The present disclosure relates generally to screen panels for sorting wood chips by size for subsequent processing. More specifically, the present disclosure is directed to screen panels fabricated using shaped wire at desired orientations to improve sorting efficiency.
Paper and pulp manufacturers have long recognized that the quality of their final products is highly dependent upon the consistency of the initial wood chips used in their process. In order to achieve high product quality, these manufacturers have developed two-stage sorting processes to sort wood chips by size using processes that can include conveying woodchips across a sorting surface, where the sorting surface itself can be manipulated, for example, by vibration, oscillation and/or rotation to agitate the wood chips across -the sorting surface. The first stage sorts out the overs, that is wood chips too large to efficiently process into wood fibers or wood fiber bundles. The second stage removes the fines, pins and grid from the wood chips that will continue into the pulping process. Conventional second stage for fines screening can include screens that utilize perforated plate or woven wire mesh, each having holes or apertures that are sized such that the undesirable sized woods chips can pass through the sorting surface and are thus removed from the pulping process.
Conventional fine screen/second stage sorting surfaces are subject to failure, for example, by plugging of the holes/apertures or by actual damage to the holes/apertures that can increase the size of the holes/apertures. When the holes/apertures of the sorting surface are plugged, undesirable sized wood chips including thin slivers of wood or “pins” are prevented from passing thorough the apertures and are instead, carried over to the next stage of the pulping operation. When the holes/apertures are enlarged due to damage, wood chips that would otherwise be ideal for the pulping process are instead allowed to pass through the sorting surface along with the undesirable materials, which leads to a reduced yield relative to raw materials used in the actual pulping process.
In view of the problems with conventional sorting surface technology, it would be advantageous to have an improved design that provides desirable sorting characteristics and is resistant to damage and plugging.
In representative embodiments of the present disclosure, there is provided a wood chips sorting panel utilizing a plurality of shaped wire elements that are sized and spaced to allow for efficient sorting of wood chips. In a preferred embodiment, the shaped wired elements can comprise wedge wire or Vee-Wire® shaped wire elements that are arranged in a parallel relationship so as to define sorting slots between adjacent shaped wire elements. The sorting screen can be incorporated into a sorting machine, for example, a gyratory sorting machine, such that the sorting slots are presented in a desired relation to a conveying path of the wood chips across the sorting machine. The mounting orientation of the shaped wire element to the support members can be the same along the length of the sorting screen or alternatively, the mounting orientation can change along the length of the sorting screen so as to selectively vary sorting performance for example, by varying slot size, along the sorting screen. Varying the mounting orientation can also selectively adjust a height of each shaped wire element or an angle by which a leading edge of the shaped wire element is presented to the conveying path to increase wood chip turbulence across the sorting screen and provide a self-cleaning function. In some embodiments, the shaped wire elements can be coated or otherwise machined/treated to enhance long term operation and wear that can be dependent on wood chip type or moisture content.
In one aspect, the present invention is directed to a chip sorting screen comprising a screen top and a screen bottom that are spaced apart and supported by a screen frame. Chip sorting screen can generally define an upstream end and a downstream end. The screen top generally comprises a plurality of shaped-wire elements that are operably coupled to one or more support members. The shaped-wire elements are arranged so as to lie in a generally parallel relationship to each other and separated by a slot width so as to define essentially continuous slots along the screen top. The shaped-wire elements and sorting slots can reside in transverse relationship relative to a woodchip flow direction from the upstream end to the downstream end. Preferably, the shaped-wire elements comprise a wedge or Vee-wire® element that has a vee-shaped or triangular cross-section. The screen bottom can comprise a woven wire sheet defining a plurality of square-shaped openings or alternatively, other screen material known in the art can be used.
In another aspect, the present invention is directed to a method of sorting a wood chip stream. Generally, the method can comprise passing a wood chip stream across a chip sorting screen having a top surface formed of a plurality of shaped wire elements arranged in parallel so as to define a plurality of slots. The method can further comprise disrupting the wood chip stream with a leading edge of each shaped wire element to form a turbulent or washboard action across the top surface whereby wood chip fines, pins and grit are directed through the slots.
In yet another aspect, the present invention is directed to a sorting screen assembly for use with a sorting machine. The sorting screen assembly can comprise a plurality of chip sorting screens that are arranged to influence the travel path of a wood chip stream. In some embodiments, the use of a plurality of chip sorting screens can allows for a change in slot angle relative to the wood chip stream. Generally, each chip sorting screen can be configured such that slots defined on each chip sorting screen reside in a non-transverse relationship to the wood chip stream. The slots on each chip sorting screen can reside in a parallel or non-parallel relationship to each other as well as combinations of parallel and non-parallel slots.
The above summary is not intended to describe each illustrated embodiment or every implementation of the subject matter hereof. The figures and the detailed description that follow more particularly exemplify various embodiments.
Subject matter hereof may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying figures, in which:
While various embodiments are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the claimed inventions to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the subject matter as defined by the claims.
A representative embodiment of a chip sorting screen 100 is illustrated in
As illustrated in
As illustrated in
Referring now to
In use, one or more chip sorting screens 100 are incorporated into a gyratory screener following the rough sorting of the original wood chips. Following the rough sorting of the original wood chips, chip sorting screen 100 is used to sort wood chips by size and to separate the desirable long fibers, which are ideal for further pulp processing, from the fines and shorter fibers, which hinder liquor removal from a digester. Generally, a wood chip stream 200 is directed across the chip sorting screen 100 from the upstream end 108 to the downstream end 110 as shown schematically in
As the wood chip stream 200 encounters wire side 134a, a leading edge 206 of the element surface 136 interacts with the wood chip steam 200 and introduces a washboard action that agitates the individual chips to release chip fines 210 from the wood chip stream 200. The smallest chip fines 210 pass directly through the slots 126 and into the pockets 170 as shown in
During use of the chip sorting screen 100, wood chips that have at least one dimension larger than the slot width 124 can become trapped within the rectangular shaped slots 126. As opposed to rectangular or round shaped openings, the rectangular shaped slots 126 are essentially bound on only two sides, for example, between adjacent shaped-wire elements 120. Thus, chip sorting screen 100 is easily cleaned with high pressure water sprayed along the screen top 102. As these trapped wood chips are only retained on two sides, they can shift and move more easily than wood retained around their entire perimeter, thereby allowing them to be dislodged easier and to clear the screen top 102 faster such that the gyratory or similar screening machine experiences less downtime when using chip sorting screen 100.
With reference to
Various embodiments of systems, devices, and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the claimed inventions. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, configurations and locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the claimed inventions.
Persons of ordinary skill in the relevant arts will recognize that the subject matter hereof may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the subject matter hereof may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the various embodiments can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted.
Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
The present application claims priority to U.S. Provisional Application Ser. No. 63/042,222, filed Jun. 22, 2020 and entitled “WOOD CHIP SORTER SCREEN AND RELATED METHODS OF SORTING WOOD CHIPS”, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/038240 | 6/21/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63042222 | Jun 2020 | US |