This application claims priority to Japanese Patent Application No. 2010-10711.5 filed on May 7, 2010, the disclosure of which is hereby incorporated herein by reference in its entirety.
The present invention relates to a work vehicle and a work vehicle control method.
In a wheel loader or other work vehicle, there is a conventionally known technique for switching a control mode for controlling engine output to a low-output mode and a high-output mode in accordance with the work load (see International Patent Publication No. WO2005-024208). In each control mode, the output of the engine is controlled in accordance with an engine torque curve set in advance. The engine torque curve shows the relationship between the engine rotation speed and the upper limit value of the engine output torque. In relation to the upper limit value of the output torque of the engine, the engine torque curve in the low-output mode is set to be a magnitude of α (α<1) of the engine torque curve of the high-output mode.
In the above-described technique, when the work load is reduced, a switch is made from the engine torque curve of the high-output mode to the engine torque curve of the low-output mode. However, the engine torque curve of the low-output mode is a completely different engine torque curve in which the upper limit value of the engine output torque is a magnitude of a in relation to the engine torque curve of the high-output mode. Accordingly, the output performance of the engine is liable to vary rapidly during work. In this case, the ease of operation of the work vehicle is reduced.
In order to prevent a reduction in ease of operation such as that described above, it is possible to consider reducing the torque difference between the engine torque curve in the low-output mode and the engine torque curve in the high-output mode. Rapid variation in the engine torque can thereby be inhibited. However, in this case, the amount of reduction in the output torque of the engine in the low-output mode is reduced. Accordingly, the effect of reduced fuel consumption is lessened.
An object of the present invention is to provide a work vehicle and a work vehicle control method that inhibits a reduction in ease of operation and that can improve the effect of reduced fuel consumption.
The work vehicle according to a first aspect of the present invention comprises an engine, a travel device, a work implement, a first detector, a second detector, and a controller. The travel device causes the vehicle to travel by drive force from the engine. The work implement is driven by drive force from the engine. The first detector detects engine rotation speed. The second detector detects at least one among vehicle speed, vehicle acceleration, and engine-rotation-speed acceleration. The controller determines whether low-load conditions that show that a vehicle is in a low-load state have been satisfied. The controller controls the engine so that, when the low-load conditions are satisfied, the upper limit value of the output torque of the engine is made less than when the low-load conditions are not satisfied. Also, the controller varies the reduction amount of the upper limit value of the output torque of the engine when the low-load conditions are satisfied, in accordance with at least one among the vehicle speed, the vehicle acceleration, and the engine-rotation-speed acceleration detected by the second detector, and in accordance with variation in the engine rotation speed detected by the first detector.
In this work vehicle, when the low-load conditions are satisfied, the upper limit value of the output torque of the engine is made less than when the low-load conditions are not satisfied. Fuel consumption is thereby reduced. The reduction amount of the upper limit value of the output torque of the engine when the low-load conditions are satisfied vary in accordance with the variation in the engine rotation speed and at least one of the vehicle speed, the vehicle acceleration, and the engine-rotation-speed acceleration. Therefore, the upper limit value of the output torque of the engine is not reduced uniformly by an amount set in advance, but the reduction amount is varied in accordance with the variation in the state of the engine rotation speed, the vehicle speed, and the like. Accordingly, rapid changes in the output torque of the engine are inhibited. In this way, a reduction in the ease of operation is inhibited.
The work vehicle according to a second aspect of the present invention is the work vehicle according to the first aspect, wherein the reduction amount varies in accordance with the low-load conditions.
When the low-load conditions differ, the magnitude of the load imposed on the vehicle also differs. Accordingly, the reduction amount is varied in accordance with the low-load conditions, whereby a reduction amount suitable for the magnitude of the load can be determined. For example, low-load conditions with a high load, the reduction amount can be made less than low-load conditions with a low load, even when the low-load conditions are satisfied. In this way, a reduction in the ease of operation can be further inhibited.
The work vehicle according to a third aspect of the present invention is the work vehicle according to the first aspect, wherein the controller reduces the upper limit value of the output torque of the engine when the engine rotation speed is greater than a predetermined speed. Also, the predetermined engine speed varies in accordance with the low-load conditions.
In this work vehicle, the upper limit value of the output torque of the engine is reduced when the engine rotation speed is greater than a predetermined speed. In other words, when the engine rotation speed is less than a predetermined speed, the upper limit value of the output torque of the engine is not reduced, even when the low-load conditions are satisfied. In this way, it is possible to inhibit an excessive reduction in the output torque of the engine. Also, the predetermined engine speed varies in accordance with the low-load conditions. Since the minimum required output torque of the engine differs in accordance with the low-load conditions, the predetermined engine speed is varied in accordance with the low-load conditions, whereby the minimum required output torque of the engine can be ensured for each low-load condition. Fuel consumption can thereby be improved while a reduction in ease of operation is inhibited.
The work vehicle according to a fourth aspect of the present invention is the work vehicle according to the first aspect, further comprising: an accelerator operation member operated by an operator; and a third detector for detecting the operation amount of the accelerator operation member. The controller determines the reduction amount with consideration given to the operation amount of the accelerator operation member detected by the third detector.
