The present invention relates to work machines, and, more particularly, to such machines with exhaust aftertreatment devices.
Although EPA laws have required manufacturers of highway vehicles to utilize exhaust aftertreatment devices to meet emissions requirements for a number of years, further EPA regulations require the use of exhaust aftertreatment devices in off-road vehicles generally described as work machines. The work machines may take many forms including end loaders, back hoes, combines, and other agricultural equipment.
The application of exhaust aftertreatment devices, which can be bulky, to the work machine, requires implementation quite different than the application for highway vehicles. Generally speaking, there is adequate room in a highway vehicle to support the bulky exhaust aftertreatment device away from or underneath the engine.
For work machines, there is a need for a compact engine envelope since the work machine must accomplish many more tasks beyond motion along the ground. This requires a significantly greater utilization of devices that perform power functions in addition to the forward velocity of the machine. As such, the engine components for a work machine are positioned on top of the engine. Turbochargers, exhaust devices, and intake filters are usually positioned over the top of the engine. While this provides a compact engine envelope, it presents additional problems in the servicing of the engine and its components.
Particularly, the exhaust aftertreatment device must be removed after a given period of operating hours for replacement and may also be required to be removed for servicing during that interval. In addition, engine components along the top of the engine are periodically required to be serviced. With the substantial bulk of the exhaust aftertreatment device and intake air filter on the top of the engine, servicing the exhaust aftertreatment device and/or the top engine components is a problem.
What is needed in the art, therefore, is an arrangement for ready and easy servicing of the exhaust aftertreatment device and/or the top portion of the engine.
In one form, the invention is a power system including an air-breathing, fuel-consuming internal combustion engine (IC) engine providing a rotary output and producing products of combustion through an exhaust pipe. A frame is positioned adjacent to and over the top portion of the IC engine. An exhaust aftertreatment device is releasably connectable to the exhaust pipe, the exhaust aftertreatment device being positioned over the top portion of the IC engine. A carriage supports the exhaust aftertreatment device and the carriage is releasably connected to the frame for independent removal of the exhaust aftertreatment device so that it may be easily serviced and replaced.
In another form, the invention is a work machine including a chassis and an air-breathing, fuel-consuming internal combustion (IC) engine providing a rotary output for the chassis and producing products of combustion through an exhaust pipe. A frame is supported by the chassis and positioned adjacent to and over the top portion of the IC engine. An exhaust aftertreatment device is releasably connectable to the exhaust pipe, the exhaust aftertreatment device being positioned over the top portion of the IC engine. A carriage supports the exhaust aftertreatment device with the carriage being releasably connected to the frame for independent removal of the exhaust aftertreatment device so that it may be easily serviced and replaced.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one embodiment of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
The products of combustion then pass to a turbine 30, which drives the compressor by virtue of the hot gasses passing over it. The exhaust from turbine 30 passes through an exhaust pipe 32 having various sections making up a flow passage and connecting with the inlet 34 of an exhaust aftertreatment device 38 at a flange mated by a releasable clamp 36. Exhaust aftertreatment device 38 serves multiple functions, for example, diesel particulate filtration and oxides of nitrogen reduction. The gasses thus processed are discharged through an upwardly directed outlet 40. In typical fashion, there is an engine compartment cover that mates with the inlet 22 and outlet 40 for weather protection and servicing when the cover is removed.
As noted above, the power system 14 is required to be in a compact overall configuration. As such, the intake air filter 20 and exhaust aftertreatment device 38 are required to be mounted over the top of the engine 15. While this arrangement facilitates compactness, it creates problems with respect to servicing of the exhaust aftertreatment device 38 and access to the top portion of the engine 15, for example, to service injectors or to adjust valve lash.
