The present invention relates, generally, to the field of work platform systems that are erected to facilitate accessing various parts of various structures. More particularly, the present invention relates to work platform systems that are capable of being erected to extend lengthwise over significant distances between end regions, where the work platform systems further extend beneath at least some portions of the structures with respect to which the work platform systems are facilitating access.
A number of types of work platform systems are available on the market for use in a variety of environments, circumstances, and projects including, for example, construction or maintenance projects. Whether a project is a public works project (e.g., low bid), or a private project, reducing costs and/or maintaining costs at reasonable levels are important considerations for the parties involved (e.g., contractors and/or the owner). One environment in which work platform systems are used is along and particularly beneath structures that extend significant distances lengthwise, such as bridges. Such work platform systems can be employed for various reasons including, for example, to allow workers to perform various maintenance procedures (such as inspecting, cleaning, painting, repairing, or refurbishing) or construction procedures with respect to the structures, particularly in relation to regions along or proximate underside regions of the structures such as along the undersides of bridges. Also, such work platform systems can serve to perform a shielding function in terms of limiting the extent to which debris arising from such maintenance or construction procedures or otherwise can fall to regions beneath the work platform systems.
Various conventional work platform systems exist that can be implemented in such environments, and these various work platform systems vary in a number of their attributes. At least some such conventional work platform systems are catenary-based systems in which deck portions are mounted on wires that extend between end regions of the overall work platform systems, where the wires are further suspended at various intervals along the lengths of the wires by way of additional supports.
Although some such catenary-based systems can be relatively inexpensive to implement, at least some of these systems can be disadvantageous in certain respects. Among other things, one or more conventional catenary-based systems can be relatively difficult to erect or require conditions (e.g., lane closure) or expertise for proper implementation that are difficult to obtain or guarantee. Also, one or more conventional catenary-based systems are made of components that are limited in terms of lifespan or reusability, and/or employ components that lack sufficient durability or stability or are ergonomically undesirable for other reasons. Further, at least some such conventional systems provide walking surfaces that lack desired levels of flatness (e.g., the walking surfaces bend or experience excessive undulation).
For at least these reasons, therefore, it would be advantageous if a new or improved work platform system and/or method of use (e.g., in terms of installing the work platform system) could be developed that addressed one or more of the above-described concerns, and/or other concerns.
In at least some exemplary embodiments, the present invention relates to a work platform system for implementation in relation to a structure. The work platform system includes a first flexible element and a second flexible element, where a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component. The work platform system also includes a plurality of panel structures supported upon the flexible elements and substantially extending between the first flexible element and the second flexible element, wherein the panel structures are positioned in succession with one another so as to form a row of the panel structures extending along the flexible elements. Each of the panel structures includes a first pair of opposed edges each extending substantially parallel to the flexible elements and a second pair of opposed edges each extending between the first pair of opposed edges. A first of the panel structures includes a first support extension extending outward away from a first one of the respective second pair of opposed edges of the first panel structure. Additionally, the first support extension of the first panel structure includes a first formation into which a second one of the respective second pair of opposed edges of a second of the panel structures is positioned, the first formation serving to at least partly limit movement of the second panel structure relative to the first panel structure.
Additionally, in at least some embodiments, the present invention relates to a work platform system for implementation in relation to a structure. The work platform system includes a first pair of flexible elements and a second pair of flexible elements, where a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component. The work platform system also includes a plurality of panel structures supported upon the flexible elements and substantially extending between the first pair of flexible elements and the second pair of flexible elements, where the panel structures are positioned in succession with one another so as to form a row of the panel structures extending along the flexible elements. Each of the panel structures includes a first pair of opposed edges each extending substantially parallel to the flexible elements and a second pair of opposed edges each extending between the first pair of opposed edges. A first of the panel structures includes a first support extension extending outward away from a first one of the respective second pair of opposed edges of the first panel structure. Additionally, the first support extension of the first panel structure includes a first formation into which a second one of the respective second pair of opposed edges of a second of the panel structures is positioned, the first formation serving to at least partly limit movement of the second panel structure relative to the first panel structure.
Additionally, in at least some embodiments, the present invention relates to a work platform system for implementation in relation to a structure. The work platform system includes a first pair of flexible elements, a second pair of flexible elements, and a third pair of flexible elements, where a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component. The work platform system further includes a plurality of panel structures supported upon the flexible elements. Each of the panel structures includes a first pair of opposed edges each extending substantially parallel to the flexible elements and a second pair of opposed edges extending between the first pair of opposed edges. A first of the panel structures is supported upon at least one flexible element of the first and second pairs of flexible elements, substantially extending between the first and second pairs of flexible elements. A second of the panel structures is supported upon at least one flexible element of the second and third pairs of flexible elements, substantially extending between the second and third pairs of flexible elements. At least a first portion of the remaining plurality of panel structures are positioned in succession with the first panel structure and at least a second portion of the remaining plurality of panel structures are positioned in succession with the second panel structure, thereby forming two rows of panel structures extending along the flexible elements. The work platform system further includes a plurality of additional cover portions positioned between the two rows of panel structures and at least indirectly engaging both flexible elements of the second pair of flexible elements.
Further, in at least some embodiments, the present invention relates to a method of implementing a work platform system in relation to a structure. The method includes attaching a first pair of flexible elements and a second pair of flexible elements at least indirectly to a first support and a second support, respectively, and installing a first panel section onto the first and second pairs of flexible elements. The method also includes installing a second panel section onto the first and second pairs of flexible elements, where the installing of the second panel section includes placement of a second side edge of the second panel section into at least one support component extending outward from a first side edge of the first panel section and rotating the second panel section until the second panel is supported on the first and second pairs of wire extensions.
Referring to
It is envisioned that at least some of the work platform systems disclosed herein are particularly suitable for use in relation to structures such as the suspension bridge 100, where it is desired that the work platform system extend significant distances along (and often underneath) the structure. To this end, the present disclosure particularly encompasses work platform systems that include both a respective support subsystem and a respective suspended subsystem that extends (and potentially extends significant distances) between portions of the support subsystem. In this regard, referring still to
It should be appreciated that, although
Referring additionally to
As discussed further in relation to
Referring additionally to
Further, the partly implemented suspended subsystem 120 in the present embodiment is shown to include multiple pairs of flexible elements 230, such as, for example, wire tendons in the embodiment shown. More particularly, the pairs of wire tendons 230 in the present embodiment include first, second, third, fourth, fifth, sixth, seventh, eighth, and ninth pairs of wire tendons 301, 302, 303, 304, 305, 306, 307, 308, and 309, respectively. A portion of the first pair of wire tendons 301 is shown in an additional detail view provided as
It should be appreciated that pairs of flexible elements (e.g., wire tendons) in the present embodiment can be considered “paired” particularly in the sense that the support role played by each given tendon of the pair, in terms of supporting other structures upon it (e.g., a particular side edge of a panel section such as one of the panel sections 750 discussed below) is also performed equally or substantially equally by the other wire tendon of the pair, such that the other wire tendon plays a substantially redundant or auxiliary support role relative to the given wire tendon of the pair (and vice-versa). Through the use of pairs of redundant wire tendons, support can still be achieved for the suspended subsystem 120 even in circumstances where one of the wire tendons ceases to provide its intended support role.
Further with respect to the pairing of wire tendons, it should be noted that the mere presence of two wire tendons in support roles in a given suspended subsystem does not necessarily make those two wire tendons “paired” if the support roles provided by each respective wire tendon fail to be shared or overlap to a significant degree or if the support role being provided by the two wire tendons lacks any substantial qualitative similarity. For example, it would be appropriate to consider two wire tendons to be paired if both of the wire tendons support at least one component in the same or a substantially same manner (e.g., where each of two wire tendons supports the same edge of a panel section such as one of the panel sections 750 discussed below). This could be true even if the two wire tendons do not provide equal amounts of support (e.g., where one of the tendons bears 60% of the burden and the other bears 40% of the burden). Alternatively, also for example, it would not be appropriate to consider two wire tendons to be paired in a circumstance where a given one of the wire tendons supported a first side edge of a panel section but the other wire tendon supported a second opposite side edge of that panel section, and where the wire tendons otherwise did not share or substantially share any other support role (e.g., share some other support role with respect to some other component).
Notwithstanding the above description, it should be understood that the present disclosure is also intended to encompass numerous other embodiments employing numerous other arrangements of wire tendons. For example, in some alternate embodiments, the wire tendons of a given pair need not be arranged side-by-side (need not share common vertical levels along their lengths) but rather can be arranged above or below one another or in some other manner. Also for example, in some other embodiments, instead of employing pairs of wire tendons, single wire tendons can be employed independently (that is, employed to perform a support role that is not shared or substantially shared by any other redundant wire tendon or tendons), or groups of more than two wire tendons that are paired with one another (that is, paired in the sense described above, in terms of a shared or substantially shared support role) can be employed. Also, depending upon the embodiment, a given arrangement of paired (or independent) wire tendons can be employed repeatedly throughout the suspended subsystem in a consistent manner, as is the case with the partly implemented suspended subsystem 120 of
As for the first portion 132 of the support subsystem 130,
Referring to
Further as shown in
It should particularly be appreciated that, in the present embodiment, the wire tendons 230 of the partly implemented suspended subsystem 120 can also be coupled to the support subsystem 130 by coupling those wire tendons to respective ones of the openings 313 (or 314) of the appropriate ones of the hubs 310. In the present embodiments, these connection locations generally constitute the junction 225 mentioned above in relation to
Also as shown, at the center of the top element 311 is a center opening 316, which is configured to be able to receive a linkage or suspension connector by which the hub 310 can be suspended from another structure, such as from a deck 222 (see
In addition to
Thus, given the above description, it should be appreciated that there are four upper connecting flanges 335A, 335B, 335C, 335D and four lower connecting flanges 336A, 336B, 336C, 336D, as well as four connecting holes 337A, 337B, 337C, and 337D, on the joist 330. Accordingly, at the first end 331A, extending from the upper element 332, is an upper connecting flange 335A and lower connecting flange 336A, with a connecting hole 337A therethrough (see both
Further as shown in
Also as shown (particularly see
Although articulation of the joist 330 and hub 310 relative to one another can occur in some embodiments or operational circumstances, in other embodiments or circumstances such articulation is precluded. In particular, articulation is typically precluded when the work platform system is fully implemented, or even when the structural support components of the partly implemented support subsystem 130 are installed as shown in
As with the pin 340A, the locking pin 340B can include additional two roll pins 342 as shown, which serve the same purposes as discussed above with respect to the roll pins provided on the pin 340A. Although not shown in
It should be appreciated that, in the present embodiment the support subsystem 130 employs components and features according to the QuikDeck™ suspended access system available from Safway Services, LLC of Waukesha, Wis., the beneficial assignee of the present patent application. As already discussed, and as further discussed below, these components of the support subsystem 130 among other things include the anchors 300, hubs 310, and joists 330 and related subcomponents discussed above as well as the floor panels 732 and support chains 220 further discussed below. Nevertheless, it should also be appreciated that a variety of other support subsystems and support subsystem components can also or instead be utilized depending upon the embodiment or circumstance, and such other support subsystems and associated components are also intended to be encompassed herein.