In this work vehicle, the reduction amount of the upper limit value of the output torque of the engine is determined with consideration given to the operation amount of the accelerator operation member. Accordingly, the intent of the operator can be reflected in the reduction amount. Ease of operation can thereby be improved.
The work vehicle according to a fifth aspect of the present invention is the work vehicle according to any of the first to fourth aspects, wherein the second detector detects the vehicle speed. When the vehicle speed is equal to or greater than a predetermined speed, the controller reduces the reduction amount to be less than when the vehicle speed is less than the predetermined speed.
In this work vehicle, the output torque of the engine can be inhibited from being excessively reduced during high-speed travel. In this way, it is possible to inhibit a reduction in travel performance during high-speed travel.
The work vehicle according to a sixth aspect of the present invention is the work vehicle according to the any of the first to fourth aspects, wherein the second detector detects the vehicle speed. When the vehicle speed is less than a first predetermined speed, and when the vehicle speed is greater than a second predetermined speed that is greater than the first predetermined speed, the controller reduces the reduction amount to be less than when the vehicle speed is equal to or greater the first predetermined speed and equal to or less than the second predetermined speed.
In this work vehicle, it is possible to inhibit an excessive reduction in the output torque of the engine during low-speed travel and during high-speed travel. In this way, it is possible to inhibit a reduction in travel performance during low-speed travel and during high-speed travel.
The work vehicle according to a seventh aspect of the present invention is the work vehicle according to the first aspect, wherein the controller determines a work phase of the vehicle from an operating state of the travel device and the work implement, and determines whether the low-load conditions are satisfied on the basis of the work phase.
In this work vehicle, the reduction amount of the upper limit value of the output torque of the engine is determined on the basis of the work phase. Accordingly, a suitable reduction amount can be determined by the load state of the vehicle. In this way, it is further possible to reduce fuel consumption and to inhibit a reduction in ease of operation.
The work vehicle according to an eighth aspect of the present invention is the work vehicle according to the seventh aspect, wherein the low-load conditions include that the work phase is a no-cargo state. The no-cargo state is a state in which cargo is not loaded into the work implement.
In this work vehicle, the upper limit value of the output torque of the engine is reduced when cargo is not loaded into the work implement. The load imposed on the work implement is low when cargo is not loaded into the work implement. Therefore, the effect imparted on the action of the work implement is low even when the upper limit value of the output torque of the engine is reduced. Accordingly, it is possible to inhibit a reduction in the ease of operation, and to reduce fuel consumption.
The work vehicle according to a ninth aspect of the present invention is the work vehicle according to the seventh aspect, further comprising a forward/reverse switching operation member for operating the switching between forward and reverse of the vehicle. The low-load conditions include that the work phase is a shuttle state. The shuttle state is a state in which the movement direction instructed by the forward/reverse switching operation member and the movement direction of the vehicle are different.
In this work vehicle, the upper limit value of the output torque of the engine is reduced when the vehicle is in a shuttle state. The shuttle state is a state that starts when the operator switches the vehicle between forward and reverse and ends when the action of the vehicle actually switches. Accordingly, when the vehicle is in a shuttle state, the condition is not one in which the vehicle is made to travel at high speed nor in which the work implement is being rapidly driven. For this reason, it is possible to inhibit a reduction in the ease of operation, and to reduce fuel consumption.
The work vehicle according to a tenth aspect of the present invention is the work vehicle according to the first aspect, wherein the controller determines whether the vehicle is traveling uphill. The controller reduces the reduction amount in the case that the vehicle is traveling uphill.
In this work vehicle, the reduction amount is reduced in the case that it has been determined that the vehicle is traveling uphill. Accordingly, it is possible to inhibit a reduction in the travel performance during uphill travel.
The method for controlling a work vehicle according to an eleventh aspect of the present invention is a method for controlling a work vehicle comprising: an engine, a travel device, and a work implement. The travel device causes a vehicle to travel by drive force from the engine. The work implement is driven by drive force from the engine. The method for controlling a work vehicle comprises the following steps: detecting engine rotation speed; detecting at least one among vehicle speed, vehicle acceleration, and engine-rotation-speed acceleration; assessing whether low-load conditions indicating that the vehicle is in a low-load state are satisfied; controlling the engine so that, when the low-load conditions are satisfied, an upper limit value of the output torque of the engine is made less than when the low-load conditions are not satisfied; and varying the reduction amount of the upper limit value of the output torque of the engine when the low-load conditions are satisfied, in accordance with at least one among the detected vehicle speed, the vehicle acceleration, and the engine-rotation-speed acceleration, and in accordance with variation in the detected engine rotation speed.
In this method for controlling a work vehicle, when the low-load conditions are satisfied, the upper limit value of the output torque of the engine is made less than when the low-load conditions are not satisfied. Fuel consumption is thereby reduced. Also, the reduction amount of the upper limit value of the output torque of the engine when the low-load conditions are satisfied is varied in accordance with the variation in the engine rotation speed and at least one of the vehicle speed, the vehicle acceleration, and the engine-rotation-speed acceleration. Therefore, the upper limit value of the output torque of the engine is not reduced uniformly by an amount set in advance, but the reduction amount is varied in accordance with the variation in the state of the engine rotation speed, the vehicle speed, and the like. Accordingly, rapid changes in the output torque of the engine are inhibited. In this way, a reduction in the ease of operation is inhibited.
