The present invention relates to a work light structure and in particular to a work light structure in which its light source module is disposed with an extension device with its two ends connected with a hook, respectively, to be hooked onto two sides of a connecting object. Further, the present invention provides a foldable work light structure to significantly reduce its length which is conducive to carrying away and storage.
Lamp has a variety of forms to suit its usage, floor lamp, wall lamp, table lamp, desk lamp, and many others. To meet the demand of a working site, the design of a lamp usually requires specific functions. For a car maintenance workshop, for example, the lamps on the workshop usually do not satisfy the need of the maintenance work since the car body or cover, an engine hood or a trunk cover for example, may obstruct the light coming from the lamps on top, and thus the lamps cannot light the area required. Consequently, the emergence of work light is to meet this specific demand. A conventional work light usually uses a tungsten wire as light source covered with a mesh metal cage thereon for the protection of its bulb. A hook is disposed on its end for hanging the lamp at the maintenance site to provide the lighting. Although the conventional work light can provide the lighting at the maintenance work area, it can only provide lighting to a restricted area due to its dimension. Also, the light provided by the conventional work light is yellow light, which cannot provide the required area and strength of illumination.
Recently, light emitting diode (LED) has increasingly been chosen to replace conventional light as a popular light source for its compact size, energy saving capability, and long service life. Therefore, some companies have used LEDs as a work light. The LED work light is a long-slender light source module (which comprises LEDs, a printed circuit board, a transparent shade, and a housing) with its two ends connected with a respective ring body over which is connected with a fixing plate, and the fixing plate is socketingly connected with a respective slide rail. When the work light is being used, the two slide rails are hooked, respectively, onto two ends of a connecting object, an engine hood for example, and the fastening part on the fixing plate is tightened to press against the slide rail so as to achieve the positioning of the fixing plate and the slide rail.
Although the slide-rail work light may provide white light for a larger area of illumination, one of its drawbacks is that since the height of the light source module, the ring body, and the slide rail is relatively large, the work light is not useful if the maintenance space is restricted. Furthermore, the connection procedure for connecting the work light and the connecting object is tedious and complicated, which requires positioning as well as fixing. The design of such a work light is thus defective and demands improvements.
To meet such a demand, the applicant having a long time experience in designing, production, and marketing of the power supply device and lamp design proposes the present invention, a work light structure, as a result of numerous trials and experiments.
An object of the present invention is to provide a work light structure whose extension device is enclosedly accommodated and thus concealed in the accommodating portion of the housing and thus when extending or retracting, the resilient component will not be hindered by foreign objects; with the extension and retraction of the resilient component, the two hooks on either end can easily and quickly hook onto a connecting object and the work light structure can be positioned thereon.
In order to accomplish the objects described above, the present invention is to provide a work light structure comprising: a light source module having a long slender housing laterally and inwardly connected with a printed circuit board so as to partition the housing into a lighting portion and an accommodating portion, the printed circuit board being coupled with a plurality of light emitting diodes (LEDs) arranged in line inside the lighting portion and each of the two ends of the housing is connected with an end cap, respectively, for capping the ends, and one of the end caps is disposed with a power supply device; an extension device disposed in the accommodating portion and formed by connecting at least a resilient component with its two ends onto a connecting rod, respectively, whose external end is inserted through a rod hole at the end cap and is connected with an externally protruding hook; the two hooks are hooked onto two ends of a connecting object to extend the resilient component, such that the power supply device may provide power to the printed circuit board to light up the LEDs.
The other object of the present invention is to provide a work light structure with folding and extending functions, which is conducive to carrying away and storage, in particular being stored in a car trunk without taking up too much space. Further, the work light structure in accordance with the present invention after folding can be connected onto a tripod to become a stand light, thereby enhancing the versatile functions of the present invention.