Among other things, the present disclosure is particularly also intended to encompass support subsystems that employ other component(s) such as any of those described in U.S. Pat. No. 7,779,599 entitled “Articulating Work Platform Support System, Work Platform System, and Methods of Use Thereof”, issued on Aug. 24, 2010, which is hereby incorporated by reference herein (said issued patent being assigned to a common assignee with the present patent application). Also, for example, notwithstanding the above description of the hubs 310, joists 330, and associated components shown in
Additionally for example, depending upon the embodiment, various differently-shaped components can be utilized. For example, while joists such as the joist 330 can be bar joists, the joists can also be open-web joists and/or structural tubing. Further for example, one or more of the joists 330 can be made of multiple pieces of structural tubing shapes, or the joists 330 can be one single structural tubing shape. Similarly, the joist 330 could be made of shaped steel (e.g., wide flange elements, narrow flange members, etc.), or other suitable shapes and materials. Also, additionally other types of joists that are curved rather than linear (straight) can be employed, as can other types of panel portions and supports for such panel portions. Further, although in the present embodiment it is envisioned that the first and second portions 132 and 134 of the support subsystem 130 (including all hubs, joists, anchors, floor panels, and support chains thereof) will be fully assembled and installed in relation to the towers 140 prior to any portions of the suspended subsystem (e.g., the partly implemented subsystem 120) being implemented, in alternate embodiments it is possible that portions of the support subsystem 130 will be implemented contemporaneously with, or subsequent to, implementation of the suspended subsystem.
Turning now to
Although the support system 130 appears somewhat different in
With respect to the further implemented suspended subsystem 720, as shown in
Turning now to
In other embodiments, these dimensions of any one or more of the panel sections that are employed in a given suspended subsystem can vary from those shown with respect to the panel section 765. For example, in another embodiment, the panel section can be approximately eight feet long by one foot wide. Indeed, the panel section need not be an elongated rectangle but also could be another shape, such as that of a square. Additionally, although not shown in
As an example, the panel section 765 particularly includes a top panel surface 763 having dimensions that are equal to the previously-mentioned width and length dimensions 759 and 761 of the overall panel section 765, and that is the surface upon which work personnel can walk. In the present embodiment, the top panel surface 763 is made of wood (e.g., plywood). Use of wood as the top panel surface 763 can be particularly advantageous in that surface provides better traction even during conditions where moisture exists on the surface (e.g., during a rainstorm) than if other materials such as sheet metal were used. Nevertheless, the particular material employed to form the top panel surface 763 can vary depending upon the embodiment.
Further with respect to the panel section 765, the top panel surface 763 is mounted upon steel tubes or struts 760, which are shown in each of
As shown in
In the embodiment shown in
In addition to the top panel surface 763 and the struts 760, the panel section 765 additionally includes several support components that extend outward from the struts 760 and allow for the mounting of the panel section 765 in relation to the wire tendons 230 and also in relation to other ones of the panel structures 750 as shown in
As is evident from
Further as illustrated, particularly in
In addition to the above features, it will be observed from
Notwithstanding the above discussion concerning the wire tendon support extensions 770, it should be appreciated that those extensions (or similar structures employed to allow the panel sections 750 to be supported upon flexible support elements such as the wire tendons 230) can take on different forms in other embodiments. For example, in some alternate embodiments, the wire tendon support extensions do not have any offsets (or “joggles”). That is, in such embodiments, the wire tendon support extensions are straight such that the inner and outer ends (that is, the portions of the wire tendon support extension corresponding to the inner and outer portions 778 and 776 discussed above) are aligned. The offsets (or “joggles”) need not be employed in all embodiments, since the thickness of the wire tendon support extensions can be small, and since there is not always any particular need that panel sections provided in rows on opposite sides of a given pair of wire tendons be fully aligned (that is, so that the side struts 762 of panel sections in different rows are lined up).
Further in some alternate embodiments one or more subfeatures of one or more the wire tendon support extensions can take a form different than those discussed above with respect to
Referring still to
The particular hook-shaped configuration of the handle support extensions 780 of each of the panel sections 750 such as the panel section 765 serves several purposes. To begin, shape of the handle support extensions 780 allows those extensions to serve as handles by which work personnel (or other installation equipment) can grasp and support (and thus lift and move) the panel sections 750 during implementation of the work platform system. Additionally, the shape and positioning of the handle support extensions 780 (as discussed further below) allows for adjoining ones of the panel sections 750 in any given row of the panel sections to be easily positioned in relation to one another and ultimately interlocked with one another. Indeed, due to this interlocking of panel section sections of a given row afforded by the handle support extensions 780, in combination with the weight of the panel sections themselves, the panel sections 750 in the present embodiment can generally be supported and mounted onto the pairs of wire tendons 230 (with the indentations 772 receiving the pairs of wire tendons) without any additional securing mechanisms that would tend to preclude lifting of the panel sections off of the wire tendons. That is, the panel sections 750, once in place, are not positively locked to the wire tendons but merely remain in place relative to those tendons because of their weight and their interconnections with neighboring panel sections. That said, it should also be appreciated that, in alternate embodiments, the panel sections 750 can include other features by which the panel sections are positively locked or secured to the pairs of wire tendons on which those panel sections are supported.
Further in regard to the installation and interlocking of the panel sections 750 such as the panel section 765,
More particularly,
Turning to
It will be appreciated that, to allow for proper rotation of the additional panel section 791 relative to the panel section 765, the handle support extensions 780 necessarily extend outward away from the side strut 762 of the first panel section 765 on which those handle support extensions are mounted by a distance that is somewhat in excess of the cross-sectional width of the side struts 762 of the additional panel section 791, with such an excess distance being shown in
Further as shown in
Given this arrangement of the handle support extensions 780 on each of the panel sections 750, it should be appreciated that the handle support extensions 780 of each of the panel sections 750 are substantially complementary. That is, due to the oppositely-shifted arrangements of the handle support extensions 780 on opposite sides of each of the panel sections 750, neighboring panel sections can be positioned next to one another in a manner in which, instead of the handle support extensions 780 of the neighboring panel sections encountering and obstructing one another, the handle support extensions 780 of each of the neighboring panel structures serves to engage or mesh with the other of the neighboring panel structures. For example, when one of the panel sections 750 such as the additional panel section 791 is implemented in relation to another of the panel sections such as the panel section 765 as shown in
Although the panel section 765 shown in
More particularly in this regard, referring to
Further, referring to
Although the type, number, and positioning of the handle support extension(s) 851 in each of the alternative panel sections 850, 856, and 832 varies from that of the panel section 756, it should be appreciated that the handle support extension(s) in each of these alternative panel sections still can perform to at least some extent the functions performed by the handle support extensions 780 in the panel section 756 (and the panel section 791) as illustrated in
Further, with respect to
Such an arrangement is shown in
Although the alternative panel section 870 shown in
It should be appreciated that, as with the handle support extensions 780 of the panel section 756, the pairs of the handle support extensions 872 extending from the first and opposite sides 892 and 894 of the alternative panel section 890 of
Turning now to
Gravity hook 1010 is specifically designed with a center of gravity A which is just offset from pivot point 1015 when in both the up position and down position, as illustrated in
Because the center of gravity A is offset from pivot point 1015 when in both the up and down positions, gravity hook 1010 will stay in the up position until hook 1010 is physically rotated such that the center of gravity A passes to the other side of pivot point 1015. Similarly, gravity hook 1010 will stay in the down position until hook 1010 is physically rotated such that the center of gravity A passes back over pivot point 1015. Gravity hook 1010 therefore acts to prevent upward movement of panel sections 750 relative to tendons 230.
Aperture 1014 of extension 1013 is configured to correspond to aperture 1017 of tendon extension 770. For added stability, a securing component, such as a zip-tie, bolt, or other structure, can be secured through apertures 1014, 1017, thereby physically connecting gravity hook 1010 and tendon extension 770 at a second point, the first being pivot point 1015. Similarly, notch 1018 of tendon extension 770 is configured to correspond to the location of upper surface 1016 when gravity hook is the down position, allowing an additional cover structure (discussed below) to be installed between panel sections 750 over gravity hook 1010. Notch 1018 also allows access to upper surface 1016 to pivot gravity hook 1010 from a down position to an up position.
For example, as illustrated in
The location of the center of gravity A and pivot point 1015 also serves to keep gravity hook 1010 closed under uplift conditions. Specifically, in the closed position, center of gravity A is offset from the center of pivot point 1015 at a distance of 1024 and also set below the center of pivot point 1015. The position of the tendon 230 is also offset from the center of pivot point 1015. As a result, under uplift conditions (i.e., under tendon pull force 1030), gravity hook 1010 is rotated in a clockwise position and remains closed.
It should be appreciated that the panel section 1000 described above can have any configuration of handle support extensions as discussed herein. Additionally, it should be appreciated that the examples of alternative panel sections discussed above are merely examples and that numerous other variations of panel sections can be implemented in embodiments encompassed by the present disclosure.