In the present invention, it is possible to inhibit a reduction in the ease of operation and to improve the effect of reduced fuel consumption.
The work vehicle 1 according to an embodiment of the present invention is shown in
The work vehicle 1 comprises a vehicle body frame 2, the work implement 3, the front wheels 4a, the rear wheels 4b, and a driver cabin 5, as shown in
The vehicle body frame 2 has a front vehicle body section 2a and a rear vehicle body section 2b. The front vehicle body section 2a and the rear vehicle body section 2b are connected to each other so as to allow pivoting in the left and right directions. A pair of steering cylinders 11a and 11b is provided from the front vehicle body section 2a to the rear vehicle body section 2b. The steering cylinders 11a and 11b are hydraulic cylinders driven by hydraulic fluid from a steering pump 12 (see
The work implement 3 and the pair of front wheels 4a are attached to the front vehicle body section 2a. The work implement 3 is driven by the hydraulic fluid from the work implement pump 13 (see
The driver cabin 5 and the pair of rear wheels 4b are attached to the rear vehicle body section 2b. The driver cabin 5 is disposed above the vehicle body frame 2, and houses a seat on which an operator sits, a later-described operation unit 8, and the like.
The work vehicle 1 comprises an engine 21, a travel device 22, the work implement pump 13, the steering pump 12, the operation unit 8, a controller 10, and the like, as shown in
The engine 21 is a diesel engine, and the fuel amount injected into the cylinder is adjusted to control the output of the engine 21. This adjustment is made by a later-described first controller 10a, which controls an electronic governor 25 installed in a fuel injection pump 24 of the engine 21. A general all-speed control governor is used as the governor 25, and the engine rotation speed and fuel injection amount are adjusted in accordance with a load so that the engine rotation speed achieves a target speed that corresponds to a later-described accelerator operation amount. In other words, the governor 25 increases or reduces the fuel injection amount so that there is no deviation between a target engine rotation speed and the actual engine rotation speed. The engine rotation speed is detected by an engine rotation speed sensor 91 (first detector). The detection signal of the engine rotation speed sensor 91 is inputted to the first controller 10a.
The travel device 22 is a device for causing the vehicle to travel by the drive force from the engine 21. The travel device 22 has a torque converter device 23, a transmission 26, the above-described front wheels 4a and rear wheels 4b, and the like.
The torque converter device 23 has a lockup clutch 27 and a torque converter 28. The lockup clutch 27 can be switched between a connected state and a non-connected state. The torque converter 28 transmits the drive force from the engine 21 using oil as a medium in the case that the lockup clutch 27 is in a non-connected state. The input side and the output side of the torque converter 28 are directly connected when the lockup clutch 27 is in a connected state. The lockup clutch 27 is a hydraulic pressure-actuated clutch, and the feeding of hydraulic fluid to the lockup clutch 27 is controlled by a later-described second controller 10b via a clutch control valve 31 to thereby switch between the connected state and the non-connected state.
A transmission 26 has a forward clutch CF adapted for forward travel stages and a reverse clutch CR adapted for reverse travel stages. The clutches CF and CR are switched between the connected state and the non-connected state to thereby switch the vehicle between forward and reverse. The vehicle is in a neutral state when the clutches CF and CR are both in the non-connected state. The transmission 26 has a plurality of speed stage clutches C1 to C4 adapted for a plurality of speed stages, and can switch the reduction gear ratio to a plurality of stages. For example, in the transmission 26, four speed stage clutches C1 to C4 are provided, and the speed stages can be switched to four stages, i.e., first speed to fourth speed. The speed stage clutches C1 to C4 are hydraulic pressure-actuated hydraulic clutches. Hydraulic fluid is fed from a hydraulic pump (not shown) to the clutches C1 to C4 via the clutch control valve 31. The clutch control valve 31 is controlled by the second controller 10b, and the feeding of the hydraulic fluid to the clutches C1 to C4 is controlled, whereby the connected state and non-connected state of the clutches C1 to C4 are switched.
A transmission output speed sensor 92 for detecting the speed of the output shaft of the transmission 26 is provided to the output shaft of the transmission 26. Detection signals from the transmission output speed sensor 92 (second detector) are inputted to the second controller 10b. The second controller 10b calculates the vehicle speed on the basis of the detection signals of the transmission output speed sensor 92. Therefore, the transmission output speed sensor 92 functions as a vehicle speed sensor for detecting the vehicle speed. A sensor for detecting the rotational speed of other components may be used as a vehicle speed sensor in lieu of the output shaft of the transmission 26. The drive force outputted from the transmission 26 is transmitted to the front wheels 4a and the rear wheels 4b via a shaft 32, and the like, whereby the vehicle travels. The speed of the input shaft of the transmission 26 is detected by a transmission input speed sensor 93. The detection signals from the transmission input speed sensor 93 are inputted to the second controller 10b.
