The present disclosure generally relates to a work machine having actuators to adjust an implement, and more particularly to a work vehicle having a control system and method to adjust a pitch of the implement.
Work vehicles are configured to perform a wide variety of tasks including use as construction vehicles, forestry vehicles, lawn maintenance vehicles, as well as on-road vehicles such as those used to plow snow, spread salt, or vehicles with towing capability. Additionally, work vehicles typically perform work with one or more implements that are moved by actuators in response to commands provided by a user of the work vehicle, or by commands that are generated automatically by a control system, either located within the vehicle or located externally to the vehicle.
In one example such as a bulldozer, the bulldozer is equipped with an implement, such as a blade, which is moved by actuators responsive to implement commands. The blade is used to move materials. To accomplish these tasks, the position of the blade is adjusted by one or more actuators. On a utility crawler dozer for instance, the blade is typically adjustable in different directions, which includes raising and lowering of the blade, adjusting a pitch position of the blade by moving the top portion of the blade forward and backward relative to a lower pivot point, an angle of the blade by moving one or the other end of the blade left or right about a center pivot point, and a tilt of the blade about a center pivot point to raise or lower one side of the blade or the other.
Other work vehicles include, but are not limited to, excavators, loaders, and motor graders. In motor graders, for instance, a drawbar assembly is attached toward the front of the grader, which is pulled by the grader as the grader moves forward. The drawbar assembly rotatably supports a circle drive member at a free end of the drawbar assembly and the circle drive member supports a work implement such as the blade, also known as a mold board. The angle of the work implement beneath the drawbar assembly can be adjusted by the rotation of the circle drive member relative to the drawbar assembly.
In addition, to the blade being rotated about a rotational fixed axis, the blade is also adjustable to a selected angle with respect to the circle drive member. This angle is known as blade slope. The elevation of the blade is also adjustable.
Different types of blades are known and include a single piece blade having a relatively straight front edge that engages the material being moved. Other blades include a single wing at an end of central portion of the blade, or two wings located at either end of a central portion of the blade. In a blade having one or two wings, each wing is either fixed at an inclined angle with respect to the central portion of the blade or is adjustable with respect to the central portion of the blade. In blades having movable wings, the adjustment of the wing reduces the length of the blade. By reducing the length of the blade, the overall width of the vehicle is reduced which can make transport of the vehicle less cumbersome.
Blades with the adjustable wing inclined with respect to the central portion are often used in certain plowing conditions to improve work efficiency. For instance, when the wing is angled with respect to the central portion in a grading operation, wind row spillover is reduced. The wing in the angled position provides a more productive machine by reducing the number of passes needed to complete a grading operation, resulting in more efficient use of the machine.
Grading operations, however, can be adversely affected when using a blade having wings angled with respect to the central portion. Depending on the position of the blade with respect to the surface, the cutting edge of the central portion of the blade may be the only portion of the blade in contact with the surface. In this situation, one or both of wings are not in contact with or cut too deeply into the surface being graded. As a result, additional passes are needed to complete a grading operation. What is needed therefore is a blade having wings and a control system to move a blade with wings to optimize the grading operation of a vehicle's blade.
In one embodiment, there is provided a method of positioning a blade with respect to a work vehicle having an operator control to position the blade, wherein the blade has an adjustable wing. The method includes: identifying a position of the wing with respect to a central portion of the blade; identifying a blade position based on a blade positioning signal received from the operator control; and automatically adjusting the position of the blade based on the identified position of the wing and the identified blade positioning signal.
In another embodiment, there is provided a work vehicle including a chassis, a blade, and a linkage system connected to the chassis and to the blade, wherein the linkage system is configured to position of the blade with respect to the chassis. The work vehicle further includes an operator control and a controller operatively connected to the operator control and to the linkage system. The controller includes a processor and a memory, wherein the memory is configured to store program instructions. The processor is configured to execute the stored program instructions to: identify a position of the wing with respect to a central portion of the blade; identify a blade position based on a blade positioning signal received from the operator control; and automatically adjust the position of the blade based on the identified position of the wing and the identified blade positioning signal.