Returning to
From
As illustrated particularly in
More particularly, in the present embodiment, the additional cover structures 767 includes a pair of bolt holes 950 by which the additional cover structures 767 can be bolted to a pair of tendon retainer structures 769.
In addition to the above-mentioned features, the first side wall 956 of the main outer shell 952 has first and second wire receiving indentations 966 and 967, respectively, and the second side wall 957 has third and fourth wire receiving indentations 968 and 969, respectively. As shown, all of the wire receiving indentations 966, 967, 968, and 969 are generally located at a vertical level that is substantially the same, but slightly higher, than the complementary slots. Also, the first and second wire receiving indentations 966 and 967 are located respectively at generally opposite ends of the first side wall 956, and the third and fourth wire receiving indentations 968 and 969 are located respectively at generally opposite ends of the second side wall 957. As will be discussed further below, the first and third indentations 966 and 968, respectively, share in common a first shape that includes an elongated indented portion 970, and are respectively located at respectively opposite ends of the first and second side walls 956 and 957, respectively. By comparison, the second and fourth indentations 967 and 969, respectively, share in common a second shape that lacks the elongated indented portion, and are located at respectively opposite ends of the first and second side walls 956 and 957, respectively. Additionally, it will be appreciated that the roof 954 of the main outer shell 952 includes an orifice 971 and the flat internal compression structure 958 also includes snap-in cage nut having a threaded internal orifice 972 that is generally aligned with the orifice 971 when the ear extensions 960 are within the complementary slots 962.
Turning to
Additionally, with the tendon retainer structure 769 positioned onto the wire tendons 302, the additional cover structure 767 is positioned so that one of the bolt holes 950 is over the orifice 971 and particularly aligned with the threaded internal orifice 972. Further, the retainer bracket 980, which in the present embodiment is an L-shaped bracket having two orifices 985 that are located respectively on each of a horizontal wall portion 986 and a vertical wall portion 988 of the bracket, is aligned so that the orifice 985 on the horizontal wall portion 986 is also aligned with the threaded internal orifice 972. With all of these components so aligned and positioned so that the additional cover structure 767 is atop the roof 954 and the horizontal wall portion 986 is atop the additional cover structure, then the bolt 982 can be inserted through the orifice 985, bolt hole 950, orifice 971 and into the threaded internal orifice 972. Rotational tightening of the bolt 982 then has the effect of rotating the cage nut within which the threaded internal orifice 972 is formed, thus causing the flat internal compression structure 958 to move upwards relative to the shell 952 so as to grip the wire tendons 302 with flat internal compression structure and the upper surfaces of the indentations 966, 967, 968, and 969. As this occurs, the retainer bracket 980 is held against the tendon retainer structure 769 with the additional cover structure 767 sandwiched in between, such that ultimately all of the retainer bracket, additional cover structure, and the tendon retainer structure are fixedly coupled to the wire tendons 302 in a robust manner. In view of the securing function of tendon retainer structure 769 relative to the panels, tendon retainer structure 769 can in some embodiments be referred to as a deck retainer clamp.
Also, in some embodiments, the tendon retainer structure 1200 includes an internal compression structure 958′ which is elongated, as shown in
With respect to the retainer bracket 980 in particular, it should be appreciated such retainer brackets are only optional with respect to the implementation of any given one of the tendon retainer structures 769 and additional cover structures 767. The retainer brackets 980 can particularly be provided in areas where it is desired to fixedly mount other structures in relation to (or as part of) the wire tendons 230 and/or the panel structures 750, for example, to mount guard rails. That said, it should be evident from
Referring now to
As illustrated in
In the exemplary embodiments shown in
When assembled as illustrated in
As the first additional cover structure 1300 continues to rotate to a final horizontal position, wire tendons 302 contact, directly or indirectly, the tendon-engaging side wall 1317. In the exemplary embodiments shown in
Once first additional cover structure 1300 reaches its final position, Z-shaped protuberance 1303 fully engages receiving aperture 1316 and tendons 302 snap into position at tendon indentations 1312. Legs 1318 are no longer flexed, and upward movement of the additional cover structure 1300 relative to the tendons 302 is prevented by the engagement of tendons 302 in tendon indentations 1312.
It is to be appreciated that alternate configurations of protuberance 1303 can require different positioning and rotating to engage protuberance 1303 with receiving aperture 1316.
It will be appreciated that there is some overlap of additional cover structures when installed. It will further be appreciated that tendon retainer structure 769 is not necessary when using alternative additional cover structures 1300, 1320, 1330 because additional cover structures 1300, 1320, 1330 engage tendons 302 directly or indirectly. However, additional cover structures 1300, 1320, 1330 can, in some instances, still be used with tendon retainer structures 769, such as, for example, when installing a guard rail at an interior point, i.e., a point not along the exterior perimeter of a suspended subsystem 120.
As illustrated in each of
As additional cover structure 1300a′ is pivoted downward (as described generically with reference to
It is appreciated that additional cover structures 1300′ do not directly contact or rest on tendons. Rather, as illustrated in the figures, clips 1111′ act as an indirect connection between tendons and additional cover structures 1300′. As illustrated with reference to, for example,
Referring still to
It should be appreciated that, although not clearly apparent from
Further as shown, in order to couple the suspension chains 790 to the pairs of wire tendons 230, in the present embodiment, suspender structures 800 are employed, one of which is shown in each of
Further as shown, the suspender structure 800 includes a main body 801 having a top handle portion 812 that includes a planar portion 814 that overlays the top planar surface 802 along much of that surface and further includes two upwardly extending handle portions 816 that extend upward from the planar portion 814 diagonally upwards, that is, both upwards away from the top planar surface 802 and generally outwards toward the respective side edges 804 of the suspender structure 800. Each of the handle portions 816 includes a respective slot 818 by which work personnel implementing the suspender structure 800 can grasp the suspender structure. Further as shown, the top planar surface 802 as well as the planar portion 814 include three additional holes or orifices, namely, first and second end orifices 820 that are circular and an intermediate orifice 822 that is oblong. The end orifices 820 are respectively positioned proximate opposite ends of the intermediate orifice 822, in between those respective opposite ends of the intermediate orifice 822 and outer end tips 824 of the planar portion 814. Further, additional orifices 826 that are also circular and of smaller diameter than the orifices 820 are positioned proximate the bracket extensions 806 of the top planar surface 802. Each of the additional orifices 826 is positioned generally to the side of a respective one of the outer end tips 824 of the planar portion 814.
The intermediate orifice 822 as shown includes a central region 821, end slot regions 823, and intermediate transverse slot regions 825 that allow the intermediate orifice to serve as an attachment feature by which one (or potentially more than one) of the suspension chains 790 can be attached to the suspender structure 800. Although not shown in detail in
In contrast to the intermediate orifice 822, the orifices 820 and 826 allow for assembly of first and second grasping portions (or clasp portions) 830 to the main body 801 of the suspender structure 800 in a manner that allows the suspender structure to grasp the wire tendons of a pair of the wire tendons 230 and lock the suspender structure in relation to those wire tendons such that tension force provided by the suspension chain 790 can be applied to the wire tendons and hold those wire tendons in place relative to the deck 222. More particularly as shown, each of the grasping portions 830 includes a central post 832 that extends upward from a central location 836 along a horizontally extending portion 834 that extends outward in opposite directions from that central location. Further as illustrated, each of the grasping portions 830 also includes an additional post 838 that is offset radially from the central location 836 and central post 832 and that has a smaller diameter than the central post. More particularly as shown, the location of the additional post 838 is still relatively close to the central post 832 by comparison with how close ends 840 of the horizontally extending portion 834 are located relative to the central post 832, but also is offset from a central axis 842 (that is, shifted to the side of that central axis 842) extending between the ends 840.
Implementation of the suspender structure 800 in relation to a pair of the wire tendons 230 proceeds by first inserting the respective central posts 832 of the two respective grasping portions 830 into the respective end orifices 820 of the main body 801 from underneath the main body, with both of the grasping portions rotated so as to be axially aligned with the central axis 842, such that the grasping portions are in starting orientations 843 as shown in
Once the suspender structure 800 is in position relative to the pair of wire tendons 230 as discussed above, then the grasping portions 830 are further rotated ninety degrees (90°), in the present example in a clockwise manner as indicated by arrows 846, until the additional posts 838 (and particularly tips/heads thereof) become aligned with the additional orifices 826. This rotation can be accomplished by way of torque bolts. Once this has occurred, the nuts 844 can be further tightened so as to cause the grasping portions 830 to move upward towards the main body 801 and grasp fixedly the pair of wire tendons 230 extending between the grasping portions and the main body. Indentations 848 formed along upper side edges of the horizontally extending section 840 of each of the grasping portions 830 further enables the wire tendons to be grasped in this manner. In view of the installation procedure of suspender structure 800, and its functions of grasping tendons and securing a suspension chain(s), suspender structure 800 can, in some embodiments, be referred to as a suspender clamp.
As will be appreciated, the suspension chains 790 by virtue of the suspender structures 800 serve to provide extra support to the further implemented suspended subsystem 720 at locations in between the portions 132 and 134 of the support subsystem 130 (e.g., the two portions located respectively at the two towers 140) to which the ends of the further implemented suspended subsystem 720 and wire tendons 230 thereof are coupled. Such extra support helps to keep the support subsystem 130 flat (or substantially flat) along its length, and to eliminate or reduce undulation occurring along its length. Additionally it should be appreciated, particularly with reference to
As shown in
Bolts 832′ also include lower washer 837b′, connected to bolts 832′ by roll pin 837a′, which prevents nut 844′ from disengaging bolt 832′ completely. In the embodiment shown, spring 839′ is disposed between washer 837b′ and nut 844′. Spring 839′ keeps nut 844′ pushed up against threaded portion 832b′ of bolt 832′, making it easier to re-engage threaded portion 832b′. Spring 839′ can, however, be omitted in other exemplary embodiments, and lower washer 837b′ can be secured to bolts 832′ using additional or alternative structures.
