The present application claims priority from Japanese Patent Application No. 2007-339401 which was filed on Dec. 28, 2007, the disclosure of which is herein incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to a work device including a lengthy member which follows a movable member configured to reciprocate in a certain direction and which is guided by a guide member and also relates to an image recording apparatus equipped with the work device.
2. Discussion of Related Art
There has been conventionally known an image recording apparatus of an ink-jet system configured to record an image on a recording medium by ejecting ink based on input signals. As the ink-jet system, there has been known a system in which the ink is introduced to an actuator such as a piezoelectric element or an electrostrictive element disposed in a recording head and droplets of the ink are ejected from nozzles by deformation or deflection of the actuator in accordance with the input signals. There has been also known, as the ink-jet system, a system in which the ink pressurized utilizing local boiling thereof by a heat-generating element is ejected as the ink droplets.
The ink-jet recording head is mounted on a carriage so as to be moved relative to the recording medium such as a recording sheet, for instance. The carriage is configured to be driven by a drive force transmitted from a drive source such as a motor for thereby reciprocating in a certain direction while being guided by guide shafts, guide rails, or the like. During the reciprocating movement of the carriage, the ink droplets are selectively ejected from the recording head toward the recording medium, so that an image is recorded by the ink droplets attached to the recording medium.
For supplying the ink from an ink cartridge to the recording head, there is employed a method using ink tubes. Each of the ink tubes defines a flow path through which the ink flows to the recording head from the ink cartridge disposed separately from the recording head. The ink tube has flexibility that allows the ink tube to follow the reciprocating movement of the carriage. The ink tube has a length that is determined considering a distance between the carriage and the ink cartridge when the carriage is located at a position that is the most distant from the ink cartridge. When the carriage is located at a position that is the nearest to the ink cartridge, the ink tube is curved into a substantially U-shape, for instance.
Patent Document 1 discloses an arrangement in which inks of four colors accommodated in respective ink cartridges are supplied to a carriage (1) via respective four ink supply tubes (87). Each of the four ink supply tubes is curved into a generally U-shape that has a bent portion (W). In the disclosed arrangement, owing to a guide member (89), a direction of a restoring force of the bent portion (W) of the ink supply tube that acts on the carriage is made equal to a direction substantially perpendicular to a direction of the reciprocating movement of the carriage, namely, made equal to a direction substantially perpendicular to a main scanning direction (X). Accordingly, the restoring force of the bent portion (W) does not act obliquely on the carriage, so that the carriage is prevented from being inclined, avoiding a deterioration in the accuracy with which the liquid or ink is ejected.
Patent Document 1 JP-A-2004-268346
In the arrangement described above, however, when the ink tubes come into contact with the guide member, there is generated a butting noise, causing a problem that a operation sound generated in the image recording operation becomes large. The butting noise tends to become large with an increase in the speed of the reciprocating movement of the carriage for speeding up the image recording operation.
On the other hand, where the guide member is not provided, the ink tube that follows the carriage moves freely or disorderly, whereby components or members located near the ink tube may be damaged or there may be caused a risk of generating the above-indicated force which acts on the carriage so as to incline the carriage.
The problems indicated above may be experienced not only in the image recording apparatus, but also in an image reading device such as a flatbed-type scanner having an image sensor mounted on the carriage and configured to be moved relative to a document to scan an image on the document.
The present invention has been developed in the light of the situations indicated above. It is therefore an object of the invention to provide a work device in which a butting noise generated when a lengthy member following a movable member comes into contact with a guide member is reduced and which realizes a smooth reciprocating movement of the movable member by stabilizing a force that applies from the lengthy member to the movable member upon a reciprocating movement of the movable member.