In a further embodiment, there is provided a method of moving materials with a blade having an adjustable wing located at one end of a center portion of the blade, wherein the blade is operatively connected to a work vehicle and is positionable with respect to the work vehicle in response to an operator command. The method includes: identifying a commanded position of the blade based on a blade positioning signal received from the operator command; identifying an inclined position of the adjustable wing with respect to the center portion of the blade; automatically adjusting a pitch of the blade with respect to the work vehicle based on the identified commanded position of the blade and the identified inclined position of the adjustable wing.
In a further embodiment of the present disclosure, a blade for a work machine includes a body comprising a main portion including a top edge, a bottom edge, a first lateral edge and a second lateral edge, the first lateral edge being located on an opposite side of the main portion from the second lateral edge; and a wing portion pivotally coupled to the body about a pivot axis, the wing portion being pivotal about the pivot axis between a work position and a transport position; wherein, the first lateral edge comprises a curved edge extending outwardly towards the wing portion, the curved edge forming an apex between the top edge and the bottom edge; wherein, a first axis is defined through a first intersection point and a second intersection point, the first intersection point located at an intersection of the top edge and the first lateral edge and the second intersection point located at an intersection of the bottom edge and the first lateral edge; wherein, a second axis is defined through the apex and is parallel to the first axis; wherein, the pivot axis is located between the first axis and the second axis.
In one example of this embodiment, the pivot axis is located approximately halfway between the first axis and the second axis. In a second example, the pivot axis is located between 25-50% of a distance between the first and second axes. In a third example, in the transport position, the wing is disposed at a maximum angle relative to the main portion; in the work position, the wing is disposed in a first plane and the main portion is disposed in a second plane, the first and second planes being parallel to one another. In a fourth example, the wing portion pivots approximately 55 degrees between the work position and the transport position.
In a fifth example, in the work position, the main portion and the wing portion form a first blade width; in the transport position, the main portion and the wing portion form a second blade width, where the first blade width is greater than the second blade width. In a sixth example, the second blade width is between 20-35 inches less than the first blade width. In a seventh example, the main portion comprises a curved portion defined between the first and second axes, the curved portion at least partially overlapping the wing portion in the work position. In an eighth example, as the wing portion pivots between its work position and transport position, the curved portion remains in close proximity to the wing portion to maintain a minimal gap between the curved portion and the wing portion. In a ninth example, the minimal gap is 5 millimeters or less.
In a further example, in the work position, the wing is disposed in a first plane and the main portion is disposed in a second plane, the first and second planes being parallel to but offset from one another. In yet a further example, the first plane is disposed rearward of the second plane.
In another embodiment of the disclosure, a blade for a work machine includes a body comprising a main portion including a front surface defined by a top edge, a bottom edge, a first lateral edge and a second lateral edge, the first lateral edge being located on an opposite side of the main portion from the second lateral edge; and a wing portion pivotally coupled to the body about a pivot axis, the wing portion being pivotal about the pivot axis between a work position and a transport position; wherein, the front surface comprises a concave curvature in a fore-aft direction; wherein, the pivot axis is located within the concave curvature of the front surface.
In one example of this embodiment, a first vertical axis is defined through a forwardmost point of the front surface; a second vertical axis is defined through a rearmost point of the front surface; the pivot axis is located between the first vertical axis and the second vertical axis. In a second example, the rearmost point is located at an apex of the concave curvature. In a third example, the first lateral edge comprises a curved edge extending outwardly towards the wing portion, the curved edge forming an apex between the top edge and the bottom edge; a first axis is defined through a first intersection point and a second intersection point, the first intersection point located at an intersection of the top edge and the first lateral edge and the second intersection point located at an intersection of the bottom edge and the first lateral edge; wherein, a second axis is defined through the apex and is parallel to the first axis; wherein, the pivot axis is located between the first axis and the second axis.
