI measurement for access point m in scan iteration i,
An RSSI measurement may or may not be obtained for access point m in a given scan iteration. Thus, if Nscan scan iterations are performed, then Nm≦Nscan. Equation (6) gives equal weight to all RSSI measurements.
In another design, the filtering is based on exponential averaging with an infinite impulse response (IIR) filter, as follows:
RSSI
filtered,i(m)=α×RSSIfiltered,i−1(m)+(1−α)×RSSIi(m) Eq (7)
where α is a coefficient that determines the amount of filtering, and
Coefficient α may be any suitable value between 0 and 1, or 0≦α≦1. A small α value corresponds to less filtering, and a large α value corresponds to more filtering. A final filtered measurement may be obtained after all Nm RSSI measurements have been exponentially averaged. Equation (7) gives greater weight to more recent RSSI measurements.
In yet another design, the filtering is based on a finite impulse response (FIR) filter, as follows:
where αi is a weight for the RSSI measurement for access point m in scan iteration i, and
In general, any set of weights may be used for the FIR filter. For example, the weights may be selected as αi=1/Nm for equal averaging in equation (6), or as αi∞αi for exponential averaging in equation (7). Equation (8) can give any weight to each RSSI measurement.
In yet another design, the filtering is based on equal or exponential averaging over a sliding window. The sliding window may cover Nwin latest RSSI measurements, where Nwin may be any suitable value, e.g., 3, 5, etc. Filtering is performed over the Nwin latest RSSI measurements, and older RSSI measurements are ignored.
In yet another design, the filtering is based on windowed mean exponentially weighted moving averaging (WMEWMA). In this design, an intermediate measurement is obtained for each scan iteration i by equal averaging Nwin latest RSSI measurements, e.g., as shown in equation (6). The intermediate measurements for different scan iterations are exponentially averaged, e.g., as shown in equation (7). WMEWMA is essentially a cascade of a boxcar mean followed by exponential averaging. The boxcar mean acts as a low-pass filter, while the exponential averaging allows the measurements to react reasonably quickly.
The filtering may also be performed in other manners with different averaging schemes or different combinations of averaging schemes.
While connected to a WLAN system in the in-traffic mode, the terminal may periodically perform background scan in order to maintain an up-to-date list of access points for possible handoff, if needed. The terminal may perform background scan for the current WLAN system, for any WLAN system in the preferred list, etc.
For background scan, the terminal may tune to frequency channels that are different from the frequency channel of the connected WLAN system. The terminal may perform active scan in order to keep the scan time short, which may be desirable for applications that send traffic periodically, such as Voice-over-Internet Protocol (VoIP). The terminal may perform background scan periodically in each background scan interval, which may be selected as follows:
where Nch is the number of frequency channels to scan, Nmeas is the number of RSSI measurements to obtain for a given access point, Tshahow is a time window over which the RSSI measurements are filtered, and Tbg
Tshadow may be selected to account for fade caused by temporary obstructions in the wireless environment. For example, Tshadow may be approximately 7 seconds to cover 20 feet of temporary obstruction at a pedestrian speed of 3 to 5 feet/second. A smaller Tshadow results in more frequent background scan and higher battery consumption. Nmeas may be selected to account for variability in the RSSI measurements and may be set to 3, 5, or some other value.
The terminal may also monitor the performance of the associated access point to determine whether to perform handoff to another access point. Performance may be quantified by packet error rate (PER) for received packets and/or PER for transmitted packets, number of incorrectly received or lost beacons, RSSI measurements, etc. The PER may be computed over a sliding window, which may cover a predetermined number of most recent packets. The RSSI measurements may be filtered using any of the schemes described above. The RSSI measurements for access point m may also be filtered with a slow filter and a fast filter, as follows:
RSSI
slow,i(m)=αslow×RSSIslow,i−1(m)+(1−αslow)×RSSIi(m), and RSSIfast,i(m)=αfast×RSSIfast,i−1(m)+(1−αfast)×RSSIi(m) Eq (10)
where αslow and αfast are coefficients for the slow and fast filters, respectively, and
The slow filtered measurements may be used to make decisions on handoff. The fast filtered measurements may be used to determine the channel conditions for access point m. The fast filtered measurements may also be used to adjust the filter responses, e.g., to select the filter coefficients. A single coefficient value may be too slow to detect a fast falling pilot or too quick to hand off the terminal to another WLAN system. Two filters may be able to achieve both accurate detection of fast changing pilot and stable measurements for handoff. In one design, a fixed value is used for αfast and a variable value is used for αslow. The αslow value may be determined based on the fast filtered measurements. In one design, a fast filtered measurement is compared against a set of threshold values, and one of multiple possible αslow values is selected based on the comparison result. If the fast filtered measurement is weak, then it may be desirable to adapt faster, which means that the slow filter should have a faster response and more weight (or a smaller αslow value) should be used for the current RSSI measurement. Conversely, a larger αslow value, and hence a slower filter response, may be used for a strong fast filtered measurement.
