N/A
The present disclosure relates work machines with boom assemblies having one or more of a radial lift path and vertical lift path as applied to skid steers and compact track loaders.
Work machines, such as skid steers and compact tract loaders are used in multiple environments and for multiple applications because of their small size, versatility, and maneuverability. Depending on the specific application, the work machine may benefit from a boom assembly with either a radial lift path or a vertical lift path. The boom arms of the boom assembly may be coupled to the mainframe of the work machine where the portion of the boom arm coupled to the attachment can be raised and lowered at the operator's command either vertically or radially. In one exemplary scenario, a work machine with a fork-lift type attachment may benefit from a boom assembly with a vertical lift path. Radial lift paths are often adequate for several other applications such as moving materials with a bucket type attachment. Manufacturers currently provide work machine configurations with mainframes and linkages that function either with a radial lift or a vertical lift, but not both. That is, the boom assemblies are restricted to move along a single, pre-defined path. This can be costlier than necessary with the creation of two different subcomponent designs for each type. Therein lies a need for an improved work machine with accommodations for more than one type boom assembly wherein each boom assembly travels along a different path while maintaining the operating capacity and reach. Furthermore, therein lies an opportunity for improvements to enhance productivity.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description and accompanying drawings. This summary is not intended to identify key or essential features of the appended claims, nor is it intended to be used as an aid in determining the scope of the appended claims.
The present disclosure includes a work machine including a mainframe, an operator cab coupled to the mainframe and a boom assembly.
The mainframe extends in a fore-aft direction. The operator cab may be coupled to the mainframe. The boom assembly is movably coupled to the mainframe at a boom assembly pivot wherein the boom assembly may move between a retracted position and an extended position. The boom assembly pivot is located aft of the operator cab and is commonly positioned for both a vertical lift boom assembly and a radial lift boom assembly. In another embodiment, the boom assembly pivot interchangeably accommodates a vertical lift boom assembly and a radial lift boom assembly.
In a first embodiment of a work machine with a vertical lift boom assembly, the mainframe includes a pair of supports supporting the boom assembly. The pair of supports are positioned on each side of the mainframe and aft of the operator cab. The pair of supports may also extend upwardly from and terminate at an upper end located substantially above a support surface of the mainframe, and below a line of sight of an operator seated in the operator cab. In one embodiment, the boom assembly pivot may be positioned on an upper portion of the support. The pair of supports may be located fore of an air intake access wherein the air intake access is positioned on each side of the mainframe.
The vertical lift boom assembly may comprise of a pair of boom arms positioned on each side of the mainframe. Each boom arm includes a fore portion and a rear portion. The rear portion includes a prong with a first portion and a second portion. The fore portion is for coupling to an attachment. A pair of first links are positioned on each side of the mainframe. The first link is coupled to the first portion of the prong and the mainframe. The pair of second links extend in an upright direction on each side of the mainframe. The second link may be coupled to the second portion of the prong and the boom assembly pivot. A pair of actuators are position on each side of the mainframe coupled to the boom arm at or near the prong of the boom arm and the mainframe, wherein the extension of the actuator lifts the fore portion of the boom arm. The fore portion follows a vertical lift path when the actuators move between a retracted position and an extended position. The first link remains below the boom arm when moving between the retracted state and the extended state. The coupling of the prong and the second link create a visibility window.
According to another aspect of the present disclosure, the second embodiment of the boom assembly includes a radial lift boom assembly. The radial lift boom assembly includes a pair of boom arms extending in the fore-aft direction positioned on each side of the mainframe and a pair of actuators. Each boom arm may include a fore portion and a rear portion. The rear portion may be coupled to the mainframe at the boom assembly pivot, and the fore portion may be used for coupling an attachment. The fore portion follows a radial lift path when the boom assembly moves between a retracted position and an extended position. A pair of actuators extend in the fore-aft direction are positioned on each side of the mainframe. The actuator is coupled to the support and the fore portion of the boom arm wherein extension of the actuator lifts the fore portion of the boom arm. The pair of actuators are positioned below the boom arm when moving between the retracted position and the extended position. The boom assembly may comprise of a double shear joint. The boom assembly is absent a row bar.
In another aspect of the disclosure according to a second embodiment, the work machine includes a mainframe extending in a fore-aft direction, an operator cab, and a boom assembly pivot wherein the boom assembly pivot interchangeably accommodates a vertical lift boom assembly and a radial lift boom assembly. The vertical lift boom assembly for this embodiment include boom arms extending in a fore-aft direction positioned on each side of the mainframe. A pair of first vertical links are positioned on each side. Each first vertical link is coupled to the rear portion of boom arm on one end and the boom assembly pivot on the other end. A pair of second vertical lift links are positioned on each side. Each second vertical lift link is coupled to the rear portion of the boom arm on one end and an upward portion of the mainframe and below a line of sight of an operator seated in the operator cab on the other end. A pair of actuators are positioned on each side of the mainframe. Each actuator is coupled to the boom arm and the mainframe, wherein the extension of the actuator lifts the fore portion of the boom arm. Coupling of the actuator, boom arm, and second vertical lift link creates a visibility window. In this embodiment, the first vertical lift link, the second vertical lift link, and the actuator are positioned below the boom arm when moving between the retracted state and the extended state.