In a third example, the main portion comprises a curved portion defined between the first and second axes, the curved portion at least partially overlapping the wing portion in the work position. In a fourth example, as the wing portion pivots between its work position and transport position, the curved portion remains in close proximity to the wing portion to maintain a minimal gap between the curved portion and the wing portion. In a fifth example, the minimal gap is 5 millimeters or less. In a sixth example, in the work position, the wing is disposed in a first plane and the main portion is disposed in a second plane, the first and second planes being parallel to but offset from one another. In a seventh example, the first plane is disposed rearward of the second plane.
In yet another embodiment of the present disclosure, a blade for a work machine includes a body comprising a main portion including a front surface defined by a top edge, a bottom edge, a first lateral edge and a second lateral edge, the first lateral edge being located on an opposite side of the main portion from the second lateral edge; and a wing portion pivotally coupled to the body about a pivot axis, the wing portion being pivotal about the pivot axis between a work position and a transport position; wherein, the first lateral edge comprises a curved edge extending outwardly towards the wing portion, the curved edge at least partially overlapping the wing portion in the work position; wherein, the wing portion is rearwardly offset from the front surface.
In one example of this embodiment, the wing portion comprises an inner wing edge, an outer wing edge, a top wing edge, and a bottom wing edge, the inner wing edge located closer to the first lateral edge than the outer wing edge; further wherein, as the wing portion pivots from the work position to the transport position, the inner wing edge moves in a rearward direction as the outer wing edge moves in a forward direction. In a second example, the first lateral edge comprises a curved edge extending outwardly towards the wing portion, the curved edge forming an apex between the top edge and the bottom edge; a first axis is defined through a first intersection point and a second intersection point, the first intersection point located at an intersection of the top edge and the first lateral edge and the second intersection point located at an intersection of the bottom edge and the first lateral edge; wherein, a second axis is defined through the apex and is parallel to the first axis; wherein, the pivot axis is located between the first axis and the second axis.
In a third example, the main portion comprises a curved portion defined between the first and second axes, the curved portion at least partially overlapping the wing portion in the work position. In a fourth example, as the wing portion pivots between its work position and transport position, the curved portion remains in close proximity to the wing portion to maintain a minimal gap between the curved portion and the wing portion. In a fifth example, the front surface comprises a concave curvature in a fore-aft direction; the pivot axis is located within the concave curvature of the front surface. In a sixth example, a first vertical axis is defined through a forwardmost point of the front surface; a second vertical axis is defined through a rearmost point of the front surface; the pivot axis is located between the first vertical axis and the second vertical axis.
In a different example, the rearmost point is located at an apex of the concave curvature. In another example, the wing portion pivots approximately 55 degrees between the work position and the transport position. In a further example, in the work position, the main portion and the wing portion form a first blade width; in the transport position, the main portion and the wing portion form a second blade width, where the first blade width is greater than the second blade width. In yet a further example, the second blade width is at least 25 inches less than the first blade width.
The above-mentioned aspects of the present disclosure and the manner of obtaining them will become more apparent and the disclosure itself will be better understood by reference to the following description of the embodiments of the disclosure, taken in conjunction with the accompanying drawings, wherein:
For the purposes of promoting an understanding of the principles of the novel disclosure, reference will now be made to the embodiments described herein and illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the novel disclosure is thereby intended, such alterations and further modifications in the illustrated devices and methods, and such further applications of the principles of the novel disclosure as illustrated therein being contemplated as would normally occur to one skilled in the art to which the novel disclosure relates.
While the described embodiments are discussed with reference to a crawler bulldozer, other work vehicles are contemplated including other types of construction vehicles, forestry vehicles, lawn maintenance vehicles, as well as on-road vehicles such as those used to plow snow. Actuators used in one or more of these work vehicles includes tilt, angle, pitch, lift, arm, boom, bucket, blade side shift, blade tilt, and saddle side shift actuators or actuator cylinders. In these and other vehicles, the operator either sits or stands in the cab and has access to operator controls.