In accordance with the present invention, the structure shown in
The exhaust aftertreatment device 38 has a primary structural interconnection with carriage 52 as particularly shown in
In the positions illustrated in
The exhaust aftertreatment device 38 requires periodic servicing and, after a given period of time, requires replacement. In addition, the exhaust aftertreatment device 38 weighs well over 100 pounds and is not easily removed by a single mechanic. For servicing of the exhaust aftertreatment device, the clamp 34 is removed, thus freeing the inlet 36 of exhaust aftertreatment device from exhaust pipe 32. Additional sensor and control lines between the exhaust aftertreatment device 38 and the engine 15 are disconnected. At that point, lifting lugs (not shown) are connected to carriage 52, enabling the carriage 52 to be removed from the engine by a hoist in a vertical direction. As such, the exhaust aftertreatment device may be serviced and/or replaced with a minimum disturbance of the remaining engine components. The position shown in
Under other circumstances, the top of the engine must be exposed for various operations including, for example, valve adjustment and injector servicing. For this purpose, the entire frame 50 (with carriage 52 and exhaust aftertreatment device 38) is removed from the associated chassis mountings indicated as plate 86 connected to a hydraulic oil reservoir (not shown) on one end and a plate 87 connected to the engine mounting frame 16 at the opposite end. In this circumstance, both the exhaust aftertreatment device 38 and the filter 20 are removed as a unit. For this purpose, lifting lugs (not shown) may be fastened to carriage 52 so that the entire unit may be hoisted from the unit as shown particularly in
The alignment of the exhaust pipe 32 and inlet 34 for the exhaust aftertreatment device is critical and it is necessary to ensure that when the frame 50 is removed, it may be installed in the same three axis position in which it was manufactured. For this purpose, the adjustable mountings 84 are employed.
Referring to
As stated previously, the adjustable mountings 84 permit side-to-side, fore and aft, and vertical adjustment so that when the frame 50 is removed, it can be placed in the same position set at the factory. The side-to-side adjustment is accomplished by bolts 92 extending through transverse slots 94 in intermediate cross plate 88 and received in plate 86. Openings 96 in frame cross plate 90 permit the adjustment of intermediate cross plate 88 from side-to-side and through the structural connection with carriage 52, the side-to-side position of exhaust aftertreatment device 38 and, more specifically, its inlet 34. During this procedure, the bolts 92 are loose to permit the sideways movement of frame cross plate 90 and intermediate cross plate 88. When this is set, the right most bolt 92 is fastened but the left bolt 92, as viewed in
The vertical adjustment of frame 50 relative to the chassis is accomplished by bolts 106 extending through frame cross plate 90 and are received in threaded connections (not shown) on the longitudinal frame members 54 and 56. The bolts 106 are turned to adjust the vertical height of the longitudinal frame members 54 and 56 and, thus, the vertical height of exhaust aftertreatment device 38. The weight of the longitudinal frame members 54 and 56 hold the bolts 106 in place. The vertical adjustment is fixed by bolts 108 that extend through slots 110 in longitudinal frame members 54 and 56 and are threaded into a downward directed flange 112 on frame cross plate 90. The bolts 108 are tightened to fix the vertical position of frame 50 and, thus, the vertical position of exhaust aftertreatment device 38.
The side-to-side and fore and aft adjustments may be made sequentially or, in a factory setting, simultaneously along with the vertical adjustment through bolts 106. Once the adjustments are made, the various bolts 92, 102, and 108 are tightened to secure the frame in place in the proper position. The removal of the frame 50 is accomplished by loosening bolts 102 to remove both the exhaust aftertreatment device 38 and the filter 20. When the frame 50 is again put in place, the lock plate 98 sets the fore and aft position because its length abuts the fore and aft edges of opening 96 while the side-to-side position is set by lining up the slots 104 so that bolts 102 can be fastened.
As a result, the exhaust aftertreatment device 38 may be removed independent of the frame 50 because of the separate carriage 52. Since its vibration isolators 78 are fixed, the exhaust aftertreatment device 39 may be installed in the same relative position. When the entire frame 50 is removed, the lock plates 98 and slot arrangements ensure that the frame 50 is reinstalled in the same position as set by the factory. The result is very efficient and effective servicing of the exhaust aftertreatment device 38 and the ability to service the top portion of engine 15 without compromising the factory set position of the exhaust aftertreatment device relative to its mating component on engine 15.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
20100031644 | Keane et al. | Feb 2010 | A1 |
20100326219 | Nelson et al. | Dec 2010 | A1 |
20110180344 | Kimura | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2010047199 | Apr 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20120227376 A1 | Sep 2012 | US |