In another aspect of the disclosure according to the second embodiment, the radial lift boom assembly for this embodiment includes a pair of upward extending supports positioned on each side of the mainframe and aft of the operator cab. Each support is fixedly coupled to the mainframe at the boom assembly pivot wherein the upper portion of each support terminates below a line of sight of an operator seated in the operator cab. A pair of boom arms extend in the fore-aft direction positioned on each side of the mainframe. The rear portion of the boom arm is pivotably coupled to the upper portion of the support. The fore portion is for coupling to an attachment. The fore portion follows a radial lift path when the boom assembly moves between a retracted position and an extended position. A pair of actuators are coupled to a lower portion of the support and the fore portion of the boom arm wherein extension of the actuator lifts the fore portion of the boom arm.
These and other features will become apparent from the following detailed description and accompanying drawings, wherein various features are shown and described by way of illustration. The present disclosure is capable of other and different configurations and its several details are capable of modification in various other respects, all without departing from the scope of the present disclosure. Accordingly, the detailed description and accompanying drawings are to be regarded as illustrative in nature and not as restrictive or limiting.
The detailed description of the drawings refers to the accompanying figures in which:
Like reference numerals are used to indicate like elements throughout the several figures.
The embodiments disclosed in the above drawings and the following detailed description are not intended to be exhaustive or to limit the disclosure to these embodiments. Rather, there are several variations and modifications which may be made without departing from the scope of the present disclosure.
As used herein, unless otherwise limited or modified, lists with elements that are separated by conjunctive terms (e.g., “and”) and that are also preceded by the phrase “one or more of” or “at least one of” indicate configurations or arrangements that potentially include individual elements of the list, or any combination thereof. For example, “at least one of A, B, and C” or “one or more of A, B, and C” indicates the possibilities of only A, only B, only C, or any combination of two or more of A, B, and C (e.g., A and B; B and C; A and C; or A, B, and C).
Work machine 100 may be operated to engage the surface 135 and cut, move, lift, and carry material to achieve simple or complex features on the surface, or harvesting resources.
The work machine 100 comprises a boom assembly 170 movably coupled to the mainframe 110. An attachment 105, or work tool, may be pivotally coupled at a fore portion 175 of the boom assembly 170, while a rear portion 180 of the boom assembly 170 is pivotally coupled to the mainframe 110 at a boom assembly pivot 197. The boom assembly of the exemplary embodiments, comprises a pair of boom arms 190 (one each on a left side and a right side) and is movable between a retracted position 193 and an extended position 195 (as shown in the dotted lines) including positions therebetween (again as shown in the dotted line). The boom assembly pivot 197 is located aft of the operator cab 160 and is commonly positioned for both a vertical lift boom assembly 203 (shown in
The attachment 105 may be coupled to the boom assembly 170 through an attachment coupler (not identified). One exemplary attachment coupler, often referred to as Deere and Company's Quik-Tatch, is an industry standard configuration and a coupler universally applicable to many Deere attachments and several after-market attachments. The attachment coupler is coupled to the fore portion 175 of the boom assembly 170.
Now turning to
As shown in the first embodiment in
Furthermore, the boom assembly pivot comprises a double shear joint. Additionally, all rear joints are double shear joints thereby improving the robustness of the work machine by reducing side deflection. Conventional designs use a cantilever type joint which requires relatively larger pins and heavier structure to achieve a similar side deflection.
Now turning to
Coupling of the actuator 207, boom arm 190, and the second vertical lift link 755 creates a visibility window 270.
In this second embodiment, the first vertical lift link 750, the second vertical lift link 755, and the actuator 207 are positioned below the boom arm 190 when moving between the retracted position 193 and the extended position 195. The boom assembly pivot 197 may comprise of a double shear joint 232. Additionally, all rear joints are double shear joints thereby improving the robustness of the work machine by reducing side deflection. Conventional designs use a cantilever type joint which requires relatively larger pins and heavier structure to achieve a similar side deflection.
In this embodiment, the pair of boom arms 190 extend in the fore-aft direction 115 positioned on each side of the mainframe 110 wherein each boom arm 190 includes a fore portion 175 and a rear portion 180. The rear portion 180 is pivotably coupled to the upper portion 222 of the support 215. The fore portion 175 of the boom arm 190 is for coupling to an attachment 105. The fore portion 175 follows a radial lift path 212 when the boom assembly 170 moves between a retracted position 193 and an extended position 195. A pair of actuators 207, extending in the fore-aft direction 115, and positioned on each side the mainframe 110. Each actuator 207 is coupled to the lower portion of the support and the fore portion 175 of the boom arm wherein extension of the actuator 207 lifts the fore portion 207 of the boom arm 190. The pair of actuators 207 and supports 215 remain below the boom arm 190 when moving between the retracted position and the extended position, advantageously improving visibility for the operator.
The pair of actuators 207 and the upward extending supports 215 are positioned fore of an air intake access when moving between the retracted position 193 and the extended position 195 (shown by the dotted lines). Enabling air intake access on the sides in addition to the rear of the work machine (as shown), advantageously improves cooling and serviceability.
The boom assembly 170 is absent a row bar 275. A row bar 275 conventionally couples the boom arms in a direction perpendicular to the fore-aft direction to provide support.
Now turning to
The terminology used herein is for the purpose of describing particular embodiments or implementations and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the any use of the terms “has,” “have,” “having,” “include,” “includes,” “including,” “comprise,” “comprises,” “comprising,” or the like, in this specification, identifies the presence of stated features, integers, steps, operations, elements, and/or components, but does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The references “A” and “B” used with reference numerals herein are merely for clarification when describing multiple implementations of an apparatus.
One or more of the steps or operations in any of the methods, processes, or systems discussed herein may be omitted, repeated, or re-ordered and are within the scope of the present disclosure.
While the above describes example embodiments of the present disclosure, these descriptions should not be viewed in a restrictive or limiting sense. Rather, there are several variations and modifications which may be made without departing from the scope of the appended claims.