The main drive wheels 26 are operatively coupled to a steering system which is in turn coupled to a transmission. The transmission is operatively coupled to the output of the internal combustion engine. The steering system may be of any conventional design and maybe a clutch/brake system, hydrostatic, or differential steer. The transmission may be a power shift transmission having various clutches and brakes that are actuated in response to the operator positioning a shift control lever (not shown) located in the cab 22.
The bulldozer blade 12 (the implement) is raised and lowered by the linkage system 14 which includes a number of actuators, such as hydraulic cylinders, to adjust the position of the blade 12. The linkage system 14 includes a C-frame 31, as seen in
The blade 12 is tilted relative to work vehicle 10 by the actuation of a tilt cylinder 42 wherein the blade 12 is rotatable about an axis 44 of a spherical bearing 46. For the tilt cylinder 42, a rod end is pivotally connected to a clevis positioned on the back and left sides of blade 12 above the spherical bearing 46. A head end of the tilt cylinder 42 is pivotally connected to an upward projecting portion 48 that extends from the C-frame 31. The opposite end of the tilt cylinder 42 is coupled to a backside of the blade 12. The positioning of the pivotal connections for the head end and the rod end of tilt cylinder 42 result in tilting blade 12 to the left (counterclockwise) or right (clockwise) when viewed from cab 22. Extension of rod of the tilt cylinder 42 tilts the blade counterclockwise. Retraction of tilt cylinder 42 tilts blade 12 to the right or clockwise when viewed from operator's cab 22. In alternative embodiments, blade 12 is tilted by different mechanisms (e.g., an electrical or hydraulic motor). Tilt cylinder 42, in one or more embodiments, is configured differently, such as a configuration in which cylinder 42 is mounted vertically and positioned on the left or right side of blade 12, or a configuration with two tilt cylinders.
Blade 12 is angled relative to work vehicle 10 by the actuation of angle cylinders 50, one of which is illustrated. For each of angle cylinders 50, the rod end is pivotally connected to a blade 12 while the head end is pivotally connected to frame 31. One of angle cylinders 50 is positioned on the left side of work vehicle 10, and the other angle cylinders 50 is positioned on the right side of work vehicle 10. An extension of the left angle cylinder 50 and the retraction of the right of angle cylinder 50 angles blade 12 rightward such that the right side of the blade 12, as viewed from the cab 22, is pulled closer to the cab. Retraction of left angle cylinder 50 and the extension of the right of angle cylinders 50 angles blade 12 leftward, such that the left side of the blade 12 is pulled closer to the cab 22. In alternative embodiments, blade 12 is angled by a different mechanism or angle cylinders 50 are configured differently.
The blade 12 is pitched with respect to the cab 22 with a pitch cylinder 53 connected to the upward projection portion 48, at one end, and connected to the blade 12 at another end. Extension and retraction of the cylinder 53 moves a top edge 49 of the blade 12 toward or away from the cab 12 to achieve the desired pitch. Pitch of the blade 12 is also provided by raising and lowering the C-frame 31 with the lift cylinders 32 (see
One or more implement control devices 52, located at a user interface of a workstation 54, are accessible to the operator located in the cab 22. The user workstation includes a front console 56, supporting a grab bar 57 located at a forward portion of the cab 22, and a workstation 58 located at or near the arms of an operator's chair 60. The control devices 52 are operatively connected to a controller 62. The controller 62 receives signals from the control devices 52 to adjust the positon of the blade 12. In other embodiments, the implement control devices are located at the front console 56 or at the front console 56 and the workstation 58.