A portion of the drive force of the engine 21 is transmitted to the steering pump 12 and the work implement pump 13 via a PTO shaft 33. The work implement pump 13 and the steering pump 12 are hydraulic pumps driven by drive force from the engine 21. The hydraulic fluid discharged from the work implement pump 13 is fed to the lift cylinders 14a and 14b and the bucket cylinder 15 via a work implement control valve 34. The hydraulic fluid discharged from the steering pump 12 is fed to the steering cylinders 11a and 11 via a steering control valve 35. In this manner, the work implement 3 is driven by a portion of the drive force from the engine 21.
The pressure of the hydraulic fluid discharged from the work implement pump 13 (hereinafter referred to as “hydraulic pressure of the work implement pump”) is detected by a first hydraulic pressure sensor 94. The pressure of the hydraulic fluid fed to the lift cylinders 14a and 14b (hereinafter referred to as “lift cylinder hydraulic pressure”) is detected by a second hydraulic pressure sensor 95. Specifically, the second hydraulic pressure sensor 95 detects the hydraulic pressure in the cylinder head chamber to which hydraulic fluid is fed when the lift cylinders 14a and 14b are extended. The pressure of the hydraulic fluid fed to the bucket cylinder 15 (hereinafter referred to as “hydraulic pressure of the bucket cylinder”) is detected by a third hydraulic pressure sensor 96. Specifically, the third hydraulic pressure sensor 96 detects the hydraulic pressure of the cylinder head chamber to which hydraulic fluid is fed when the bucket cylinder 15 is extended. The pressure of the hydraulic fluid discharged from the steering pump 12 (hereinafter referred to as “hydraulic pressure of the steering pump”) is detected by a fourth hydraulic pressure sensor 97. The detection signals from the first to fourth hydraulic pressure sensors 94 to 97 are inputted to the second controller 10b.
The operation unit 8 is operated by the operator. The operation unit 8 has an accelerator operation member 81a, an accelerator operation detection device 81b, a steering operation member 82a, a steering operation detection device 82b, a boom operation member 83a, a boom operation detection device 83b, a bucket operation member 84a, a bucket operation detection device 84b, a gear shift operation member 85a, a gear shift operation detection device 85b, an FR operation member 86a, an FR operation detection device 86b, downshift operation member 89a, and a downshift operation detection device 89b, and the like.
The accelerator operation member 81a is, e.g., an accelerator pedal, and is operated in order to set the target rotation speed of the engine 21. The accelerator operation detection device 81b (third detector) detects the operation amount of the accelerator operation member 81a (hereinafter referred to as “accelerator operation amount”). The accelerator operation detection device 81b outputs the detection signal to the first controller 10a.
The steering operation member 82a is, e.g., a steering wheel, and is operated in order to operate the direction of progress of the vehicle. The steering operation detection device 82b detects the position of the steering operation member 82a and outputs detection signals to the second controller 10b. The second controller 10b controls the steering control valve 35 on the basis of detection signals from the steering operation detection device 82b. The steering cylinders 11a and 11b thereby expand and contract, and the direction of progress of the vehicle is changed.
The boom operation member 83a and the bucket operation member 84a are, e.g., operation levers, and are operated in order to actuate the work implement 3. Specifically, the boom operation member 83a is operated in order to actuate the boom 6. The bucket operation member 84a is operated in order to actuate the bucket 7. The boom operation detection device 83b detects the position of the boom operation member 83a. The bucket operation detection device 84b detects the position of the bucket operation member 84a. The boom operation detection device 83b and the bucket operation detection device 84b output detection signals to the second controller 10b. The second controller 10b controls the work implement control valve 34 on the basis of detection signals from the boom operation detection device 83b and the bucket operation detection device 84b. The lift cylinders 14a and 14b and the bucket cylinder 15 thereby expand and contract, and the boom 6 and the bucket 7 are actuated. Also, a boom angle detection device 98 for detecting the boom angle is provided to the work implement 3. The boom angle is the angle between the line that connects the center of rotational support between the front vehicle body section 2a and the boom 6 and the center of rotational support between the boom 6 and the bucket 7, and the line that connects the axial centers of the front and rear wheels 4a and 4b. The boom angle corresponds to the height of the bucket 7 from the ground. The boom angle detection device 98 outputs detection signals to the second controller 10b.
The gear shift operation member 85a is, e.g., a shift lever. The gear shift operation member 85a is operated in order to set an upper limit value of the speed stage when the automatic gear shift mode has been selected. For example, in the case that the gear shift operation member 85a is set to third speed, the transmission 26 can be switched from second speed to third speed, and it is not possible to switch to fourth speed. When the manual gear shift mode is selected, the transmission 26 is switched to the speed stage set by the gear shift operation member 85a. The gear shift operation detection device 85b detects the position of the gear shift operation member 85a. The gear shift operation detection device 85b outputs the detection signals to the second controller 10b. The second controller 10b controls the gear shifting of the transmission 26 on the basis of the detection signals from the gear shift operation detection device 85b. The automatic gear shift mode and the manual gear shift mode are switched by a gear shift mode switching member (not shown) operated by the operator.