It should be appreciated that grasping portions 830′ are not removable from main body 801′ of suspender structure 1400 in the embodiment shown in
Referring now to
As illustrated in
While in the embodiment described above, buttons 2580 are specifically described as a bent portion of flexible metal containing a protuberance at each end, it is to be understood that different materials and structures can be used to provide movable protuberances which extend outward from the horizontal extensions 2505 of toe board frame 2500′. For example, other structures such as spring loaded pins, ball locks, friction fit components, and other structures and devices known in the art.
In some embodiments, such as illustrated in
Using a spring-loaded pin allows rail post 2000 to be easily moved up or down within channel 2450 by simply depressing the pin to disengage the pin from a corresponding aperture and sliding the rail post 2000 up or down until the pin re-engages an aperture. In further embodiments, rail post 2000 can secure to rail post mount 2400 using one or more carriage bolts 2008 either in addition to a spring-loaded pin 2005 or other securing mechanism, or as a sole securing mechanism.
Front plate 2402 includes bottom portion 2403 with apertures 2406 and vertical surface 2407. Bottom portion 2403 transitions into vertical plate 2404, which then transitions into hook 2405. Vertical plate 2404 forms a third wall of channel 2450 so that channel 2450 becomes closed on three sides, with the top, bottom and one side of the channel being open.
As illustrated in
In further embodiments, bottom portion 2403 includes an aperture 2406 and a spring-loaded pin 2409. When rail post mount 2400 is connected to toe board frame 2500, spring-loaded pin 2409 is depressed while vertical surface 2407 is slide under flange 2515. Once spring-loaded pin 2409 is aligned with the corresponding aperture 2516 on flange 2515, spring-loaded pin 2409 engages the aperture 2516 and helps to secure rail post mount 2400 to and align rail post mount 2400 with toe board frame 2500.
As shown in
As further shown in
Rail post 2000″ also includes rail system securing structures 2002″, which are specifically designed for use with chain rail systems (see
It should be noted that, although the embodiment of work platform system shown in
From the above discussion, it should be appreciated that the further implemented suspended system 720 of
Nevertheless from the above description, it can be appreciated from
More particularly in this regard, it should be evident from the discussion provided in relation to
To further illustrate steps of implementation/installation/erection of the fully implemented work platform system 860 of
As shown, upon the process commencing at a start step 902, the process first involves a step 904 of assembling/installing a support subsystem such as the support subsystem 130. The step 904 includes performing of a first substep 906 that involves assembling and securing a first portion of the support subsystem (e.g., the first portion 132) at one end of the structure, and another substep 908 that involves assembling and securing a second portion of the support subsystem (e.g., the second portion 134) at another end of the structure. In the substeps 906 and 908, it will be understood that installation and securing of the respective portions of the support subsystem includes the implementation of any appropriate suspension, anchoring, and/or bracing structures as needed and, additionally, that such installation and securing occurs at a desired elevation or height (e.g., a desired distance above ground level).
In accordance with at least some embodiments, a substep 910 is also performed that includes providing and installing structures, such as adaptor brackets (not shown) to each of the support subsystem portions (for example, at leading edges of the support subsystem portions), with this substep serving to ready or configure the respective support subsystem portions to be connected to flexible elements such as the pairs of wire tendons 230 discussed above. Next, in a step 912, the flexible elements (again, e.g., the pairs of wire tendons 230) are secured to the respective portions of the support subsystem, such as by way of the adapter brackets previously mentioned. Attachment of these flexible elements typically will also establish multiple rows between the flexible elements (e.g., between the different pairs of wire tendons). Attachment of the flexible elements begins the installation of the suspended subsystem as discussed above, which ultimately results in the implementation of a fully implemented suspended subsystem such as the fully implemented suspended subsystem 120 and thus, viewed in combination with the support subsystem 130, implementation of a fully implemented work platform system such as the fully implemented work platform system 110 mentioned above.
Upon the flexible elements being attached, then the process advances to a step 914 that involves installing panel sections such as the panel sections 750. The step 914 includes several substeps 916, 918, 920, 922, and 924 as shown. The substep 916 is initially performed as one starts installation of the panel sections at one end of structure, e.g., at the first portion 132 discussed above. This substep involves placing a plurality of the panel sections on a plurality of the flexible elements and securing the panel sections to a portion of the support subsystem 130 (again, e.g., the first portion 132) and can involve the implementation of specialized panel structures or other structures that allow for a smooth transition (e.g., a smooth floor surface) to be maintained as one proceeds from the support subsystem to the suspended subsystem.
Next, at the substep 918, the process includes placing subsequent or additional ones of the panel sections 750 on a plurality of the flexible elements and securing such subsequent or additional panel sections to the respective previous panel sections using handle support extensions such as the handle support extensions 780 discussed above. This step is typically performed with respect to each of the rows of the suspended subsystem as established by the different flexible elements. Further, this step of placing and securing the panel sections 750 in at least some embodiments can involve positioning and lowering of panel sections in a particular manner. For example, positioning and lowering of a panel section can be performed entirely by hand by work personnel, or by way of machinery, and/or involve an extension connector such as a lanyard. In the case where a lanyard or similar ropelike connector was utilized, such connector would be attached to the handle support extensions tending to rotate away from the work personnel during installation of the panel section (e.g., the handle support extensions that would be at the top of the additional panel section 791 if it was shown in
Further, at the substep 920, tendon retainer structures 769 are installed in relation to the flexible elements, typically at desired, predetermined and/or specified locations along the flexible elements. Although shown as occurring sequentially after the substep 918, it is contemplated that the substep 920 can take place generally as the panel sections 750 are placed on the plurality of flexible elements in accordance with the substep 918. In some embodiments, substep 918 can be omitted entirely. Additionally, at the step 922, the additional cover structures 767 are installed and secured to the tendon retainer structures using retaining or connecting structures (e.g., bolts such as the bolt 982). This substep 922 also can take place generally as the panel sections 750 are placed on the plurality of flexible elements. Finally, as indicated by the substep 924, in some embodiments a guard railing system also is installed with respect to the panel sections 750 and it is contemplated that this substep too can take place generally as panel sections 750 are placed on the plurality of flexible elements. The guard railing system can be implemented by attachment of guard rail structures to a variety of other structures including, for example, retainer brackets such as the bracket 980 or features such as the orifices 781 associated with the panel sections.
Next, as represented by a step 926, installing of platform suspension structures takes place, and this includes substeps 928, 930, and 932 as shown. Although shown in the flowchart 900 of
Then, at the further substep 932, adjustment (e.g., raising or lowering) of the elevation of the panel sections 750 (connected to the flexible elements) and additionally securing (for example, using a chain retaining structure as previously described) of the suspension structures to the suspender bracket structures are performed. For example, one or more of the suspension wires 790 can be attached to the suspender structures 800 by way of the intermediate orifice(s) 822 thereof such that tension is applied to the structures 800 and thus to the flexible elements. It should be noted that tools, such as a suspender adjustment tool, can be used to adjust or accomplish elevation adjustment. Additionally, it should also be noted that the process of installing the suspender bracket structures such as the suspender structures 800 at the substep 928 can particularly involve positioning the suspender structures 800 onto the flexible elements and then rotating and tightening the grasping portions 830 so as to affix the suspender structure(s) to the flexible elements (and also so that the ends of panel sections 750 are locked in place between the grasping portions 830 and the top planar surfaces 802 of the suspender structures). Depending upon the embodiment, the suspension wire(s) can alternatively be coupled to the structures 800 prior to the grasping portion(s) 830 being rotated and locked in place relative to the flexible elements.
If at the step 936 it is determined that the installation of panel sections 750 is not complete with respect to any one or more of the rows of panel sections, the steps and substeps associated with installation of the panel sections 750 and platform suspension structures continues are repeated, by returning to step 914. It should be noted that, in this circumstance, upon repeating the substeps associated with the step 914 in particular, the substep 916 typically would no longer be applicable and would be skipped (since implementation of the panel sections would typically no longer be occurring right at the junction between the support subsystem and the flexible elements). Accordingly, the steps and substeps 914-936 are generally repeated until the other end of the structure (e.g., the second portion 134) is reached. That said, upon it being determined at the step 936 that the installation of panel sections 750 is complete with respect to all of the rows, the panel sections will be finally secured (e.g., using an adaptor bracket structure), at step 938, at the second portion of the support subsystem (e.g., the portion 134), and then the process concludes at the step 940. It should be appreciated that, although the flowchart 900 envisions that installation is complete when a far end of the suspended subsystem (e.g., at the portion 134) has been reached, completion also could be achieved, in other embodiments, by reaching some other location or attaining some other level of implementation.
In further, embodiments, the flowchart 900 can include additional steps or substeps depending on the particular use of a suspended subsystem and/or the use of any optional components. For example, flowchart 900 can include the further steps or substeps of installing a toe board frame, installing a toe board, installing a rail post mount, installing a rail post and/or forming a rail system. Flow chart 900 can also include further substeps for the installation of additional cover portions, as described with reference to
It should be appreciated that the work platform assembly, subsystems, and components thereof, and methods of implementation/installation and utilization relating thereto that are described above are advantageous in one or more respects depending upon the embodiment. For example, the intermeshing handle or grasping portions 830 allow not only for supporting the panel sections 750 but also act as support extensions and allow adjacent panel sections to be linked to one another and to provide support for and self-brace one another (e.g., the grasping portions 830 of one panel section extending beneath the side strut of an adjacent panel section help to provide further support for that adjacent panel section). Indeed, the grasping portions/support extensions 830 facilitate keeping the top panel surfaces of adjacent ones of the panel sections substantially aligned with minimal changes in elevation of the top panel surfaces of neighboring panel sections relative to one another. The panel sections 750 also are easy for stacking and shipping.
