The invention generally relates to construction material fastening. In particular, the invention relates to the fastening together of wooden truss assemblies.
The construction of commercial buildings, residences and other structures often includes the use of wood truss assemblies. Typically in modern construction these truss assemblies incorporate the use of laminated elements. These laminated structures allow for high strength construction due to their typically high strength to weight ratio, their dimensional stability, and their rigidity. Often these laminated building elements are referred to as engineered lumber, and include such products as laminated veneer lumber (LVL), parallel strand lumber (PSL) and laminated strand lumber (LSL). These laminated building elements typically contain a minimal incorporation of defects such a core voids, slope of grain, knotholes, and delaminated areas which make their use extremely appealing.
However, the assembly of these laminated elements is often problematical through the use of conventional fasteners which cause, among other things, splitting, splintering, cracking, fracturing, and or other cosmetic and/or structural damage to the laminated element. Such cosmetic and/or structural damage can significantly negatively impact the overall structure. A solution to this problem is highly desired by those associated with structure construction.
Briefly stated, the present invention in a preferred form is a truss fastener that includes a shaft having a head end and a tip end. Threading is present on the shaft and extends along the shaft from the tip end toward the head end of the shaft. The threading is interrupted, abbreviated, and/or otherwise separated by projections which extend from the surface of the shaft and/or from portions of the threading. The projections extend in a generally oblique direction to an axial center of the fastener. The interrupting projections may project from a profiled portion of the fastener tip end and may include an arcuate leading edge.
The present invention also includes a method of utilizing the fastener in laminated building elements such as LVL and LSL.
An object of the present invention is to prevent and/or reduce damage to material into which the fastener is embedded.
A further object of the present invention is to provide a non-damaging, reliable, and effective fastener for laminated building elements such as LVL and LSL.
Other objects and advantages of the invention will be evident to one of ordinary skill in the art from the following detailed description with reference to the accompanying drawings, in which:
With reference to the drawings wherein like numerals represent like parts throughout the several figures, a wood truss fastener in accordance with the present invention is generally designated by the numeral 10.
In one embodiment of the present invention, as shown in
In one embodiment of the invention, the wing 26 is positioned proximate the tip of the fastener. The wing 26 may be wholly or partially located on the tapered portion 22 of the fastener. The wing 26 projects away from the surface of the fastener such that a portion or portions of the wing 26 extend below, at, or above the height of the threading 24A, 24B. The wing 26 functions, for example, to remove, cut, shave, or otherwise displace lumber material 28, as shown in
In one embodiment of the invention, the wing 26 extends along a portion of the shaft 12 in an orientation which is substantially oblique to the fastener center axis 14. The wing 26 may also have an orientation such that the wing 26 has a pitch that greatly exceeds the pitch of the threading 24A, 24B. For example, the wing 26 may traverse a helical path about the center axis 14.
In one embodiment of the invention, the wing 26, as shown in
In one embodiment of the present invention, the distance between the trailing end 32 and the center axis 14 is greater than the distance between the entry end 29 and the center axis.
In one embodiment of the present invention, the wing 26 protrudes outward from the center axis 14 to a greater distance than the distance from the center axis 14 to a surface of an unthreaded portion of the substantially cylindrical portion of the shaft.
In one embodiment of the present invention, as shown in
It should be understood that the wing 26 may be altered in shape, angle, hardness, and/or any other property or relationship to the fastener to reduce problems associated with conventional fasteners. The shape, angle, and hardness of the wing 26 can independently be varied during manufacture such that the physical properties of the lumber material are accounted for. For example, in lumber material having a high density the wing preferably has a hardness that resists dulling.
In one embodiment of the present invention, as shown in
The fastener 10 may be manufactured of differing lengths depending on the intended application. For example, as shown in
In one embodiment of the invention, the fastener point 20 is placed against a lumber material 28 and is rotatably driven so that the threading 24A enters the lumber material 28. As the threading 24A pulls the fastener into the lumber material 28, the wing 26 structures engage with the lumber material 28 and shave, cut, ream, displace, remove, and/or otherwise alter the forming fastener entry point. This alteration to the forming fastener entry point allows the threading 24B located on the substantially cylindrical portion 25 of the shaft to enter the lumber material 28 with less disturbance to the material.
In operation, in one embodiment of the invention, the point 20 of the fastener 10 is contacted with, for example, a laminated strand lumber member a laminated veneer lumber member. The fastener 10 is then rotated, for example by a tool engaged with the tool engagement portion 38 of the head, such that the threading 24A in proximity to the fastener point 20 engages the lumber material. The threading 24A draws the fastener shaft 12 into the lumber material. A tapered portion 22 of the shaft near the point 20 displaces a portion of the lumber material away from the center axis 14 of the fastener as the fastener travels into the lumber material. As the fastener 10 continues travelling into the material, the wing 26 contacts the lumber material. As the wing 26 contacts that lumber material during rotation of the fastener 10, the wing 26 reams away the displaced lumber material portion. As a substantially non-tapering portion of the shaft reaches the material, a bore hole 46, as shown in
While an embodiment of the foregoing invention has been set forth for purposes of illustration, the foregoing description should not be deemed a limitation of the invention herein. Accordingly, various modification, adaptations and alternatives may occur to one skilled in the art without departing from the spirit and the scope of the present invention.
This application claims the benefit of U.S. Provisional Application No. 60/537,681 filed Jan. 20, 2004.
Number | Name | Date | Kind |
---|---|---|---|
1084643 | Lasater | Jan 1914 | A |
3045523 | Reed | Jul 1962 | A |
4655661 | Brandt | Apr 1987 | A |
5015134 | Gotoh | May 1991 | A |
5882162 | Kaneko | Mar 1999 | A |
5987837 | Nelson | Nov 1999 | A |
6328516 | Hettich | Dec 2001 | B1 |
6332741 | Janusz | Dec 2001 | B1 |
6739815 | Takasaki | May 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20050155311 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60537681 | Jan 2004 | US |