The FR operation member 86a (forward/reverse switching operation member) is operated in order to switch the vehicle between forward and reverse. The FR operation member 86a can be switched to forward, neutral, and reverse positions. The FR operation detection device 86b detects the position of the FR operation member 86a. The FR operation detection device 86b outputs detection signals to the second controller 10b. The second controller 10b controls the clutch control valve 31 on the basis of the detection signals from the FR operation detection device 86b. The forward clutch CF and the reverse clutch CR are thereby controlled to switch the vehicle between forward, reverse, and neutral states.
The downshift operation member 89a is operated in order to switch the speed stage of the transmission 26 a single speed stage lower from the current speed stage when the automatic gear shift mode is selected. The downshift operation member 89a is a switch provided to, e.g., the gear shift operation member 85a. The downshift operation detection device 89b detects whether the downshift operation member 89a has been operated, and outputs detection signals to the second controller 10b. The second controller 10b controls the gear shifting of the transmission 26 on the basis of the detection signals from the gear shift operation detection device 85b. In other words, the second controller 10b switches the speed stage of the transmission 26 a single speed stage lower when it has been detected that the downshift operation member 89a has been operated.
The controller 10 has the first controller 10a and the second controller 10b. Each of the first controller 10a and the second controller 10b can be implemented in the form of a computer having: a storage device used as, e.g., program memory and/or work memory; and a CPU for executing a program.
The first controller 10a sends engine command signals to the governor 25 so as to achieve a target engine rotation speed that corresponds to the accelerator operation amount.
The second controller 10b controls the transmission 26 and/or the torque converter device 23 in accordance with the travel state of the vehicle. For example, the second controller 10b automatically switches the speed stage of the transmission 26 and switches the lockup clutch 27 in accordance with the vehicle speed when the automatic gear shift mode is selected. The second controller 10b switches the transmission 26 to the speed stage selected by the gear shift operation member 85a when the manual gear shift mode is selected.
In addition to the above-described detection signals, detection signals for the inlet pressure, the outlet pressure, and the like of the torque converter device 23 are also inputted to the second controller 10b. The first controller 10a and the second controller 10b can communicate with each other by a wireless or wired connection. The detection signals of the engine rotation speed, the fuel injection amount, the accelerator operation amount, and the like are inputted from the first controller 10a to the second controller 10b. The second controller 10b calculates the correction value for correcting the command value of the engine command signal on the basis of these signals in the later-described engine torque reduction control. The second controller 10b transmits to the first controller 10a the correction command signal that corresponds to the correction value. The correction value is a value required for obtaining a desired reduction amount of the torque upper limit value. The first controller 10a and the second controller 10b can thereby bring the torque upper limit value to a desired level.
Engine torque reduction control is described below. First, various items of information including the engine rotation speed, the vehicle speed, and the operating state of the operating unit 8 are detected and the detection signals are sent to the second controller 10b. Next, the second controller 10b determines the work phase of the vehicle from the operating state of the travel device 22 and the work implement 3. It is determined whether predetermined low-load conditions are satisfied on the basis of the work phase and the operating state of the operating unit 8. The low-load conditions are conditions showing that the vehicle is in a low-load state, and a plurality of low-load conditions are provided. When a certain condition among the plurality of low-load conditions is satisfied, the torque reduction amount table that corresponds to the condition is selected. The torque reduction amount table is a table for calculating the reduction amount of the torque upper limit value (hereinafter referred to as “torque reduction amount”), and a relationship between the engine rotation speed, the vehicle speed, and the torque reduction amount are set in the table. The second controller 10b calculates the torque reduction amount that corresponds to the engine rotation speed and the vehicle speed using the selected torque reduction amount table. The second controller 10b calculates the correction value that corresponds to the calculated torque reduction amount, and sends the result as the correction command signal to the first controller 10a. The first controller 100a sends the engine command signal corrected by the correction command signal to the governor 25. In this way, when the low-load conditions are satisfied, the engine 21 is controlled so that the torque upper limit value is made less than when the low-load conditions are not satisfied. The torque reduction amount at this time is calculated on the basis of the engine rotation speed and the vehicle speed, and is repeatedly calculated while the engine 21 is being driven. Accordingly, the torque reduction amount continuously varies in accordance with the variation between the engine rotation speed and the vehicle speed. Therefore, the torque upper limit value varies continuously in accordance with the variation between the engine rotation speed and the vehicle speed. The processing performed in the engine torque reduction control is described in detail below with reference to the flowchart in
First, various items of information are detected in the first step S1. Here, various items of information including the engine rotation speed and the vehicle speed are detected by detection signals from the operating unit 8 and various sensors.
Next, the corrected engine rotation speed is calculated in the second step S2. The corrected engine rotation speed is used for calculating the torque reduction amount produced by an above-described torque reduction amount table. The corrected engine rotation speed is calculated from the following formula (1).