The control devices 52 are located at a user interface that includes a plurality of operator selectable buttons, switches, joysticks, and toggles configured to enable the operator to control the operations and functions of the vehicle 10. The user interface, in one embodiment, includes a user interface device including a display screen having a plurality of user selectable buttons to select from a plurality of commands or menus, each of which are selectable through a touch screen having a display. In another embodiment, the user interface includes a plurality of mechanical push buttons as well as a touch screen. In still another embodiment, the user interface includes a display screen and only mechanical push buttons. In one or more embodiments, adjustment of blade with respect to the frame is made using one or more levers or joysticks.
Adjustment of the actuators 32, 42, and 50 is made by the operator using the control devices 52 which are operably coupled to the controller 62, as seen in
In
The blade 12, as illustrated in
As illustrated in
Also, as illustrated in
As illustrated by both
To overcome the gaps which are located at the center blade or at the wings, an operator must adjust the pitch of the blade so that the edges of the wings 72 and 74 match the level of the edge of the center portion 70. Because the cutting edges of the blade 12 can be difficult to see by an operator, alignment of the blade 12 with respect to the ground 82 can be very difficult. Such an operation requires extreme concentration, even for an expert operator. In fact, under some conditions where ground conditions and weather conditions are not optimal, correctly placing the blade 12 is next to impossible. Similarly, due to geometry of the ball joint 46 between the blade 12 and the C-frame 31, tilting the blade 12 can affect the pitch of the blade.
To overcome the deficiencies presented by grading a surface with a blade having wings, the present disclosure includes a control system 100 illustrated in
As seen in
The controller 62, in different embodiments, includes a computer, computer system, or other programmable devices. In other embodiments, the controller 62 includes one or more processors 104 (e.g. microprocessors), and the associated memory 106, which can be internal to the processor or external to the processor. The memory 106 includes, in one or more embodiments, random access memory (RAM) devices comprising the memory storage of the controller 62, as well as any other types of memory, e.g., cache memories, non-volatile or backup memories, programmable memories, or flash memories, and read-only memories. In addition, the memory can include a memory storage physically located elsewhere from the processing devices and can include any cache memory in a processing device, as well as any storage capacity used as a virtual memory, e.g., as stored on a mass storage device or another computer coupled to controller 62. The mass storage device can include a cache or other dataspace which can include databases. Memory storage, in other embodiments, is located in the “cloud”, where the memory is located at a distant location which provides the stored information wirelessly to the controller 62.
The controller 62 executes or otherwise relies upon computer software applications, components, programs, objects, modules, or data structures, etc. Software routines resident in the included memory 106 of the controller 62, or other memory, are executed in response to the signals received. The computer software applications, in other embodiments, are located in the cloud. The executed software includes one or more specific applications, components, programs, objects, modules or sequences of instructions typically referred to as “program code”. The program code includes one or more instructions located in memory and other storage devices that execute the instructions resident in memory, which are responsive to other instructions generated by the system, or which are provided at a user interface operated by the user. The processor 104 is configured to execute the stored program instructions as well as to access data stored in one or more data tables. A telematic unit 108, or a transmitter and/or receiver, is operatively connected to the antenna 64 to receive and transmit information wirelessly through cellular communication or other types of communication, including satellite.
The processor 104 and the memory 106 are configured to monitor the position of the wings 72 and 74, and when either of the wings 72 or 74 are rotated forward, the controller 62 commands the pitch of the blade 12 to maintain the edge 51 of the blade from wing to wing along a plane. The commanded pitch is based on the currently sensed blade position to keep the leading edge of the wings' cutting edge on the same level of the center portion of the blades cutting edge, thereby, maintaining the grade. When the wings 72 and 74 are articulated at other than parallel with respect to the center portion 70, the controller 62 adjusts the pitch of the blade 12 with respect to ground based on inputs from the operator controls and from the sensor inputs to adjust the pitch the blade, which adjusts the cutting edge of the blade from one wing to the other wing. In different embodiments, each wing 72 or 74 is individually controllable such that the angle of one wing is different than the angle of the other wing.