Also, through the use of appropriately-positioned ones of the tendons 230, the overall working surface (e.g., the surface on which work personnel walk) provided by the work platform system is substantially flat. Further, through the use of pairs of tendons, rather than single tendons, extending between the support subsystem (platforms) and supporting the panel sections, significant redundancy is built into the work platform system. Additionally, numerous components of the work platform system are modular and/or interchangeable, and/or can be reused again and again in relation to the implementation of new work platform systems in relation to additional structures.
It should also be appreciated that the work platform assembly, subsystems, and components thereof, and methods of implementation/installation and utilization relating thereto that are described above are only intended as examples, and the present disclosure is intended to encompass numerous variations of the above-described concepts. For example, a variety of panel sections of different sizes and shapes can be employed depending upon the embodiment and, indeed, in some embodiments, panel sections of different sizes and shapes are implemented together in a single work platform system. The use of panel sections of different widths and/or lengths can also be appropriate depending upon the circumstance. For example, in some embodiments or circumstances, panel sections having different sizes in terms of the width dimension discussed above (e.g., the width dimension 759 of
Also, in some embodiments or circumstances, panel sections having different sizes in terms of the length dimension discussed above (e.g., the length dimension 761 of
The use of handle support extensions can provide numerous functions including, for example: (a) securing panel sections together during assembly so that the panel sections do not slide apart from one another; (b) improving of the ease of platform assembly, insofar as the handle support extensions provide guidance and support for panel sections during assembly and disassembly; (c) increasing panel section stiffness by virtue of allowing for the transfer of loads from one panel section to another panel section; (d) minimizing the degree to which neighboring panel sections have surfaces that are not aligned (e.g., eliminating steps between neighboring panels and enhancing the degree to which the various neighboring panel sections form an overall surface that is substantially flat); (e) facilitating the assembly of panel sections in applications where the work platform system is extending downhill, by preventing panel sections from sliding away before the panel sections can be secured to wire tendons/cables; and/or (f) facilitating the handling, packing and securement of panel sections prior to delivery of the panel sections to a jobsite.
As already indicated above, the particular number, size, shape, and arrangement of handle support extensions associated with a given panel section can vary depending upon the embodiment or circumstance. Although in some work platform systems all of the panel sections will have identical handle support extensions, in other embodiments, one or more panel sections can have first arrangement of one or more handle support extensions even while one or more other panels sections have another arrangement of one or more handle support extensions. Among the various possible arrangements of handle support extensions that are possible are the following, for example: (a) a first arrangement in which there is only a single handle support extension on one side of a panel section; (b) a second arrangement in which there are two or more handles on only one side of a panel section (but no handle support extensions on the other side of the panel section); (c) a third arrangement in which there is a single handle support extension (but not more than one such extension) on each side of the panel section; and (d) a fourth arrangement in which there is more than one handle support extension on both of the sides of the panel section.
It should further recognized that the present disclosure is intended to encompass handle support extensions that have any of a variety of different shapes, as well as panel sections that include not only one or more handle support extensions but also one or more other features that serve one or more of the purposes of the handle support extensions as well. For example, in some embodiments, a panel section can include a flat U shaped handle support extension that serves to support adjacent panel section (such a handle support extension would be positioned so as to extend under a side strut of a neighboring panel section). Alternatively for example, in some embodiments, a panel section can include a flat U shaped handle support extension that serves to support an adjacent panel section and that also serves to receive or accept an interlocking device from the adjacent panel section.
Further for example, in some embodiments, a panel section can include a flat U shaped handle support extension that serves to support an adjacent panel section and the panel section can further include an additional feature that is configured to interlock with the adjacent panel section (or configured to receive an interlocking feature of the adjacent panel section). Additionally for example, in some embodiments, the panel section can include a U shaped handle with a 90 degree bend on one side only to secure adjacent panel sections together, as already discussed with reference to
Although the embodiments discussed above employ pairs of wire tendons (or other flexible linkages or elements) such as the pairs of wire tendons 301, 302, 303, 304, 305, 306, 307, 308, and 309 and employs wire tendon support extensions (or tendon hooks) such as the extensions 770 that are suited for such pairs of wire tendons insofar as the extensions have dual indentations (or notches) 772 that can be used to locate and support the panel sections on the pairs of wire tendons, it should be appreciated that such wire tendon support extensions can also be used in embodiments where only single tendons are situated adjacent to the panel sections (e.g., in embodiments where rows of the panel sections are situated between single wire tendons. Indeed, although it is envisioned that the use of pairs of wire tendons can be advantageous in that it can provide redundancy and greater system strength and robustness, and can facilitate balanced clamping of other structures to the wire tendons (e.g., balanced clamping of the tendons by the suspender structures 800 or tendon retainer structures), nevertheless it should be appreciated that all or substantially all of the components of the fully implemented work platform system (including, for example, the suspender structures 800) also can be employed in a work platform system that only employs single tendons running in between adjacent rows of panel sections (or running adjacent to a row of panel sections).
Additionally, numerous subcomponents of the fully implemented work platform system 860 have particular features that offer a variety of capabilities and advantages. For example, with respect to the suspender structures 800, the handle portions 816 facilitate easy handling/grasping of the suspender structure while also providing the necessary section required for strength and stiffness of the suspender structure so that the structure can bear suspender loads. Also for example, the tendon retainer structures (or rotating cable structures) 769 facilitate fast and simple installation and securement of the tendon retainer structure (or bracket) to single or dual tendon arrangements. Further, in some embodiments, one or more of the suspender structures or tendon retainer structures includes an indicating pin providing a visual indicator indicating whether proper assembly or implementation (e.g., proper clamping onto one or more tendons) of the suspender structure or tendon retainer structure has been achieved. Also, in some embodiments, a visual indicator associated with the suspension structure can facilitate fast, simple and visually verifiable securement of a suspension chain to the suspender structure.
Further for example, it should be appreciated that each of the intermediate orifices 822 of the suspender structures 800, due to the presence of the pairs of end slot regions 823 and intermediate transverse slot regions 825, serves as a dual chain slot by which the suspender structure 800 can be attached not merely to one but rather to more than one (e.g., two) of the suspension chains 790 or other linkages or extensions or connectors. Also, each of the intermediate orifices 822 facilitates use of a suspender adjustor to install the suspender structure 800. Further, in some embodiments or circumstances, the intermediate orifices 822 can be employed to allow for the installation of wind bracing chains in relation to the suspender structures 800. Additionally, it should be appreciated with respect to the tendon retainer structures 769 that these structures not only can provide connective structures by which the additional cover structures (or gap fillers) 767 can be affixed to the wire tendons, where the additional cover structures then further serve to prevent movement of the panel structures 750 away from the wire tendons (e.g., to prevent uplifting of the panel structures), but also the tendon retainer structures also provide connection structures by which retainer bracket can be secured in relation to the wire tendons, where the containment brackets are secured to the tendon retainer structures (at locations above the additional cover structures) and can further receive and support vertical and horizontal containment wire ropes.
It should further be appreciated that, although in at least some embodiments the work platform systems encompassed herein include both a suspended subsystem and a support subsystem, where the support subsystem includes components (such as the hubs 310 and joists 330) corresponding to the QuikDeck™ suspended access system mentioned above, this need not be the case in all embodiments. Use of a support subsystem that includes components corresponding to the QuikDeck™ suspended access system can be advantageous for any of a number of reasons including, for example, that implementation of platforms in accordance with the QuikDeck™ suspended access system can serve to provide robust anchorages at multiple locations for securing the wire tendons (e.g., the pairs of wire tendons 230) of the suspended subsystem. Indeed, such platforms provide a robust and stable surface that facilitates installation of the wire tendons.
However, notwithstanding these advantages of implementing a suspended subsystem in relation to support subsystems (platforms) in accordance with the QuikDeck™ suspended access system, the present disclosure nevertheless is also intended to encompass embodiments that utilize other types of support subsystems, and nothing herein should be interpreted as indicating any requirement that the QuikDeck™ suspended access system or any of the particular support subsystem components or variations described herein be employed. Indeed, the present disclosure is intended to encompass work platform systems that only include one or more suspended subsystem components or that only include what can be considered a suspended subsystem, with that suspended subsystem being directly coupled to structures of interest such as the suspension bridge 100 without there being present any support subsystem whatsoever.
Additionally, regardless of the particular suspended subsystem or support subsystem components that are used, numerous other variations are intended to be encompass herein as well. For example, although the fully implemented work platform system 860 only includes a single platform level, in other embodiments there can be multiple levels of platform structures. Further, in some embodiments other types of components can be also included in the work platform system. For example, in some embodiments, a railing system can be attached to one or more portions of the work platform system (e.g., one or more portions of the support and/or suspended subsystems of the work platform system). Railings of such systems can be manufactured from a variety of materials, such as chain, cable (e.g., galvanized aircraft cable), line, and the like, among other things and, in still additional embodiments, railing standards can also be used to erect a work enclosure system. For example, tarps, sheeting, or the like can be attached to railing standards to enclose work area(s) for various purposes.
The materials out of which the work platform system 860 or other work platform systems in other embodiments can be formed can vary depending upon the embodiment. For example, suitable materials for components of such work platform systems can include metal (e.g., steel, aluminum, etc.), wood, plastic, composite, or other suitable materials. Also, such components can be made of items that are solid, corrugated, grated, smooth, or of other suitable configurations. For example, panel portions of such work platform assemblies can be made of wood sheeting, plywood, roof decking material, metal on a frame, grating, steel sheeting, and the like, among other things.
Further for example, each of the suspension chains of the suspended subsystem (e.g., the suspension chains 790) and support chains of the support subsystem (e.g., the support chains 220) can take the form of any of a variety of types of chains, including toothed chains, suspension wires or wire tendons, belts, or other support components depending upon the embodiment. Also, the wire tendons of the suspended system (e.g., the wire tendons of the pairs of wire tendons 230) can additionally take on any of a variety of forms of wires, cables, and similar flexible extending structures. Indeed, it should be appreciated that, depending upon the embodiment or circumstance, any of a variety of types of bendable or flexible linkages or extensions or flexible machine elements (or simply flexible elements) can be employed in the roles of each and every one of the suspension chains 790, support chains 220, and wire tendons 230, such as wire, wire rope, chain (or toothed chain), belt, or similar types of extensions or linkages or connectors.