Nt=Ne+a−Nbp (1)
Nt is the corrected engine rotation speed. Ne is the current engine rotation speed detected by the engine rotation speed sensor 91. Nbp is the target engine rotation speed that corresponds to the accelerator operation amount and is calculated from the current accelerator operation amount. Specifically, Nbp is calculated from the table shown in
Returning to the flowchart of
In the fourth step S4, it is determined whether the gear shift operation member 85a is positioned in a first speed position. Here, the determination is made on the basis of the detection signals from the gear shift operation detection device 85b. In the case that the gear shift operation member 85a is positioned in the first speed position, the process proceeds to the tenth step S10, and the torque reduction amount is set to zero. In the case that the gear shift operation member 85a is not positioned in the first speed position, the process proceeds to the fifth step S5. In other words, the process proceeds to the fifth step S5 in the case that the gear shift operation member 85a is positioned in a speed stage position equal to or greater than second speed.
The work phase is determined in the fifth step S5. Specifically, the second controller 10b determines the work phase is the following manner.
First, the second controller 10b determines the travel status and the work status of the vehicle on the basis of the above-described detection signals. The travel status includes “stop,” “forward,” “reverse,” and “shuttle.” In the case that the vehicle speed is equal to or less than a predetermined stop threshold value, the second controller 10b determines that the travel status is “stop.” The predetermined stop threshold value is a value that is sufficiently low enough to allow the vehicle to be considered to be stopped. In the case that the FR operation member 86a is set in the forward position and the vehicle is moving forward, the second controller 10b determines that the travel status is “forward.” In the case that FR operation member 86a is set to reverse position and the vehicle is moving in reverse, the second controller 10b determines that the travel status is “reverse.” Also, in the case that the progress direction instructed by the FR operation member 86a and the progress direction of the vehicle are different, the second controller 10b determines that the travel status is “shuttle.” In other words, the term shuttle refers to a state in which the operator has switched the FR operation member 86a from forward to reverse, or from reverse to forward, but the progress direction of the vehicle has yet to be switched.
The work status includes “cargo-loaded,” “no-cargo,” and “excavation.” The second controller 10b determines that the work status is “cargo-loaded” in the case that the lift cylinder hydraulic pressure is equal to or greater than a predetermined cargo-loaded threshold value. The second controller 10b determines that the work status is “no-cargo” in the case that the lift cylinder hydraulic pressure is less than the cargo-loaded threshold value. In other words, the term “no-cargo” refers to a state in which cargo is not loaded in the bucket 7, and the term “cargo-loaded” refers to a state in which cargo is loaded in the bucket 7. Therefore, the predetermined cargo-loaded threshold value is a value that is greater than the value of the lift cylinder hydraulic pressure in a state in which cargo is not loaded into the bucket 7, and is the value of the lift cylinder hydraulic pressure in which it can be deemed that cargo is loaded into the bucket 7. The second controller 10b determines the work status to be “excavation” in the case that: the lift cylinder hydraulic pressure is equal to or greater than a predetermined excavation hydraulic pressure threshold value; the travel status is “forward;” and the boom angle is equal to or less than a predetermined excavation angle threshold value. The term “excavation” refers to work in which the vehicle drives the bucket 7 into soil and lifts while moving forward. Therefore, the excavation hydraulic pressure threshold value corresponds to the value of the lift cylinder hydraulic pressure during excavation work. Also, the excavation angle threshold value corresponds to the value of the boom angle during excavation work. The second controller 10b determines the work phase by a combination of the abovementioned travel status and the work status. Specifically, the work phase is determined in the seven phases of “no-cargo stopped,” “cargo-loaded stopped,” “no-cargo forward,” “cargo-loaded forward,” “no-cargo reverse,” “cargo-loaded reverse,” and “excavation.”
In a sixth step S6, it is determined whether the low-load conditions have been satisfied. The low-load conditions are conditions showing that the vehicle is in a low-load state. Here, it is determined from the above-described work phase and the operating state of the operation member whether the low-load conditions are satisfied. For example, low-load conditions include a plurality of low-load conditions such as shown in
The torque reduction amount is calculated in the seventh step S7. The method for calculating the torque reduction amount is later described.
The correction command signal is outputted in the eighth step S8. Here, the second controller 10b sends to the first controller 10a the correction command signal that corresponds to the torque reduction amount calculated in the seventh step S7.
The engine command signal is corrected in the ninth step S9. Here, the first controller 10a corrects the engine command signal by using the correction command signal and controls the engine 21, as described above.
Next, the method for calculating the torque reduction amount calculated in the seventh step S7 is described in detail with reference to the flowchart shown in
First, the torque reduction amount table is selected in the eleventh step S11. Here, the torque reduction amount table is selected on the basis of the work phase and the operation state of the operation member. Specifically, the torque reduction amount table that corresponds to the low-load conditions determined in the sixth step S6 described above is selected. The torque reduction amount tables include a “dump table,” a “shuttle table,” a “no-cargo forward table,” a “no-cargo reverse table,” a “cargo-loaded forward table,” and a “cargo-loaded reverse table,” as shown in, e.g.,
An example of the torque reduction amount table is shown in
For example, in the table of
The lower limit values of these engine rotation speeds are set to a value at which it is difficult for the engine rotation speed to decrease by a large amount, even in the case that a large load is suddenly imposed in the low-load conditions. In other words, the lower limit values of the engine rotation speeds for which the torque upper limit value is to be reduced are values required for ensuring a minimum require engine output torque in the low-load conditions and are obtained and set in advance by experimentation or the like.