The above-indicated object may be attained according to a principle of the invention, which provides a work device, comprising: a movable member configured to reciprocate in a certain direction; a lengthy member which is connected to the movable member at a first-end-side portion near to a first end thereof, so as to extend in a first direction, and is elastically curved toward a second direction different from the first direction so that a second-end-side portion near to a second end thereof is fixed at a prescribed position, the lengthy member being operable to follow a reciprocating movement of the movable member; and a guide member having a first guide surface extending along the second direction, a second guide surface extending in a third direction that intersects the second direction, and a third guide surface contiguous to the first guide surface and the second guide surface, wherein the third guide surface is configured such that a boundary point in the lengthy member transits on the third guide surface from the first guide surface toward the second guide surface when the lengthy member contacting the first guide surface moves so as to come into contact with the second guide surface following the reciprocating movement of the movable member, the boundary point, defining a boundary between a region of the lengthy member that is in contact with the third guide surface and a region of the lengthy member that is not in contact with the third guide surface.
The work device according to the invention may be realized in a printer whose recording head is mounted on the movable member or in a scanner whose image sensor is mounted on the movable member, for instance. The movable member is configured to reciprocate in a certain direction by a drive force transmitted from a drive source such as a motor. The direction of reciprocation of the movable member may be constituted by mutually opposite two directions.
The lengthy member is connected to the movable member. The lengthy member assumes a tube-like shape or a ribbon-like shape and is long in a direction in which it extends. As the lengthy member, there may be employed an ink tube through which ink flows where the work device is realized in the printer and a cable for transmitting electric signals where the work device is realized in the scanner. The first-end-side portion of the lengthy member is connected to the movable member while the second-end-side portion is connected to a component different from the movable member, such as a main body of the device. A portion of the lengthy member interposed between the first-end-side portion and the second-end-side portion is curved in a generally U-shape from the first direction toward the second direction and is elastically deformed following the reciprocating movement of the movable member. The first direction and the second direction may coincide with the direction of the reciprocating movement of the movable member.
The shape of the lengthy member is controlled by the guide member. The guide member includes the first guide surface contacting the lengthy member and the second and third guide surfaces with which the lengthy member comes into contact. The third guide surface is configured such that the boundary point in the lengthy member defined as described above transits on the third guide surface from the first guide surface toward the second guide surface when the lengthy member contacting the first guide surface moves so as to come into contact with the second guide surface following the movable member. Accordingly, the lengthy member comes into contact with the third guide surface before it comes into contact with the second guide surface, and the boundary point in the lengthy member transits on the third guide surface toward the second guide surface, whereby the lengthy member comes into contact with the second guide surface while being guided in a direction from the second direction toward the third direction. In other words, the lengthy member is guided so as to come into gentle or moderate contact with the second guide surface.
The above and other objects, features, advantages and technical and industrial significance of the present invention will be better understood by reading the following detailed description of a presently preferred embodiment of the invention, when considered in connection with the accompanying drawings, in which:
There will be described in detail a preferred embodiment of the present invention with reference to the accompanying drawings. In the present embodiment, there is illustrated a multi-function device 10 as one example of an image processing apparatus equipped with a work device according to the present invention. It is to be understood that the present invention is not limited to the multi-function device 10 but may be otherwise modified without departing from the principle of the invention.
1. Schematic Structure of Multi-Function Device
As shown in
The printing section 11 is disposed at a lower portion of the multi-function device 10 while the scanning section 12 is disposed at an upper portion of the same 10. The multi-function device 10 is connected to external information equipment such as a computer, whereby the printing section 11 performs recording of images and characters on a recording medium based on print data including image data and document data transmitted from the external information equipment. The scanning section 12 is a so-called flatbed type scanner.
The multi-function device 10 is wide and flat type with its width (indicated by an arrow 101 in
At the upper portion on the front side of the multi-function device 10, there is provided an operator's control panel 14 through which suitable inputting is made for permitting the printing section 11 and the scanning section 12 to work as intended. The control panel 14 includes a plurality of buttons and a display on which are indicated a status of the multi-function device 10, an error message, and the like. Where the multi-function device 10 is connected to the external information equipment, the multi-function device 10 operates also based on instructions transmitted from the external information equipment via communication software such as a printer driver and a scanner driver.
2. Printing Section
As shown in
The sheet supplying tray 20 has a container-like configuration opening upwards. In an internal space of the sheet supplying tray 20, a stack of the recording sheets is accommodated. The sheet supplying tray 20 can accommodate recording sheets in various sizes equal to or smaller than an A3 size, such as an A4 size, a B5 size, and a postcard size.