Further in this regard, it should be noted that typically the extensions or linkages or connectors will be structures that are flexible and that have lengths along linear dimensions that are substantially greater than the widths and depths of those structures, where the widths and depths are themselves both small relative to the lengths and the widths and depths are themselves similar in size. Nevertheless, in some alternate embodiments, it is possible that the extensions or linkages or connectors can be structures having other characteristics including, for example, structures that have lengths that are substantially greater than their widths, as well as widths that are substantially greater than their depths (e.g., structures taking the form of ribbons). Also, it is possible in some cases that one or more of the extensions or linkages or connectors used as (or in place of) the suspension chains 790, support chains 220, and/or wire tendons 230 can be rigid rather than flexible.
In at least some embodiments, portions of the work platform system described herein can interface with, connect with, or interoperate with portions of conventional work platform systems. Also, in at least some embodiments, work personnel can extend, relocate, or remove components of the work platform system using only hand tools, and no mechanical tools, hoists, cranes, or other equipment is required to add to, or subtract from, existing components of the work platform system. In at least some embodiments, installation of the work platform system can be done, essentially, “in the air”. That is, the work platform system can be erected and connected together “in the air”, in a piece-by-piece order via the use of multiple pieces of lifting, or hoisting, equipment. That said, in alternate embodiments, it is possible also that one or more of the subsystems, portions, or components will be preassembled on the ground, or at a remote location, and then moved and hoisted as a pre-assembled module into the desired location.
It should also be understood that, in addition to the processes of implementation/installation and use described herein, the present disclosure is also intended to encompass other processes such as disassembly processes. For example, to the extent that a process for installing panel sections 750 is discussed above, and can involve a worker lowering one of the panels by of a lanyard or similar ropelike structure, disassembly can similarly involve tugging on a lanyard to raise up a previously-installed panel. In such circumstance, the lanyard would be attached to the handle support extension(s) of the panel section being removed that extend from the side strut of that panel section opposite the location of the work personnel pulling on the lanyard.
Therefore, although certain embodiments of the present disclosure have been shown and described in detail above, it should be understood that numerous changes and modifications can be made without departing from the scope of the appended claims. For example, the above described work platform systems may include various embodiments and combination of embodiments of the various components described herein. Nonlimiting examples of embodiments of the present disclosure are provided below.
In an embodiment, E1, a work platform system for implementation in relation to a structure, the work platform system comprising: a first flexible element and a second flexible element, wherein a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component; and a plurality of panel structures supported upon the flexible elements and substantially extending between the first flexible element and the second flexible element, wherein the panel structures are positioned in succession with one another so as to form a row of the panel structures extending along the flexible elements; wherein each of the panel structures includes a first pair of opposed edges each extending substantially parallel to the flexible elements and a second pair of opposed edges each extending between the first pair of opposed edges, wherein a first of the panel structures includes a first support extension extending outward away from a first one of the respective second pair of opposed edges of the first panel structure, and wherein the first support extension of the first panel structure includes a first formation into which a second one of the respective second pair of opposed edges of a second of the panel structures is positioned, the first formation serving to at least partly limit movement of the second panel structure relative to the first panel structure. E2. The work platform system of E1 wherein the first support extension is configured as a handle structure. E3 The work platform system of claim 1, wherein the second panel structure includes a second support extension extending outward away from the second one of the respective second pair of opposed edges, and wherein the second support extension includes a second formation into which the first one of the respective second pair of opposed edges of the first panel structure is position, the second formation serving to at least partly limit movement of the second panel structure relative to the first panel structure. E4. The work platform system of E3, wherein the first panel structure additionally includes a third support extension extending outward away from the first one of the respective second pair of opposed edges of the first panel structure, wherein the first support extension is at a first position that is closer to a first one of the respective first pair of opposed edges of the first panel structure than a second position at which the third support extension is located, wherein the second panel structure additionally includes a fourth support extension extending outward away from the second one of the respective second pair of opposed edges of the second panel structure, wherein the second support extension is at a third position that is closer to a second one of the respective first pair of opposed edges of the second panel structure than a fourth position at which the fourth support extension is located, and wherein the first, fourth, second, and third positions occur in succession in between the first and the second flexible elements.
E5. The work platform system of E1, wherein each of the panel structures includes at least one support extension extending outward away from each of the respective second pair of opposed edges of the respective panel structure, wherein the at least one support extension of the first panel structure includes the first support extension, and wherein the at least one support extension extending outward away from a first one of the respective second pair of opposed edges of each respective panel structure is positioned in a complementary shifted manner relative to the at least one support extension extending outward away from the second one of the respective second pair of opposed edges of the respective panel structure.
E6. The work platform system of E1, wherein the first support extension is a U-shaped structure that includes an outwardly-extending segment extending outward away from the first one of the respective second pair of opposed edges in a direction substantially parallel to a panel structure surface of the first panel structure, an upwardly-extending segment extending from the outwardly-extending segment upward toward a plane of the panel structure surface, a longitudinally-extending segment extending longitudinally toward a further plane of a first one of the first pair of opposed edges, a downwardly-extending segment extending downwardly away from the plane of the panel structure surface, and an inwardly-extending segment extending inwardly to the first one of the respective second pair of opposed edges, and wherein the first formation includes at least the upwardly-extending, longitudinally-extending, and downwardly-extending segments. E7. The work platform system of E6, wherein the outwardly-extending and inwardly-extending segments include hook-shaped outer portions that are included in the first formation, and wherein each of the opposed edges of the first and second pairs of the first panel structure is formed by a respective tubular support strut extending underneath the panel structure surface. E8. The work platform system of E6, wherein the first support extension serves to assist in supporting the second panel structure relative to the first and second flexible elements.
E9. The work platform system of E1, wherein each of the panel structures includes at least two support extensions extending outward from each of the first pair of the opposed edges, and each of the support extensions includes a respective at least one indentation configured to receive either the first flexible element or the second flexible element when the panel structure is supported upon the flexible elements. E10. The work platform system of E1, further comprising a third flexible element, wherein a respective first end of the third flexible element is also coupled at least indirectly to the first support component and a respective second end of the third flexible element is coupled at least indirectly to the second support component; and an additional plurality of panel structures supported upon the second flexible element and the third flexible element, wherein the panel structures of the additional plurality of panel structures are positioned in succession with one another so as to form an additional row of the panel structures extending along the third flexible element. E11. The work platform system of E10, further comprising at least one cover section positioned in between at least one of the first plurality of panel structures and at least one of the additional plurality of panel structures, so as to cover over a portion of the second flexible element.
E12. The work platform system of E1, further comprising a suspension component and a suspender structure to which the suspension chain is attached, wherein the suspender structure is coupled to the first flexible element or the second flexible element so that the respective flexible element is supported by the suspension component. E13. The work platform system of E12, wherein the suspender structure includes at least a primary surface formation and a clasp component that is rotatably attached to the primary surface formation but locked in place relative to the primary surface formation. E14. The work platform system of E13, wherein the clasp component is configured to rotate from a first position in which the clasp component is unlocked to a second position in which the clasp component is locked in place relative to the primary surface formation by way of a post of the clasp component fitting into an orifice of the primary surface formation. E15. The work platform system of E13 wherein the suspender structure includes an additional clasp component that is also rotatably attached to the primary surface formation but locked in place relative to the primary surface formation. E16. The work platform system of E13, wherein the suspender structure is structured to permit at least one of securing and adjustment of a suspension component. E17. The work platform system of E16, wherein the suspension component is a chain that is configured to be secured or adjusted by way of a chain slot in the suspender structure.
E18. The work platform system of E1, further comprising the first and second support components, which are respectively mounted on first and second portions of the structure.
In an embodiment, E19, a work platform system for implementation in relation to a structure, the work platform system comprising: a first pair of flexible elements and a second pair of flexible elements, wherein a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component; a plurality of panel structures supported upon the flexible elements; a suspension component; and a suspender structure coupled to at least one of the first pair of flexible elements and the second pair of flexible elements so that the at least one of the first pair of flexible elements and the second pair of flexible elements is or are supported by the suspension component, wherein the suspender structure includes at least a primary surface formation and a clasp component that is rotatably attached to the primary surface formation but locked in place relative to the primary surface formation.
E20. The work platform system of E19, wherein the clasp component is configured so that, when rotated to a first position, the clasp component fits between the flexible elements of the at least one of the first pair and the second pair and, when rotated to a second position the clasp component is locked in place relative to the primary surface formation by way of a post of the clasp component fitting into an orifice of the primary surface formation. E21. The work platform system of E19, wherein the clasp component of the suspender structure further supports an end or end portion of at least a respective one of the panel structures. E22. The work platform system of E19 wherein each of the panel structures includes first extensions that are supported by the flexible elements and second extensions that serve to allow for an adjacent one of the panel structures to be implemented and secured in relation to the respective panel structure. E23. The work platform system of E19, further comprising the first and second support components, which are respectively mounted on first and second portions of the structure.
E24. The work platform system of E19, wherein: each of the plurality of panel structures includes a first pair of opposed edges each extending substantially parallel to the flexible elements and a second pair of opposed edges each extending between the first pair of opposed edges, a first of the plurality of panel structures includes a first support extension extending outward away from a first one of the respective second pair of opposed edges of the first panel structure, the first support extension of the first panel structure including a first formation into which a second one of the respective second pair of opposed edges of a second of the panel structures is positioned, the first formation serving to at least partly limit movement of the second panel structure relative to the first panel structure, wherein the second panel structure includes a second support extension extending outward away from the second one of the respective second pair of opposed edges, and wherein the second support extension includes a second formation into which the first one of the respective second pair of opposed edges of the first panel structure is positioned, the second formation serving to at least partly limit movement of the second panel structure relative to the first panel structure; wherein the first panel structure additionally includes a third support extension extending outward away from the first one of the respective second pair of opposed edges of the first panel structure, wherein the first support extension is at a first position that is closer to a first one of the respective first pair of opposed edges of the first panel structure than a second position at which the third support extension is located, wherein the second panel structure additionally includes a fourth support extension extending outward away from the second one of the respective second pair of opposed edges of the second panel structure, wherein the second support extension is at a third position that is closer to a second one of the respective first pair of opposed edges of the second panel structure than a fourth position at which the fourth support extension is located, and wherein each of the first support extension, the second support extension, the third support extension, and the fourth support extension is configured to function as a handle structure.