Also, in the table of
When the low-load conditions are different, the extent to which the operator perceives a reduction in ease of operation due to a reduction in engine torque will be different even at the same engine rotation speed and/or vehicle speed. Accordingly, a torque reduction amount table is used that differs in accordance with the low-load conditions as described above, whereby the engine torque can be reduced to the extent possible for each low-load condition without the operator perceiving a reduction in ease of operation.
Returning to the flowchart of
For example, in the map of
In the map of
As described above, the torque reduction amount varies in accordance with the variation between the vehicle speed and the engine rotation speed, even when the low-load conditions are the same.
The engine rotation speed and engine torque curve at the same vehicle speed in the map of
In the twelfth step S12, the vehicle speed detected by the transmission output speed sensor 92 is used as the current vehicle speed when the first torque reduction value which uses a torque reduction amount table is calculated. The engine rotation speed detected by the engine rotation speed sensor 91 is used as the current engine rotation speed when the accelerator operation amount is 100%. The corrected engine rotation speed calculated in second step S2 is used as the current engine rotation speed in the case that the accelerator operation amount is less than 100%.
Returning to the flowchart of
A second torque reduction value A2 is calculated in the 14th step S14. The second torque reduction value A2 is calculated using the following formula (2).
A2=A1+B (2)
A1 is the first torque reduction value calculated in the twelfth step S12. B is the torque reduction correction value and is a value that varies in accordance with the accelerator operation amount. Specifically, the torque reduction correction value is obtained from the torque reduction correction value table shown in
In
The torque reduction amount D is calculated in the 15th step S15. The torque reduction amount D is calculated using the following formula (3).
D=A2+R1 (3)
A2 is the second torque reduction value calculated in the 14th step S14. R1 is the reduction ratio during low-acceleration and low-speed. The reduction ratio during low-acceleration and low-speed is calculated by selecting the larger of the reduction ratio ra obtained using the accelerator operation amount and the reduction ratio rv using the vehicle speed. The reduction ratio ra obtained using the accelerator operation amount is calculated from the reduction ratio calculation table shown in
In the 16th step S16 to 18th step S18, the second torque reduction value is calculated using a different method from that described above in the case that the low-load conditions are “cargo-loaded forward and the position of the gear shift member is second speed,” or “cargo-loaded reverse.”
First, in the 16th step S16, a first calculation value C1 is calculated using the following formula (4).
C1=(A1+B)×R2 (4)
The method for calculating the first torque reduction value A1 and the torque reduction correction value B is the same as that described above. R2 is the cargo-loaded state reduction ratio. The cargo-loaded state reduction ratio R2 is set envisioning the case in which the operator does not perceive discomfort even when the torque reduction amount is increased to be greater than the value obtained by subtracting a later-described work implement pump estimated torque from the engine torque (torque upper limit value). For example, the cargo-loaded state reduction ratio R2 is a value that is greater than 0 and less than 1, and is set to a value of, e.g., “0.4” or the like. The cargo-loaded state reduction ratio R2 is calculated from the reduction ratio map that corresponds to the estimated output torque of the work implement pump 13.
In the 17th step S17, a second calculation value C2 is calculated using the following formula (5).
C1=A1+B−T1+T2 (5)
The method for calculating the first torque reduction value A1 and the torque reduction correction value B is the same as that described above. T1 is a work implement pump estimated torque. The work implement pump estimated torque T1 is the torque required for driving the work implement pump 13. The work implement pump estimated torque T1 is calculated as the work implement pump estimated torque T1 on the basis of the product of the discharge displacement of the work implement pump 13 and the pressure of the work implement pump 13 detected by the first hydraulic pressure sensor 94. T2 is the neutral output torque of the work implement pump 13. In other words, T2 is the torque required to drive the work implement pump 13 in a neutral state in which the boom operation member 83a and the bucket operation member 84a are not being operated. In formula (5) described above, consideration is given to the torque of the work implement pump, but the second calculation value C2 may be calculated with consideration given also to the drive torque of the hydraulic pump for driving the steering pump 12 and/or other hydraulic actuators.
In the 18th step S18, the larger of the first calculation value C1 and the second calculation value C2 is selected as the second torque reduction value A2. A torque reduction value 1) is calculated in the 15th step S15 using formula (3) described above.
The process described above from the first step S1 to ninth step S9 shown in
In the work vehicle according to the present embodiment, when the low-load conditions are satisfied, the torque upper limit value is made less than that of when the low-load conditions are not satisfied. In this way, fuel consumption can be reduced. Also, the torque reduction amount varies in accordance with the variation in the engine rotation speed and vehicle speed. Therefore, the torque reduction amount is continuously varied in accordance with variation in the engine rotation speed, the vehicle speed, and the like, rather than the torque upper limit value being uniformly reduced by an amount set in advance. Accordingly, sudden variation in the engine torque can be inhibited. It is thereby possible to inhibit a reduction in ease of operation. Also, the torque reduction amount varies in accordance with the low-load conditions because a torque reduction amount table that corresponds to each low-load condition is provided. Therefore, it is possible to set a suitable torque reduction amount that corresponds to the low-load conditions of the vehicle. The engine torque can thereby be reduced to the extent possible for each low-load condition in a range that does not allow the operator to perceive a reduction in ease of operation.