The sheet receiving tray 21 has a tray-like configuration on which are discharged the image-recorded sheets. The sheet receiving tray 21 is disposed nearer to the front side of the multi-function device 10 than the sheet supplying tray 20, in the depth direction (indicated by the arrow 103 in
At a portion of the sheet supplying tray 20 corresponding to the back side of the device 10, a sheet supplying roller 25 is provided. The sheet supplying roller 25 is configured to supply the recording sheets stacked on the sheet supplying tray 20 one by one to the sheet conveying path 23. The sheet supplying roller 25 is rotated by a drive force transmitted from a motor (not shown) and is rotatably supported by a free end of a roller support arm 26. The roller support arm 26 is pivotable at its proximal end that is remote from the sheet supplying roller 25, whereby the sheet supplying roller 25 supported by the free end of the roller support arm 26 moves upward so as to separate from the sheet supplying tray 20 and downward so as to approach the same 20. The roller support arm 26 is biased downward by the weight of the sheet supplying roller 25, a spring or the like, and is moved upward in accordance with the amount of the recording sheets accommodated in the sheet supplying tray 20. Thus, the sheet supplying roller 25 is configured to contact an uppermost one of the recording sheets stacked on the sheet supplying tray 20. When the sheet supplying roller 25 is rotated with the uppermost sheet contacting the sheet supplying roller 25, the uppermost sheet is fed to the sheet conveying path 23 owing to a friction force between the surface of the sheet supplying roller 25 and the sheet.
The sheet conveying path 23 extends upward on the back side of the multi-function device 10 and subsequently turns toward the front side of the device 10, so as to extend from the back side toward the front side of the device 10 (as indicated by the arrow 103 in
The image recording unit 24 is constituted mainly by a recording head 39 and a platen 42 which face each other with a predetermined distance therebetween. The structure of the image recording unit 24 will be explained in detail.
On the upstream side of the image recording unit 24 in the sheet-conveyance direction, a sheet conveying roller 60 and a pinch roller are disposed as a pair. In
On the downstream side of the image recording unit 24 in the sheet-conveyance direction, a sheet discharging roller 62 and a spur are disposed as a pair. In
3. Schematic Structure of Image Recording Unit
The work device according to the present invention is realized by including a carriage 38, ink tubes 41, and a guide member 70 in the image recording unit 24. The carriage 38, each ink tube 41, and the guide member 70 respectively correspond to a movable member, a lengthy member, and a guide member in the present invention.
While not shown in
As shown in
The guide rail 44 has an edge portion 45 on its upstream side in the sheet-conveyance direction. The edge portion 45 is bent upward at a substantially right angle. The carriage 38 supported by the guide rails 43, 44 slidably grips the edge portion 45 by means of a gripping member such as a roller pair, whereby the carriage 38 is positioned in the sheet-conveyance direction and is slidable in the direction intersecting the sheet-conveyance direction (i.e., in the direction perpendicular to the sheet-conveyance direction in the present embodiment). That is, the carriage 38 is slidably supported on the guide rails 43, 44 and is capable of reciprocating along the edge portion 45 in the direction intersecting the sheet-conveyance direction.
A belt drive mechanism 46 is disposed on the upper surface of the guide rail 44. The belt drive mechanism 46 includes: a drive pulley 47 and a driven pulley 48 disposed near opposite ends of the sheet conveying path 23 in the widthwise direction of the same 23 (indicated by the arrow 101 in
While not shown in
The platen 42 is disposed under the sheet conveying path 23 so as to face the recording head 39. The platen 42 is disposed over a central portion within a reciprocating range of the carriage 38, on which the recording sheet passes. The width of the platen 42 is sufficiently larger than the maximum width of the recording sheet that can be used in the printing section 11. Between the recording sheet supported on the upper surface of the platen 42 and the recording head 39, a constant distance is maintained. The ink droplets ejected from the recording head 39 are attached to the recording sheet thus supported on the platen 42.