Handoff may be triggered by any criterion or any combination of criteria described above. The slow filtered measurements (if two filters are used) or the regular filtered measurements (if a single filter is used) may be compared against a measurement threshold, the PER may be compared against a PER threshold, and/or the number of incorrectly received beacons may be compared against a beacon threshold. Handoff may be triggered if the filtered measurements are below the measurement threshold, if the PER exceeds the PER threshold, and/or if the number of incorrectly received beacons exceeds the beacon threshold.
A list of access points that are candidates for handoff may be maintained. These access points may be selected based on various criteria such as quality of service (QoS) compatibility, security compatibility, RSSI, past history, etc. An access point may be a candidate for handoff if it can support the QoS and the security requested by the terminal and may be disqualified otherwise. The RSSI may be measured for the handoff candidate access points. The past history for a given access point may relate to success rate for previous handoffs to that access point. The best handoff candidate access point may be selected based on the RSSI, past history, etc. For example, a metric or score may be defined as follows:
S
total(m)=Krssi×Srssi(m)+Khist×Shist(m)+Kqos×Sqos(m)+Ksec×Ssec(m), Eq (11)
where Srssi(m), Shist(m), Sqos(m) and Ssec(m) are scores for RSSI, past history, QoS and security, respectively, for access point m,
The QoS and security scores may each be either 0 or 100. The total score may be 0 if either QoS or security score is 0. The RSSI score may range from 0 to 100, with larger value being assigned to higher RSSI measurement and vice versa. The past history score may be based on handoff success rate. For each handoff attempt for access point m, a value of 100 may be provided to a filter (e.g., an EWMA with a window size of 50) if handoff is successful, and a value of 0 may be provided if handoff is not successful. A default value (e.g., 50) may be used for the past history score if handoff to access point m has not been attempted for a predetermined number of times (e.g., 50 times). The weights Krssi, Khist, Kqos and Ksec may be any suitable values, e.g., each weight may be equal to 25 to give equal weight to all four parameters. Handoff to the best access point (e.g., with the best score) may be attempted whenever handoff is triggered. In one design, handoff may be performed if the filtered measurement (e.g., RSSIslow,i(m)) for the best access point exceeds a minimum RSSI threshold and may be skipped otherwise. In another design, handoff to the best access point is performed regardless of any the filtered measurement.
On the receive path, RF signals transmitted by access points in WLAN systems and base stations in the WWAN are received by antenna 934 and provided to a receiver (RCVR) 936. Receiver 936 conditions (e.g., filters, amplifies, frequency downconverts, and digitizes) the received RF signal and generates data samples. A demodulator (Demod) 926 processes (e.g., descrambles and demodulates) the data samples to obtain symbol estimates. A decoder 928 processes (e.g., deinterleaves and decodes) the symbol estimates to obtain decoded data. The processing by demodulator 926 and decoder 928 is complementary to the processing by the modulator and encoder at the access point or base station. Encoder 922, modulator 924, demodulator 926 and decoder 928 may be implemented by a modem processor 920.
A controller/processor 940 directs the operation of various processing units at terminal 130. A memory 942 stores program codes and data for terminal 130. Controller/processor 940 may implement process 600 in
The techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof. For a hardware implementation, the processing units used to perform WLAN system scanning and selection may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, a computer, or a combination thereof.
For a firmware and/or software implementation, the techniques may be implemented with modules (e.g., procedures, functions, etc.) that perform the functions described herein. The firmware and/or software codes may be stored in a memory (e.g., memory 942 in
An apparatus implementing the techniques described herein may be a stand-alone unit or may be part of a device. The device may be (i) a stand-alone integrated circuit (IC), (ii) a set of one or more ICs that may include memory ICs for storing data and/or instructions, (iii) an ASIC such as a mobile station modem (MSM), (iv) a module that may be embedded within other devices, (v) a cellular phone, wireless device, handset, or mobile unit, (vi) etc.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present application claims priority to provisional U.S. Application Ser. No. 60/831,021 entitled “WLAN System Selection,” filed Jul. 14, 2006, assigned to the assignee hereof and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60831021 | Jul 2006 | US |