Information
-
Patent Application
-
20020182990
-
Publication Number
20020182990
-
Date Filed
May 17, 200222 years ago
-
Date Published
December 05, 200222 years ago
-
Inventors
-
Original Assignees
-
CPC
-
US Classifications
-
International Classifications
Abstract
The gear train of a work drive system on a machine for the continuous grinding of gears, with which by means of non-integer transmission ratio between work spindle (3) and drive motor (4) as well as a high number of teeth on the cylindrical gear (6) on the work spindle (3), high integer transverse and face contact ratio of the gear train, and a damping ring (7) on the work spindle (3), tonal disturbances of the workpiece incorporated in the gear unit are avoided.
Description
TECHNICAL FIELD
[0001] The invention concerns the constructional design of the work drive system on machines for the continuous generation grinding of gears.
BACKGROUND OF THE INVENTION
[0002] On account of the steadily increased production output and manufacturing accuracy evolving in the course of technical development, and the growing demands on performance and quality especially of automobile gear drives, such machines are being employed more and more in industrial gear manufacture for grinding the flanks of pre-cut, hardened gear teeth. The most important aims targeted here are a high load carrying capacity of the tooth flanks in the interest of a compact weight and space saving gear unit design, and an optimum running smoothness, i.e. a minimum noise emission from the gear unit. Both demand a highly accurate observation of the desired flank form.
[0003] In continuous generation grinding the grinding worm and the teeth of the gear to be ground are in mutual generative engagement, wherein the workpiece is rotated strictly synchronous to the continuous rotation of the grinding worm at a speed ratio of the number of starts on the grinding worm to the number of teeth on the workpiece. Any deviation from this synchronism leads to form deviations of the workpiece flanks, and thereby impairs the workpiece quality.
[0004] One of the sources of synchronism deviation in the rotations of the grinding worm and workpiece which is difficult to control is the non-uniform running of the workpiece during grinding, caused by the tooth engagement of the driving pinion with the cylindrical gear on the work spindle, and the torque pulsation of the work drive motor. In the case of the tooth mesh disturbance, this results in a periodic rotational angular deviation of the workpiece teeth of an order related to the number of teeth on the work spindle gear, and in the case of the motor pulsation in a periodic rotational angular deviation of the workpiece teeth of an order related to the motor pulsation multiplied by the ratio of the numbers of teeth on the work spindle gear and the pinion.
[0005] Noise investigations with assembled gear units have shown that in the case of an integer transmission ratio between motor and work spindle, both orders of disturbance are clearly audible as tones in the noise level of the gear unit, both on the test stand and in the installed state in the vehicle, the frequencies of the two tones corresponding exactly with the order related to the tooth engagement of the work spindle gear and that of the pulsation of the spindle drive motor. This effect is still present even with the minimum possible motor pulsation and scarcely measurable rotational angular error of the work spindle gear, and requires for its elimination a costly re- machining of the workpiece teeth by lapping or honing in an additional machining operation, thus substantially increasing the manufacturing expense.
[0006] TAIZ, B. A, “Typical Errors in Gear Machining (part I)”, in “Fertigungstechnik und Betrieb”, 17th year, H.3, March 1967, pp. 180-187, recognizes that cyclic errors in the grinding worm produce an undulation on the tooth surface of the gear being machined. A proposal for a remedy is not given however.
[0007] In DE 23 46 530 a suggestion is made to provide an idler as primary gear, in order to improve the pitch accuracy.
SUMMARY OF THE INVENTION
[0008] The objective of the present invention is to introduce a work spindle drive for a machine for the continuous generation grinding of gears, wherein the disturbance factors of motor pulsation and/or tooth engagement of the work spindle gear are no longer discernible as tonal disturbance even without re-machining of the workpiece. The task is solved by the features of the invention according to the claims to patent.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] In the following the invention is described in detail by the example of a single stage work spindle drive system driven by a DC motor, referring to FIG. 1. This latter shows the gear train 1 diagrammatically.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0010] The work spindle 3, located for rotation about its axis 2, is driven synchronous to the rotation of the grinding worm by the spindle drive motor 4 via the driving pinion 5 and the cylindrical or work spindle gear 6 on the work spindle 3.