4. Ink Tubes
While not shown in
Each ink tube 41 is made of a synthetic resin material and formed into a straight tube-like configuration. The ink tube 41 has a suitable degree of toughness (i.e., bending rigidity) for keeping its straightness, and further has flexibility that permits the ink tube 41 to be flexed upon application of an external force thereto and elasticity that permits the ink tube 41 to restore to its original shape upon removal of the external force. Owing to the flexibility and elasticity, the ink tube 41 changes in shape following the reciprocating movement of the carriage 38.
The ink tubes 41 drawn from the cartridge mount portion are fixed by a clip 36 provided on a main body of the device 10. Each ink tube 41 is allowed to be freely flexed or deflected, at a portion thereof extending from the clip 36 to the carriage 38, without being fixed to the main body. The ink tube 41 changes in shape at that portion, following the reciprocating movement of the carriage 38. The position of the clip 36 corresponds to a prescribed position at which a second-end-side portion near to a second end of each ink tube 41 as the lengthy member is fixed. In
The above-indicated portion of each ink tube 41 extending from the clip 36 to the carriage 38 is drawn in a generally U-shape in which the direction of extension is turned or reversed. The four ink tubes 41 fixed by the clip 36 are piled up in a direction perpendicular to the sheet plane of
In each ink tube 41, a section that extends substantially straight in a first direction 104 from a first-end-side portion which is near to a first end of each ink tube 41 and at which the ink tube 41 is connected to the carriage 38 is referred to as a first section 31, a section that is elastically curved from the first section 31 toward a second direction 105 opposite to the first direction 104 is referred to as a second section 32, and a section that extends substantially straight from the second section 32 in the second direction 105 to the second-end-side portion fixed by the clip 36 is referred to as a third section 33. The terms “first-end-side portion” and “second-end-side portion” are used to collectively refer to the respective portions of the ink tube 41 that are respectively near to the opposite ends (the first and the second ends) of the ink tube 41. The first-side-end portion and the second-side-end portion of the ink tube 41 need not be located at the opposite ends of the ink tube 41. For instance, the second-end-side portion may be located intermediate between the opposite ends of the ink tube 41 as illustrated in the present embodiment.
When the carriage 38 reciprocates, the first section 31, the second section 32, and the third section 33 change their shapes following the reciprocating movement of the carriage 38. Due to the changes in the shapes, length ratios of the respective first through third sections 31-33 in each ink tube 41, namely, ranges in the ink tube 41 that are occupied by the respective first through third sections 31-33, vary. In this respect, it is noted that each of the first through third sections 31-33 does not constantly occupy a specific section in the ink tube 41 but changes due to elastic deformation of the ink tube 41 following the reciprocating movement of the carriage 38. For instance, as shown in
As shown in
5. Push Member
The carriage 38 is provided with a push member 51 disposed so as to be distant from the joint member 60 in the first direction 104 in
The pin 52 of the carriage 38 and the pin 53 of the push member 51 are arranged so as to be spaced apart from each other in the depth direction of the device 10 (indicated by the arrow 103 in
The pin 53 pushes the four ink tubes 41 arranged in the horizontal direction, toward the clip (36) side. The ink tubes 41 extending from the joint member 50 in the first direction 104 are pushed by the pin 53, so that the ink tubes 41 are elastically deformed toward the clip (36) side. Accordingly, the carriage 38 receives, via the pin 53, a force by which the shape of each ink tube 41 returns to the shape extending along the first direction 104. The direction of this force is substantially opposite to a direction toward the clip (36) side as seen in the depth direction of the device 10 that is indicated by the arrow 103 in
When the push member 51 is removed from the pin 52 as shown in
Attaching and detaching of the push member 51 to and from the pin 52 are carried out considering the length of each ink tube 41. For instance, the push member 51 is selectively attached to or detached from the pin 52 depending upon whether the maximum size of the recording sheet that can be used in the printing section 11 is A3 or A4. Where the maximum size is A3, the range of reciprocation of the carriage 38 is larger than an instance where the maximum size is A4, so that the length of each ink tube 41 increases. Accordingly, the ink tube 41 curved in the generally U-shape tends to expand in the depth direction of the device 10 indicated by the arrow 103. Where the U-shaped ink tube 41 expands largely, the ink tube 41 may contact other components such as the edge portion 46 of the guide rail 44, causing a risk of wear or damages of the ink tube 41. In view of this, the push member 51 is installed on the pin 52, whereby the ink tube 41 is elastically deformed largely so as to reduce the radius of curvature of the second section 32 of the ink tube 41. On the other hand, where the maximum size is A4, the U-shaped ink tube does not expand so much, as compared with an instance where the maximum size is A3. Accordingly, even if the push member 51 is not installed on the pin 52, it is possible to prevent the ink tube 41 from contacting other components due to the elastic deformation of the ink tube 41 by the pin 52 and to decrease the force by which the shape of each ink tube 41 returns to the shape extending along the first direction 104 for thereby reducing the influence of the force on the carriage 38.