In an embodiment, E25, a work platform system for implementation in relation to a structure, the work platform system comprising: a first pair of flexible elements and a second pair of flexible elements, wherein a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component; and a plurality of panel structures supported upon the flexible elements and substantially extending between the first pair of flexible elements and the second pair of flexible elements, the panel structures positioned in succession with one another so as to form a row of the panel structures extending along the flexible elements, and each of the panel structures includes a first pair of opposed edges each extending substantially parallel to the flexible elements and a second pair of opposed edges each extending between the first pair of opposed edges; and a first support extension extending outward away from a first one of the respective second pair of opposed edges of the first panel structure, the first support extension of the first panel structure including a first formation into which a second one of the respective second pair of opposed edges of a second of the panel structures is positioned, the first formation serving to at least partly limit movement of the second panel structure relative to the first panel structure.
E26. The work platform system of E25, wherein the first support extension is structure to function as a handle structure. E27. The work platform system of E25, further comprising a suspender structure configured to be coupled to a suspension component, the suspender structure coupled to at least one of the first pair of flexible elements and the second pair of flexible elements so that the at least one of the first pair of flexible elements and the second pair of flexible elements is or are supported by the suspension component. E28. The work platform system of E27, the suspender structure includes at least a primary surface formation and a clasp component that is rotatably attached to the primary surface formation but locked in place relative to the primary surface formation; and wherein the clasp component is configured so that, when rotated to a first position, the clasp component fits between the flexible elements of the at least one of the first pair and the second pair and, when rotated to a second position the clasp component is locked in place relative to the primary surface formation by way of a post of the clasp component fitting into an orifice of the primary surface formation. E29. The work platform system of E28, wherein the suspender structure is structured to permit securing and adjustment of a suspension component, such as a chain, by way of an opening, such as a chain slot.
E30. The work platform system of E25 wherein each of the panel structures includes first extensions that are supported by the flexible elements and second extensions that serve as supports and additionally serve to allow for an adjacent one of the panel structures to be implemented in relation to the respective panel structure. E31. The work platform system of E25, further comprising the first and second support components, which are respectively mounted on first and second portions of the structure.
E32. The work platform system of E25, further comprising a second support extension extending outward away from the second one of the respective second pair of opposed edges of the second panel structure, and wherein the second support extension includes a second formation into which the first one of the respective second pair of opposed edges of the first panel structure is positioned, the second formation serving to at least partly limit movement of the second panel structure relative to the first panel structure. E33. The work platform system of E32, further comprising: (i) a third support extension extending outward away from the first one of the respective second pair of opposed edges of the first panel structure, wherein the first support extension is at a first position that is closer to a first one of the respective first pair of opposed edges of the first panel structure than a second position at which the third support extension is located, and (ii) a fourth support extension extending outward away from the second one of the respective second pair of opposed edges of the second panel structure, wherein the second support extension is at a third position that is closer to a second one of the respective first pair of opposed edges of the second panel structure than a fourth position at which the fourth support extension is located, and the first, fourth, second, and third positions occur in succession in between the first flexible elements and the second flexible elements.
E34. The work platform system of E25, wherein each of the panel structures includes at least one support extension extending outward away from each of the respective second pair of opposed edges of the respective panel structure, wherein the at least one support extension of the first panel structure includes the first support extension, and wherein the at least one support extension extending outward away from a first one of the respective second pair of opposed edges of each respective panel structure is positioned in a complementary shifted manner relative to the at least one support extension extending outward away from the second one of the respective second pair of opposed edges of the respective panel structure.
E35. The work platform system of E25, wherein the first support extension is a U-shaped structure that includes an outwardly-extending segment extending outward away from the first one of the respective second pair of opposed edges in a direction substantially parallel to a panel structure surface of the first panel structure, an upwardly-extending segment extending from the outwardly-extending segment upward toward a plane of the panel structure surface, a longitudinally-extending segment extending longitudinally toward a further plane of a first one of the first pair of opposed edges, a downwardly-extending segment extending downwardly away from the plane of the panel structure surface, and an inwardly-extending segment extending inwardly to the first one of the respective second pair of opposed edges, and wherein the first formation includes at least the upwardly-extending, longitudinally-extending, and downwardly-extending segments. E36. The work platform system of E35, wherein the outwardly-extending and inwardly-extending segments include hook-shaped outer portions that are included in the first formation, and wherein each of the opposed edges of the first and second pairs of the first panel structure is formed by a respective support strut extending underneath the panel structure surface. E37. The work platform system of E36, wherein the first support extension serves to assist in supporting the second panel structure relative to the first and second pairs of flexible elements.
E38. The work platform system of E25, wherein each of the panel structures includes at least two support extensions extending outward from each of the first pair of the opposed edges, and each of the support extensions includes a respective pair of indentations configures to receive either the first pair of flexible elements or the second pair of flexible elements when the panel structure is supported upon the flexible elements.
E39. The work platform system of E25, further comprising a third pair of flexible elements, wherein a respective first end of each of the flexible elements of the third pair is also coupled at least indirectly to the first support component and a respective second end of each of the flexible elements of the third pair is coupled at least indirectly to the second support component; and an additional plurality of panel structures supported upon the second pair of flexible elements and the third pair of flexible elements, wherein the panel structures of the additional plurality of panel structures are positioned in succession with one another so as to form an additional row of the panel structures extending along the third pair of flexible elements. E40. The work platform system of E39, further comprising at least one cover section positioned in between at least one of the first plurality of panel structures and at least one of the additional plurality of panel structures, so as to cover over portions of the second pair of flexible elements. E41. The work platform system of E39, further comprising a suspension component and a suspender structure to which the suspension component is attached, wherein the suspender structure is coupled to at least one of the first pair of flexible elements and the second pair of flexible elements so that the at least one of the first pair of flexible elements and the second pair of flexible elements is or are supported by the suspension component. E42. The work platform system of E41, wherein the suspender structure includes at least a primary surface formation and a clasp component that is rotatably attached to the primary surface formation but locked in place relative to the primary surface formation. E43. The work platform system of E42, wherein the clasp component is configured so that, when rotated to a first position, the clasp component fits between the flexible elements of the at least one of the first pair and the second pair and, when rotated to a second position the clasp component is locked in place relative to the primary surface formation by way of a post of the clasp component fitting into an orifice of the primary surface formation.
E44. The work platform system of E42, wherein the suspender structure includes an additional clasp component that is also rotatably attached to the primary surface formation but locked in place relative to the primary surface formation. E45. The work platform system of E44, wherein the clasp component of the suspender structure further supports an end or end portion of at least a respective one of the panel structures.
E46. The work platform system of E25, further comprising the first and second support components, which are respectively mounted on first and second portions of the structure. E47. The work platform system of E25, further comprising at least one cover section, wherein at least one of the panel sections is held at least substantially in place at least partly by way of the cover section. E48. The work platform system of E47, wherein the cover section comprises a gap filler that is fixedly attached to a tendon retainer structure. E49. The work platform system of E48, wherein the tendon retainer structure includes: a main outer shell having a roof and first and second side walls, respectively, extending downwards from each of two sides of the roof, respectively, a flat internal compression structure that includes two ear extensions that respectively fit into two complementary slots formed near the bottom edges of each of the two side walls. E50. The work platform system of E49, wherein the tendon retainer structure includes indentations for receiving at least one of the first and second pairs of flexible elements, respectively. E51. The work platform system of E50, further comprising a containment bracket that is secured, at least indirectly, to the tendon retainer structure.
In an embodiment, E52, a method of implementing a work platform system in relation to a structure, the method comprising: attaching a first pair of flexible elements and a second pair of flexible elements at least indirectly to a first support and a second support, respectively; installing a first panel section onto the first and second pairs of flexible elements; installing a second panel section onto the first and second pairs of flexible elements, wherein the installing of the second panel section includes placement of a second side edge of the second panel section into at least one support component extending outward from a first side edge of the first panel section and rotating the second panel section until the second panel is supported on the first and second pairs of flexible elements; and determining whether at least one suspension component should be installed in relation to at least one of the first and second pairs of flexible elements and, if so, installing at least one suspender structure onto the at least one of the first and second pairs of flexible elements and coupling the at least one suspension component to the at least one suspender structure.
E53. The method of E52, wherein the at least one support component is configured as a handle structure and the method further includes moving, by way of the handle structure, the first panel section. E54. The method of E52, wherein at least one of the first and second supports, respectively, includes at an elongate structural member and an interconnection structure connected to the elongate member in a manner that permits articulation of the interconnection structure with respect the elongate member, and wherein the attaching includes connecting at least one of the flexible elements at least indirectly to the at least one interconnection structure.
E55. A work platform system for implementation in relation to a structure, the work platform system comprising a first flexible element and a second flexible element, wherein a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component; and a plurality of panel structures supported upon the flexible elements and substantially extending between the first flexible element and the second flexible element, wherein the panel structures are positioned in succession with one another so as to form a row of the panel structures extending along the flexible elements; wherein each of the panel structures includes a first pair of opposed edges each extending substantially parallel to the flexible elements and a second pair of opposed edges each extending between the first pair of opposed edges, wherein a first of the panel structures includes a first support extension extending outward away from a first one of the respective second pair of opposed edges of the first panel structure, and wherein the first support extension of the first panel structure includes a first formation into which a second one of the respective second pair of opposed edges of a second of the panel structures is positioned, the first formation serving to at least partly limit movement of the second panel structure relative to the first panel structure.