The vehicle 10 includes a machine monitor 110 which, in different embodiments, includes one or more cameras located on the vehicle, and a visual display screen, located in the cab 22, to display the vehicle, including the vehicle's position with respect to ground, such as direction, slope, and position within a work area being graded. Chassis slope is provided by a chassis slope sensor 112, such as an inertial measurement unit (IMU), which transmits slope signals to the controller 62, which in one or more embodiments, are used by the processor 104 to adjust the blade position. Additional blade information is provided by a blade position sensor 114, which in different embodiments includes an IMU or a cylinder sensor. In one embodiment, a cylinder sensor includes an internal sensor which determines the amount of extension of a cylinder arm from a cylinder body. The resulting signal is received at the processor 104 and used to determine blade position. In one embodiment, one or more data tables 116 include kinematic information, which in combination with the blade position signal received from the sensor 114, determines blade position.
Each of the wings 72 and 74, that is moved by one of the wing cylinders 79, includes a blade wing angle position sensor 118. In one embodiment, the sensor 118 is located at the pivot location about which the wing pivots, such as a rotary angle sensor. In another embodiment, a cylinder sensor determines the extension of the wing cylinder arm from the wing cylinder used to determine wing angle. Other sensors are contemplated.
Each of the lift cylinders 32, the tilt cylinders 42, and the pitch cylinder 53, are coupled to control valves 122 to move the appropriate cylinder as directed by the operator controls 52. Angle/wing diverter valves 124 are operatively connected to the wing cylinders 79 as is understood by one skilled in the art.
The processor 104 receives status and position signals from each of the sensors, the IMUs, or cylinder position sensors, and determines the position of the blade 12 based on those input signals. The memory 106 includes a kinematic model of the blade 12 and the geometry of the C-frame 31. The processor 104 determines, based on the program instructions, when to position the blade, how much to position the blade, and the final location of the blade 12 based the user controls 52 that provide the direction and magnitude of the blade lift, tilt and/or pitch valve commands. Upon determining, these values, the pitch of the blade is adjusted automatically such that each of the cutting edges of the wings 72, 74, and the center blade 70, are located substantially level with the surface being graded. In another embodiment, the wings 72 and 74 are adjusted as well as the blade pitch by commanding positions of wings at the same time as the blade lift/tilt to improve performance and to make a smooth cut without the wing edges cutting into grade or being raised above the grade.
The process of adjusting the blade pitch, based on wing position, is made as the operator moves the blade up or down, adjusts the tilt of the blade, or the angle of the blade. The vehicle control system automatically adjusts the pitch of the blade in response to the operator's commands transmitted by the operator controls, so that the leading edge of the wings' cutting edges are on the same level of the center portion's cutting edge, thereby maintaining grade. The shape of the wings pivot locations 76 and 78 with respect to the main blade assembly 70 together with overlapping protruding curves 170 and 172 of the blade assembly 12 minimizes the gap between ground and the blade in such a way as to restrict material from passing through or beneath the wings or the center portion of the blade. The overlapping protruding curves 170 and 172 are each edges of a metal sheet 178 forming the front surface of the blade 12.
Referring to
In the folded or transport position, the wings may pivot inwardly to reduce the overall width of the blade for ease in transportation. In some cases, governmental regulations may require the blade width to be less than a certain width. In the embodiment of
In
The first lateral edge 824 is formed as part of a first overlapping portion 820 of the center portion 802 which partially overlaps the first wing 804. Likewise, the second lateral edge 826 is formed as part of a second overlapping portion 822 of the center portion 802 which partially overlaps the second wing 806. The overlap portions help assist keeping material such as rock or sand from penetrating or flowing inbetween the center portion 802 and each wing. In other words, the lapping portions of the center portion 802 reduces any gap or opening that may otherwise exist between the center portion 802 and each wing.