6. Flat Cable
As shown in
The flat cable 85 has flexibility that permits the flat cable 85 to be flexed or deflected following the reciprocating movement of the carriage 38. The flat cable 85 has a generally U-shape at a portion thereof extending from the carriage 38 to the clip 36. That is, the flat cable 85 extends from the carriage 38 in the first direction 104 and subsequently turns so as to extend to the clip 36 in the second direction 105. The ribbon-like flat cable 85 is disposed such that a line which is perpendicular with respect to opposite surfaces of the flat cable 85 extends in the horizontal direction and such that the opposite surfaces extend in the vertical direction. Both of the direction in which the flat cable 85 extends from the carriage 38 and the direction in which the ink tubes 41 extend from the carriage 38 are the first direction 104.
A first-end-side portion of the flat cable 85 which is near to a first end thereof and which is fixed to the carriage 38 is electrically connected to the head control board (not shown) mounted on the carriage 38. A second-end-side portion of the flat cable 85 which is near to a second end thereof and at which the flat cable 85 is fixed by the clip 36 extends farther toward a main board and is electrically connected thereto. The generally U-shaped portion of the flat cable 85 is not fixed to any component and changes in shape following the reciprocating movement of the carriage 38, like the ink tubes 41.
7. Guide Member
As shown in
The wall surface of the guide member 70 located on the side near to the ink tubes 41 functions as a guide surface. The guide surface is divided into three sections, i.e., a first guide surface 71, a second guide surface 72, and a third guide surface 73. The first guide surface 71 is a plane which extends in the second direction 105 so as to be held in contact with the third section 33 of each ink tube 41 for permitting the third section 33 to extend substantially straight in the second direction 105. The second guide surface 72 is a plane which extends in a third direction 106 that intersects the second direction 105 and with which the second section 32 of each ink tube 41 can come into contact. The second guide surface 72 guides the second section 32 in the third direction. The third guide surface 73 is a curved surface which is contiguous to the first guide surface 71 and the second guide surface 72 and which is curved with a first radius of curvature R1. The third guide surface 73 guides the second section 32 of the ink tube 41 such that the second section 32 comes into gentle contact with the second guide surface 72. In other words, the guide surface of the guide member 70 starts from the vicinity of the clip 36 toward the left-side end of the device 10 as seen in
As shown in
first radius of curvature R1≧second radius of curvature R2 Formula (1)
The second radius of curvature R2 is a radius of curvature of the second section 32 defined at a position where the second section 32 of the ink tube 41 reaches the third guide surface 73 of the guide member 70. This position corresponds to the above-indicated specific position and also corresponds to a boundary point 107 explained below. As described above, the ink tube 41 changes in shape following the reciprocating movement of the carriage 38. As shown in
In the present embodiment, the four ink tubes 41 are connected to the carriage 38. Accurately, the second radii of curvature R2 of the respective ink tubes 41 slightly vary from each other. However, the second radii of curvature R2 of any of the four ink tubes 41 satisfy the above formula (1). In the present embodiment, therefore, the following description will be made with respect to one of the four ink tubes 41 that is located at; the outermost position relative to the center of curvature.