E56. The work platform system of E55, wherein each of the panel structures includes at least two support extensions extending outward from each of the first pair of the opposed edges, and each of the support extensions includes a respective at least one indentation configured to receive either the first flexible element or the second flexible element when the panel structure is supported upon the flexible elements. E57. The work platform system of E56, further comprising a latch pivotally connected to at least one of the at least two support extensions of the first pair of the opposed edges. E58. The work platform system of E57, wherein the latch is a gravity latch. E59. The work platform system of E57, wherein the latch includes an indentation configured to correspond with the at least one indentation of the support extension and receive the first or second flexible element when in a down position. E60. The work platform system of E57, further comprising a latch pivotally connected to at least one support extension on each of the first pair of opposed edges.
E61. The work platform system of E55, further comprising a third flexible element, wherein a respective first end of the third flexible element is also coupled at least indirectly to the first support component and a respective second end of the third flexible element is coupled at least indirectly to the second support component; and an additional plurality of panel structures supported upon the second flexible element and the third flexible element, wherein the panel structures of the additional plurality of panel structures are positioned in succession with one another so as to form an additional row of the panel structures extending along the third flexible element. E62. The work platform system of E61, further comprising at least one cover section positioned in between at least one of the first plurality of panel structures and at least one of the additional plurality of panel structures, so as to cover over a portion of the second flexible element. E63. The work platform system of E62, wherein the at least one cover section comprises at least a first end with a vertical side wall configured to at least indirectly engage the second and third flexible elements. E64. The work platform system of E63, wherein the vertical side wall comprises two legs, each leg having an indentation, wherein each indentation is configured to receive one of the second and third flexible elements. E65. The work platform system of E62, further comprising at least a first cover section and a second cover section positioned adjacent one another and each cover section positioned between at least one of the first plurality of panel structures and at least one of the additional plurality of panel structures so as to cover over a portion of the second flexible element. E66. The work platform system of E65, wherein the cover sections comprise a first end with a receiving aperture and a vertical side wall configured to at least indirectly engage the second and third flexible elements; and a second end with a Z-shaped protuberance. E67. The work platform system of E66, wherein the Z-shaped protuberance of the first cover section is configured to at least indirectly engage the receiving aperture of the second cover section serving to at least partly limit movement of the first cover section relative to the second cover section.
E68. The work platform system of E55, further comprising a suspension component and a suspender structure to which the suspension component is attached, wherein the suspender structure is coupled to the first flexible element or the second flexible element so that the respective flexible element is supported by the suspension component. E69. The work platform system of E55, wherein the plurality of panel structures comprise a top panel surface mounted on struts, wherein a first pair of opposed tubular struts corresponds to the first pair of opposed edges and a second pair of opposed tubular struts corresponds to the second pair of opposed edges. E70. The work platform system of E69, further comprising a toe board frame at least indirectly secured the first panel structure at a first edge of the first pair of opposed edges. E71. The work platform system of E70, wherein the toe board frame comprises a tubular frame with two horizontal extensions, each horizontal extension corresponding to one of the first pair of opposed tubular struts of the first panel structure such that the toe board frame secures to the first panel structure by insertion of the horizontal extensions into the corresponding tubular struts. E72. The work platform system of E70, further comprising at least one rail post mount comprising a front plate, first side plate and second side plate, wherein the first and second side plate are separated at a distance by the front plate to form a channel. E73. The work platform system of E72, wherein the rail post mount further comprises at least one hook configured to at least indirectly engage the toe board frame. E74. The work platform system of E71, further comprising a rail post configured to secure within the channel of the rail post mount.
E75. A work platform system for implementation in relation to a structure, the work platform system comprising: a first pair of flexible elements and a second pair of flexible elements, wherein a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component; a plurality of panel structures supported upon the flexible elements, each panel structure comprising a first pair of opposed edges extending between the first pair and second pair of flexible elements, at least two support extensions extending outward from each of the respective first pair of opposed edges, wherein each support extension includes a respective at least one indentation configured to receive either the first pair of flexible elements or second pair of flexible elements, and a gravity hook pivotably attached to at least one support extension of the respective first pair of opposed edges; a suspension component; and a suspender structure coupled to at least one of the first pair of flexible elements and the second pair of flexible elements and configured to engage the suspension component so that the at least one of the first pair of flexible elements and the second pair of flexible elements is or are supported by the suspension component, wherein the suspender structure includes at least a primary surface formation and a clasp component that is rotatably attached to the primary surface formation but locked in place relative to the primary surface formation.
E76. The work platform system of E75, wherein the clasp component is configured so that, when rotated to a first position, the clasp component fits between the flexible elements of the at least one of the first pair and the second pair and, when rotated to a second position the clasp component is locked in place relative to the primary surface formation by way of a post of the clasp component fitting into an orifice of the primary surface formation. E77. The work platform system of E75, further comprising a toe board frame secured at least indirectly to an end or end portion of at least one panel structure, wherein the clasp component of the suspender structure further supports the end or end portion of the at least one panel structure.
E78. A work platform system for implementation in relation to a structure, the work platform system comprising: a first pair of flexible elements and a second pair of flexible elements, wherein a respective first end of each of the flexible elements is coupled at least indirectly to a first support component and a respective second end of each of the flexible elements is coupled at least indirectly to a second support component; and a plurality of panel structures supported upon the flexible elements and substantially extending between the first pair of flexible elements and the second pair of flexible elements, the panel structures positioned in succession with one another so as to form a row of the panel structures extending along the flexible elements, and each of the panel structures includes a first pair of opposed edges each extending substantially parallel to the flexible elements and a second pair of opposed edges each extending between the first pair of opposed edges; a first pair of support extensions, each support extension extending outward away from one of the respective first pair of opposed edges of the panel structures, the first support extensions including an indentation configured to receive either the first pair of flexible elements or the second pair of flexible elements and serving to at least partly limit movement of the panel structure relative to the first and second pairs of flexible elements; and a second pair of support extensions, each support extension extending outward away from one of the respective second pair of opposed edges of the panel structures, the second support extensions including a formation into which one of the respective second pair of opposed edges of another of the panel structures is positioned, the formation serving to at least partly limit movement of the second panel structure relative to the first panel structure.
E78. The work platform system of E75, further comprising a third pair of flexible elements, wherein a respective first end of each of the flexible elements of the third pair is also coupled at least indirectly to the first support component and a respective second end of each of the flexible elements of the third pair is coupled at least indirectly to the second support component; an additional plurality of panel structures supported upon the second pair of flexible elements and the third pair of flexible elements, wherein the panel structures of the additional plurality of panel structures are positioned in succession with one another so as to form an additional row of the panel structures extending along the third pair of flexible elements; and a plurality of cover sections positioned in between the first plurality of panel structures and the additional plurality of panel structures, so as to cover over portions of the second pair of flexible elements.
E80. The work platform system of E79, wherein the cover sections comprise at least a first end with a vertical side wall configured to at least indirectly engage the second and third flexible elements. E81. The work platform system of E80, wherein the vertical side wall comprises two legs, each leg having an indentation, wherein each indentation is configured to receive one of the second and third flexible elements. E82. The work platform system of E78, further comprising at least two toe board frames, each at least indirectly secured a panel structure at a first edge of the first pair of opposed edges. E83. The work platform system of E82, wherein the plurality of panel structures comprise a top panel surface mounted on tubular struts, wherein a first pair of opposed tubular struts corresponds to the first pair of opposed edges and a second pair of opposed tubular struts corresponds to the second pair of opposed edges. E84. The work platform system of E83, wherein the toe board frame comprises a tubular frame with two horizontal extensions, each horizontal extension corresponding to one of the first pair of opposed tubular struts of the first panel structure such that the toe board frame secures to the first panel structure by insertion of the horizontal extensions into the corresponding tubular struts.
E85. The work platform system of E78, further comprising at least two rail post mounts, each rail post mount comprising a front plate, first side plate and second side plate, wherein the first and second side plate are separated at a distance by the front plate to form a channel. E86. The work platform system of E85, further comprising a rail post configured to secure within the channel of the rail post mount. E87. The work platform system of E82, further comprising at least two rail post mounts, each rail post mount comprising at least one hook configured to at least indirectly engage the toe board frames.
E88. A method of implementing a work platform system in relation to a structure, the method comprising: attaching a first pair of flexible elements and a second pair of flexible elements at least indirectly to a first support and a second support, respectively; installing a first panel section onto the first and second pairs of flexible elements; installing a second panel section onto the first and second pairs of flexible elements, wherein the installing of the second panel section includes placement of a second side edge of the second panel section into at least one support component extending outward from a first side edge of the first panel section and rotating the second panel section until the second panel is supported on the first and second pairs of flexible elements; and determining whether at least one suspension component should be installed in relation to at least one of the first and second pairs of flexible elements and, if so, installing at least one suspender structure onto the at least one of the first and second pairs of flexible elements and coupling the at least one suspension component to the at least one suspender structure. E89. The method of E88, wherein the installing a first panel section onto the first and second pairs of flexible elements includes activating a gravity latch. E90. The method of E88, further comprising: attaching a third pair of flexible elements at least indirectly to a first support and a second support, respectively; and installing a third panel section onto the second a third pairs of flexible elements, wherein the third panel is adjacent one of the first and second panels. E91. The method of E90, further comprising: installing a cover section between the third panel and the at least one of the first and second panels. E92. The method of E88, further comprising: installing at least one toe board frame to at least one of the first or second panel sections. E93. The method of E92, further comprising at least one step selected from the group consisting of: (a) installing at least one toe board on the toe board frame; (b) installing at least one rail post mount configured to engage the toe board frame, wherein the rail post mount is configured to receive at least one rail post; and (c) both (a) and (b).
Among other things, it should be appreciated that the scope of the present disclosure is not limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., as described above, but rather the above disclosures are simply provided as example embodiments.
Thus, it is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | 14045308 | Oct 2013 | US |
Child | 14282882 | US | |
Parent | PCT/US13/63234 | Oct 2013 | US |
Child | 14045308 | US | |
Parent | 13899331 | May 2013 | US |
Child | 14045308 | US | |
Parent | PCT/US13/42084 | May 2013 | US |
Child | 13899331 | US |