[0011] In combating the tonal disturbances due to the pulsation of the drive motor, the invention exploits the recognized fact that periodic rotational angular deviations of the work spindle during the grinding of the gear caused by fault sources in the machine only lead to acoustically discernible gear tooth error in the workpiece when their frequency is an integer multiple of the rotary frequency of the work spindle. According to the invention, this is avoided by selecting the transmission ratio between the driving pinion 5 and the work spindle gear 6 such that the rotary oscillations induced in the work spindle by the motor pulsation is never of equal phase at any time during the grinding operation. This requirement is fulfilled when the speed ratio i between pinion 5 and gear 6 is an amount
1
[0012] larger or smaller than the nearest integer transmission ratio desired from the aspect of machine design. Herein:
[0013] Smin the lower feedrate limit of the grinding worm parallel to the work spindle axis (2) during finish grinding in mm/rev of the workpiece,
[0014] B the maximum width of the workpiece to be ground in mm
[0015] P the number of torque disturbance periods of the drive motor 4 per motor revolution.
[0016] By this measure the motor pulsation is rendered totally ineffectual as tonal disturbance in the gear unit, i.e. vehicle.
[0017] In the case of the tooth mesh pulsation of the driven gear 6 on the work spindle 3, this is only attainable with high speed gears, in that the number of teeth on the work spindle gear 6 is made so high that disturbance frequencies in the gear unit deriving from the order of disturbance related to the driven gear and the critical noise speeds of the workpiece exceed the perception threshold of abt. 16 kHz of the human ear. Since according to pertinent investigations the critical disturbance situations arise precisely at gear speeds of above 3500 rpm, a number of teeth of more than 250, for example, on the work spindle gear 6 presents for serious cases an effective means of avoiding a tone disturbance in the vehicle.
[0018] To also minimize the gear tone disturbance caused by the tooth engagement of the work spindle gear 6 when the gear units are operating at low speed levels of less than 3500 rpm, at which due to the low exciter frequency the rotational oscillatory accelerations and hence torque amplitudes are smaller, tests have shown that alongside a careful highly precise grinding of the work spindle gear 6, an integer transverse and face contact ratio of 2, and in extreme cases a frictional damper on the work spindle are effective measures. This concerns a metal ring 7 resting on the gear 6, centred and guided by the latter for rotation about the axis 2, and provided with a slip layer 8 on its contact surface. The damping effect results from the frictional energy absorbing relative rotation between the work spindle gear 6 and the damping ring 7 on the occurrence of rotational oscillations in the gear 6, which the damping ring is unable to follow due to its inertia. The slip layer 8 ensures that the coefficient of sliding friction between the work spindle gear 6 and the damping ring 7 is always greater than the coefficient of the static friction.
Claims
- 1. Work spindle drive for a work piece on a machine for the continuous generation grinding of gears by use of a grinding worm, the work spindle drive having a cylindrical gear rigidly connected to a work spindle, the work spindle having a work spindle axis and being driven by a drive motor, which said cylindrical gear is driven by a pinion, wherein the transmission ratio (i) between said pinion (5) and said cylindrical gear deviates approximately by the amount
- 2. Work spindle drive according to claim 1, wherein said cylindrical gear is a helical gear with at least 250 teeth.
- 3. Work spindle drive according to claim 1, wherein said cylindrical gear has an approximately integer transverse and face contact ratio of at least 2.
- 4. Work spindle drive according to claim 1, wherein a rotary body with an end face is attached rigidly to said work spindle, and a gyrating body is located coaxially for rotation on said work spindle and lies via a slip layer on said end face.
- 5. Work spindle drive according to claim 4, wherein said slip layer is pre-tensioned against said end face by the gravitation of said gyrating body and/or by spring pressure, and wherein the coefficient of sliding friction of the slip layer is preferably lower than the coefficient of static friction.
Priority Claims (1)
Number |
Date |
Country |
Kind |
101 24 305.7 |
May 2001 |
DE |
|