In order to accomplish the objects described above, the present invention provides a work light structure, comprising two light source modules each of which having a long slender housing laterally and inwardly connected with a printed circuit board so as to partition the housing into a lighting portion and an accommodating portion, the printed circuit board being coupled with a plurality of light emitting diodes (LEDs) arranged inside the lighting portion, and the outer ends the two light source modules being connected with an end cap, respectively, one of which is disposed with a power supply device therein; two extension devices disposed in the accommodating portions of the two light source modules and formed by socketingly connecting a resilient component with a connecting rod whose inner end is disposed with a spring stop and whose outer end extends through the end cap to be connected with an externally protruding hook; one folding part formed by pivotally connecting the two ends of a fixed frame with a rotating frame, respectively, which is further connected with the inner ends of the light source modules, which are electrically connected with an electrical cord, such that each light source module along with its respectively connected rotating frame can rotate with respect to the fixed frame, and thus extend or fold; consequently, the two hooks may be hooked onto two ends of a connecting object to extend the resilient component, and the power supply device may provide power to the printed circuit board to light up the LEDs.
The present invention can be more fully understood by reference to the following description and accompanying drawings, in which:
With reference to
With reference to
The extension device 2 is formed by at least a resilient component 21, a spring for example disposed in the accommodating portion 14, with its two ends connected with a connecting rod 22, respectively, whose external end is inserted through a rod hole 163 pre-formed at the end cap 16 and is formed to have an end ring 221 larger than the diameter of the rod hole 163, such that the end rings 221 will not retract back into the accommodating portion 14 to lose the function of extension. The ends of the end ring 221 are connected with a hook 23 to have the function of hanging objects, which may dangle freely.
In case the structure of a work light according to the present invention is somewhat long, 100 cm for example, the resilient component 21 will be relatively long; it is then preferably to use two resilient components 21 to cut the cost. To fix the internal ends of the resilient components 21, a fixing pin is radially inserted at the housing 11 corresponding to the two sides of the roughly middle section of the accommodating portion 14, respectively, to be connected with the respective internal ends of the resilient components 21. The external end of the respective resilient component 21 is connected with a connecting rod 22, as described earlier, and the ends of the end ring 221 are further connected with a hook 23, respectively, to have the expected functions of resilient extension and hook positioning.
With reference to
The two light source modules 1 are disposed symmetrically and pivotally connected with the folding part 4 therebetween to form an integrated body, such that light source modules 1 may form as a linear extended arrangement (parted by 180 degrees) shown in
Each of the two extension devices 2 disposed at the open end of the accommodating portion 14 of the light source module 1, respectively, is formed by a resilient component 21, a spring for example, socketingly connected with a connecting rod 22 whose inner end is disposed with a spring stop 222, a screw nut for example, to compress the resilient component 21 and whose outer end is inserted through a rod hole 163 pre-formed at the end cap 16 and is formed to have an end ring 221 larger than the diameter of the rod hole 163, such that the end ring 221 will not retract back into the accommodating portion 14 to lose the function of extension. The end of the end ring 221 is connected with a hook 23, respectively, to provide the function of hanging objects, which may dangle freely. As shown in the figures described above, the hook 23 is a double hook whose spacing is equal to the size of the end cap 16 such that when not in use, the hook 23 can be clamped on its neighboring end cap 16 to be secured thereon. Further, to avoid short cut resulted from the contact between the extension device 2 and the printed circuit board 12, an insulated sheath 24 is covered over the resilient component 21, the connecting rod 22, and the spring stop 222 in the accommodating portion 14.
With reference to
With reference to
With reference to
With reference to
With reference to
Consequently, with the implementation of the present invention, the extension device is enclosedly accommodated in the accommodating portion and thus its extension or retraction will not be hindered by foreign objects. Furthermore, the present invention may quickly be hooked with its both ends onto a connecting object for positioning, which offers obvious advantage over the conventional art of work light, for which a somewhat tedious adjustment is required for positioning. Also, the work light structure according to the present invention is a slender rectangle without any connecting parts around, and thus its one end with the magnetic object can be inserted into gaps to recover any falling metal parts, which makes full use of the feature of its shape. Further, according to the other embodiment of the present invention, the two oppositely disposed light source modules are pivotally connected with a folding part to form an integrated body, in which the two light source modules can form a linear extended arrangement (parted by 180 degrees), a perpendicular arrangement (parted by 90 degrees), or even a parallel folded arrangement (parted by zero degree). This novel design of the relative arrangement the two light source modules described in the present invention is indeed not seen before in the field of work light.
While the invention has been described with reference to the a preferred embodiment thereof, it is to be understood that modifications or variations may be easily made without departing from the spirit of this invention, which is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
095221301 | Dec 2006 | TW | national |
096212879 | Aug 2007 | TW | national |