Each wing is capable of pivoting relative to the center portion 802. In
Turning to
In
In the first or working position 1004, the first and second wings are disposed outwardly such that the blade 800 comprises its greatest width. Material may come into contact with the center portion 802 of the blade 800 and move outwardly towards the first and second wings. The amount of material coming into contact with the blade 800 continues to increase as the material flows from the center portion outwardly towards either wing.
As best shown in
In this disclosure, a blade is provided with a shape driven by the curved interface between the center portion 802 and both wings which enables the wings to fold relative to the center portion 802 and provide a seal-like function that limits or prevents material from passing therebetween when pivoting between the first and second positions. The embodiment of
In
In
A second axis 842 is shown parallel to the second pivot axis 818 and the fourth axis 846. The second axis 842 passes through a second upper corner or intersection point 836 and a second lower corner or intersection point 838. The second upper intersection point 836 is defined at an intersection between the top edge 808 and the second lateral edge 826. The second lower intersection point 838 is defined along the second lateral edge 826 such that the second axis 842 is parallel to the fourth axis 846. In at least one example, the second lower intersection point 838 is defined at the intersection of the second lateral edge 826 and the bottom edge 810. In a different embodiment, the second lower intersection point 838 is not located on the bottom edge 810.
The first, second, third and fourth axes may establish a region or location of the first and second pivot axes to assist with reducing or preventing material from penetrating between the center portion 802 and each wing. The first pivot axis 816, for example, may be located at any location between the first and third axes. In one example, the first pivot axis 816 may be aligned with the first or third axis. Alternatively, the first pivot axis 816 may be centered between the first and third axes. In another example, the first pivot axis 816 may be disposed closer to the first axis than the third axis. In a further example, the first pivot axis 816 may be positioned closer to the third axis than the first axis. In yet another example, the first pivot axis 816 may be approximately ⅓ of the distance between the first and third axes. Depending on the blade and shape of the first lateral edge 824, the location of the first pivot axis 816 may vary.
Similar to the first pivot axis 816, the second pivot axis 818, for example, may be located at any location between the second and fourth axes. In one example, the second pivot axis 818 may be aligned with the second or fourth axis. Alternatively, the second pivot axis 818 may be centered between the second and fourth axes. In another example, the second pivot axis 818 may be disposed closer to the second axis than the fourth axis. In a further example, the second pivot axis 818 may be positioned closer to the fourth axis than the second axis. In yet another example, the second pivot axis 818 may be approximately ⅓ of the distance between the second and fourth axes. Depending on the blade and shape of the second lateral edge 826, the location of the second pivot axis 818 may vary.
Referring to
A front axis 910 is also shown in
A second forward axis 912 is also shown. In an alternative embodiment, the front axis may correspond with the second forward axis 912 which intersects the forwardmost location along the bottom edge 810 of the blade curvature. In the blade 800 of
In any event, to reduce or prevent any amount of material to pass between the center portion 802 and either wing, the first and second pivot axes may be located between the rear axis 908 and the front axis 910. Alternatively, the pivot axes may be located between the rear axis 908 and the second forward axis 912. In one non-limiting example, either pivot axis may be aligned with the rear axis 908, the front axis 910 or the second front axis 912. In another example, one or both of the pivot axes may be centered between the rear and front axes. In a further example, one or both of the pivot axes may be located closer to the rear axis 908 than the front axis 910. In yet another example, one or both of the pivot axes may be located closer to the front axis 910 than the rear axis 908. In yet a further example, one or both pivot axes may be located closer to the second pivot axis 912 than the rear axis 908. Regardless of its exact location, each pivot axis is located within the cutting edge of the blade 800 and rearmost blade surface in the fore-aft direction 904.