As shown in
second radius of curvature R2>third radius of curvature R3 Formula (2)
8. Operations of Carriage and Ink Tube
There will be hereinafter explained operations of the carriage 38 and the ink tube 41 in the printing section 11. To the carriage 38 on which the recording head 39 is mounted, the drive force of the motor is transmitted via the belt drive mechanism 46, whereby the carriage 38 reciprocates in a direction intersecting the sheet-conveyance direction, i.e., in the direction indicated by the arrow 101, while being guided by the guide rails 43, 44. The recording head 39 that reciprocates with the carriage 38 selectively ejects, at a suitable timing, droplets of the inks of the different colors supplied through the respective ink tubes 41, onto the recording sheet supported on the platen 42, on the basis of the signals transmitted from the control board through the flat cable 85. The intermittent conveyance of the recording sheet by the sheet conveying roller 60 and sheet discharging roller 62 and the reciprocating movement of the carriage 38 are alternately repeated, whereby an intended image is recorded on the recording sheet. The carriage 38 is operated also in maintenance and initialization of the device 10, in addition to the image recording.
The ink tube 41 and the flat cable 85 connected to the carriage 38 change in shape following the reciprocating movement of the carriage 38. Although the flat cable 85 changes in shape like the ink tube 41, its detailed explanation is omitted.
As shown in
Due to the restoring force of the second section 32 of the ink tube 41, the radius of curvature of the second section 32 becomes large, so that the ink tube 41 curved in the U-shape tends to occupy a large space within the device 10. In this respect, the first section 31 is pushed toward the guide member 70 by the pin 53 provided on the carriage 38, whereby the first section 31 is elastically deformed slightly in an S-shape while extending in the first direction 104. There is also generated a restoring force by the elastic deformation of the first section 31, and the restoring force is transmitted to the carriage 38 via the pin 53. Further, the restoring force of the first section 31 is transmitted to the second section 32 and acts as a force to reduce the radius of curvature of the second section 32. Accordingly, it is possible to prevent the radius of curvature of the second section 32 from becoming excessively large, so that the ink tube 41 is shaped such that the space occupied by the ink tube 41 in the device 10 does not increase.
The restoring force of the second section 32 of the ink tube 41 is transmitted to the carriage 38 via the first section 31. As described above, the first section 31 is elastically deformed by the pin 53, so that the restoring force of the second section 32 acts on the carriage 38 as a force to push the pin 53 in a direction substantially perpendicular to the reciprocating direction (that is indicated by the arrow 101) of the carriage 38, namely, as a force to push the pin 53 toward the upper side in the direction indicated by the arrow 103 in
When the carriage 38 is located at the left-side end in its reciprocating range as shown in
When the first section 31 becomes the shortest or the first section 31 does not exist, the ink tube 41 comes off the pin 53, whereby the restoring force of the second section 32 acts directly on the carriage 38 and the rotation moment may be generated in the carriage 38. In this instance, the second section 32 of the ink tube 41 is configured to be guided by the second guide surface 72 of the guide member 70 such that the radius of curvature is reduced to be equal to the third radius of curvature R3 smaller than the second radius of curvature R2, so that the length of the first section 31 is made larger than an instance where the radius of curvature of the second section 32 is equal to the second radius of curvature R2. Accordingly, it is possible to reduce a possibility that the restoring force of the second section 32 acts on the carriage as the rotation moment, so that the posture of the carriage is stabilized.
While the carriage 38 moves from the location indicated in
Before the carriage 38 reaches the left-side end in its reciprocating range (
As the carriage 38 moves to the left-side end in its reciprocating range, the second section 32 of the ink tube 41 comes into contact with the third guide surface 73 gradually from a portion thereof near to a boundary with the third section 33. The above-indicated boundary point 107 (
As described above, the third guide surface 73 is curved with the first radius of curvature R1. Further, the second section 32 is curved while changing its radius of curvature, following the movement of the carriage 38. When the carriage 38 is located at a position at which the second section 32 reaches the third guide surface 73 from the first guide surface 71, namely, when the boundary point 107 is present at a boundary between the first guide surface 71 and the third guide surface 73, the second section 32 is curved with the second radius of curvature R2, and the first radius of curvature R1 and the second radius of curvature R2 satisfy the above-indicated formula (1). In short, the third guide surface 73 is curved more gradually than the second section 32.