The location of each pivot axis also facilitates the folding or pivoting motion of the wing relative to the respective hinge and center portion 802. Referring to
As described previously, during a grading operation, the heaviest portion of material such as dirt, rock, or sand generally contacts the center portion 802 of the blade 800 and then transitions laterally outwardly towards the wings. If the wings were located forward of the center portion 802, the material would easily pass inbetween the center portion 802 and each wing. However, in the design of
Even with the center portion 802 located forward of the wings, there is still a small gap therebetween. The aforementioned first overlapping portion 820 and second overlapping portion 822 assist with minimizing the gap and reducing or preventing material from reaching the gap. In addition to the positioning of the wings rearward of the center portion 802 of the blade 800, the pivotal motion or movement of the wings further reduces the size of the gap and prevents material from jamming between the wing and center portion 802. Moreover, during a grading operation, a wider gap may cause irregularities in the grading performance and therefore it is desirable to minimize the gap to reduce or prevent these irregularities. This is shown best in
As shown in
Referring to
In
Lastly, in
In essence, the geometry of the center portion 802 (e.g., its curved lateral edges) and wings (angled edges) as well as positioning of the wing rearward of the center portion 802 enables the wing to move translationally and pivotally with respect to the center portion 802.
It is also noteworthy that locating the wing rearward of the center portion better enables a mechanical advantage of utilizing an end stop, which is described above.
Turning to
While exemplary embodiments incorporating the principles of the present disclosure have been described hereinabove, the present disclosure is not limited to the described embodiments. Instead, this application is intended to cover any variations, uses, or adaptations of the disclosure using its general principles. In addition, while the terms greater than and less than have been used in making comparison, it is understood that either of the less than or greater than determines can include the determination of being equal to a value. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 17/028,107, filed Sep. 22, 2020 and entitled “Work Machine with Automatic Pitch Control of Implement,” the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3157099 | Ulrich | Nov 1964 | A |
4099578 | Stevens | Jul 1978 | A |
4135583 | Becker | Jan 1979 | A |
5848654 | Belcher, Jr. | Dec 1998 | A |
5860230 | Daniels | Jan 1999 | A |
6425196 | Weagley et al. | Jul 2002 | B1 |
6442877 | Quenzi et al. | Sep 2002 | B1 |
7681337 | Watson | Mar 2010 | B2 |
7918042 | Ropog | Apr 2011 | B2 |
8127471 | Stevens et al. | Mar 2012 | B2 |
8919455 | Hendron et al. | Dec 2014 | B2 |
9068324 | Linder et al. | Jun 2015 | B2 |
9151006 | Guggino et al. | Oct 2015 | B2 |
9200418 | Jones et al. | Dec 2015 | B2 |
9388544 | Reeves et al. | Jul 2016 | B2 |
9624643 | Hendron et al. | Apr 2017 | B2 |
10011972 | Helmeczi et al. | Jul 2018 | B2 |
10132050 | Mandan | Nov 2018 | B1 |
20120059554 | Omelchenko et al. | Mar 2012 | A1 |
20160230367 | Hendron et al. | Aug 2016 | A1 |
20160312421 | Ummenhofer et al. | Oct 2016 | A1 |
20170107700 | Faivre et al. | Apr 2017 | A1 |
20170218597 | Holman | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
102021208926 | Mar 2022 | DE |
3521515 | Aug 2019 | EP |
Entry |
---|
https://www.meiren.ee/en/snow-plows/snow-plow-vles-for=wheel-loader/; “W-snowplow VLES for wheel loader | Meiren snow plows”; pp. 1-7; Date Sep. 22, 2020. |
http://www.domorequipment.com/r600c/; “R600C Mechanical Aggregate Spreader by DoMor”; pp. 1-5; Date: Sep. 22, 2020. |
www.cat.com; 2015 Caterpillar; “Cat D6N Track-Type Tractor”; pp. 1-2. |
Komatsu Ltd; Article “Bulldozers D61EX/PX-12”; pp. 1-12. |
https://www.pistenbully.com/aut/en/vehicles/all-vehicles.html; “Snow Groomers”; Date: Sep. 22, 2020; pp. 1-18. |
Number | Date | Country | |
---|---|---|---|
20220090350 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17028107 | Sep 2020 | US |
Child | 17161990 | US |