As the carriage 38 moves, the second section 32 comes into contact with the third guide surface 73 before coming into contact with the second guide surface 72, and is gradually guided from the second direction to the third direction so as to come into contact with the second guide surface 72. Since the third guide surface 73 is curved more gradually than the second section 32, the above-indicated boundary point 107 is constantly present at only one location in the second section 32. As the carriage 38 moves, the boundary point 107 transits on the third guide surface 73 from a boundary with the first guide surface 71 to a boundary with the second guide surface 72, so that the second section 32 begins to gently contact the second guide surface. When the carriage 38 moves to the left-side end in its reciprocating range, the second section 32 is gradually guided by the second guide surface 72 in a direction toward the guide rail 44 along the third direction. In other words, the second section 32 is guided by the third guide surface 73 so as to come into gentle contact with the second guide surface 72.
In the illustrated embodiment, when the ink tube 41 contacting the first guide surface 71 moves so as to come into contact with the second guide surface 72 following the carriage 38, the boundary point 107 transits on the third guide surface 73 from the first guide surface 71 toward the second guide surface 72. Accordingly, the ink tube 41 is prevented from abruptly contacting the guide member 70, thereby reducing a butting noise generated upon contact of the ink tube 41 with the guide member 70. Thus, it is possible to realize the printing section 11 which is quiet in the operation sound during the reciprocating movement of the carriage 38
Further, the radius of curvature of the second section 32 is made small by the second guide surface 72, so as to reduce the possibility that the restoring force by which the second section 32 is restored to the straight shape acts on the carriage 38 as the rotation moment. Accordingly, it is possible to stabilize the posture of the carriage 38 during its reciprocating movement and upon changing of the reciprocating direction, resulting in a smooth reciprocating movement of the carriage 388
The carriage 38 is provided with the pin 53 which is for pushing the first section 31 of the ink tube 41 toward the guide member 70 so as to elastically deform the first section 31, thereby preventing the radius of curvature of the second section 32 from becoming excessively large due to the restoring force of the second section 32. Accordingly, the ink tube 41 can be shaped so as to reduce the range within which the ink tube 41 changes in shape, and the restoring force of the second section 32 can be prevented from acting on the carriage 38 as the rotation moment.
In the illustrated embodiment, the work device according to the invention is realized as a part of the printing section 11. The work device according to the invention may be realized as a part of a scanner. In this instance, a carriage on which an image sensor is mounted functions as the movable member while an electric cable for transmitting electric signals between the image sensor and a control board functions as the lengthy member.
In the illustrated embodiment, the reciprocating direction of the carriage 38 is constituted by mutually opposite directions, and the first direction 104 and the second direction 105 in which the ink tube 41 extends coincide with the reciprocating direction of the carriage 38. The first and second directions may not coincide with the reciprocating direction of the carriage 38, but may be arbitrarily changed within the principle of the invention.
In the illustrated embodiment, the ink tube 41 functions as the lengthy member. The lengthy member is not limited to the ink tube 41, but may be any members such as the flat cable 85, provided that the lengthy member is a tube-like member, a ribbon-like member or the like.
In the illustrated embodiment, the third guide surface 73 of the guide member 70 is curved with the first radius of curvature R1 which is constant. The first radius of curvature R1 may not be constant, as long as the third guide surface 73 is configured such that the boundary point 107 transits on the third guide surface 73 from the first guide surface 71 toward the second guide surface 72. Accordingly, the third guide surface 73 may be configured as a curved surface having a plurality of radii of curvature larger than the second radius of curvature.
Number | Date | Country | Kind |
---|---|---|---|
2007-339401 | Dec 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7946677 | Tamaki | May 2011 | B2 |
20070159509 | Kawamata et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
2004-268346 | Sep 2004 | JP |
2005-035032 | Feb 2005 | JP |
2005-035033 | Feb 2005 | JP |
2006-256230 | Sep 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20090167834 A1 | Jul 2009 | US |