Described below is the engine torque reduction control for when the work vehicle 1 is carrying out, e.g., so-called V-shaped work. V-shaped work is work in which the work vehicle 1 lifts soil or other cargo 100 using the work implement 3, and loads the cargo into a dump truck or other loading position 200, as shown in
The torque reduction amount is set to zero when the engine rotation speed is equal to or less than a predetermined speed in each table, even when the low-load conditions are satisfied. The predetermined engine rotation speed is set for each torque reduction amount table and therefore varies when the low-load conditions vary. Accordingly, the engine torque can be reduced to the extent possible for each low-load condition in a range that does not allow the operator to perceive a reduction in ease of operation. The low-load conditions showing that the vehicle is in a low-load state include the work phase. Accordingly, the predetermined engine rotation speed may be varied in accordance with the work phase in lieu of the low-load conditions.
The torque reduction correction value is lower in association with a greater accelerator operation amount. In other words, the lower the accelerator operation amount is, the greater the torque reduction correction value is. Therefore, the torque reduction amount is set to a low value when the operator is considerably operating the accelerator. The operator desires a high output when the operator is firmly operating the accelerator, and the torque reduction amount is thereby set to a low value, whereby the operator can be inhibited from perceiving a reduction in ease of operation. The torque reduction amount is set to a large value when the operator is lightly operating the accelerator. The operator does not desire a high output when the operator is lightly operating the accelerator, and even if the torque reduction amount is thereby set to a high value, the operator is unlikely to perceive a reduction in ease of operation. Accordingly, fuel consumption can be improved without the operator perceiving a reduction in ease of operation.
The torque reduction amount is zero when the vehicle speed is Vmax as shown in the torque reduction amount tables of
An embodiment of the present invention was described above, but the present invention is not limited thereto; various modifications are possible within a scope that does not depart from the spirit of the invention.
For example, the torque reduction amount may be calculated on the basis of the vehicle acceleration in lieu of the vehicle speed. In other words, the torque reduction amount table may establish a relationship between the engine rotation speed, the vehicle acceleration, and the torque reduction amount, as shown in
Alternatively, the torque reduction amount may be calculated on the basis of the engine-rotation-speed acceleration in lieu of the vehicle speed. In other words, the torque reduction amount table may establish a relationship between the engine rotation speed, and the engine-rotation-speed acceleration, as shown in
Also, the calculation of the torque reduction amount on the basis of any among the vehicle speed, the vehicle acceleration, and the engine-rotation-speed acceleration may differ for each low-load condition. For example, a torque reduction amount table that establishes a relationship between “the engine rotation speed, the vehicle speed, and the torque reduction amount” may be used in a first low-load condition, a torque reduction amount table that establishes a relationship between “the engine rotation speed, the vehicle acceleration, and the torque reduction amount” may be used in a second low-load condition, and a torque reduction amount table that establishes a relationship between “the engine rotation speed, the engine-rotation-speed acceleration, and the torque reduction amount” may be used in a third low-load condition.
Also, it is possible to set a plurality of torque reduction amount tables in which the vehicle speed, the vehicle acceleration, and the engine-rotation-speed acceleration differ in a single low-load condition, and the largest torque reduction amount may be selected from these torque reduction amount tables. For example, three torque reduction amount tables may be set for a single low-load condition, the three torque reduction amount tables being a torque reduction amount table that establishes the relationship between “the engine rotation speed, the vehicle speed, and the torque reduction amount,” a torque reduction amount table that establishes the relationship between “the engine rotation speed, the vehicle acceleration, and the torque reduction amount,” and a torque reduction amount table that establishes the relationship between “the engine rotation speed, the engine-rotation-speed acceleration, and the torque reduction amount.” The largest reduction amount in the current vehicle state may be selected from these torque reduction amount tables.
The engine-rotation-speed acceleration refers to the amount of variation per unit of time in the engine rotation speed. The engine-rotation-speed acceleration may be detected by a sensor for detecting acceleration. Alternatively, the controller 10 may calculate the engine-rotation-speed acceleration from the engine rotation speed detected by the engine rotation speed sensor 91. The torque reduction amount may be calculated using a computation formula without dependence on a table. In
In the embodiment described above, a corrected engine rotation speed is used, whereby the torque reduction amount that corresponds to the current accelerator operation amount is obtained from the torque reduction amount table of when the accelerator operation amount is 100%. A torque reduction amount that corresponds to when the accelerator operation amount is less than 100% can thereby be calculated from the engine torque curve of when the accelerator operation amount is 100%. However, the method for calculating the torque reduction amount that corresponds to the accelerator operation amount is not limited to one that uses a corrected engine rotation speed as described above. A plurality of torque reduction amount tables for each accelerator operation amount may be stored in the controller 10, and the torque reduction amount may be obtained from these tables.
In the embodiment described above, the torque reduction amount is set to zero in the tenth step S10 of the flowchart of
The low-load conditions may be determined using different low-load conditions from those described above. The discrimination of the work phase may be carried out using a different work phase discrimination than that described above. The torque reduction amount may be calculated on the basis of torque reduction amount tables that are different from the torque reduction amount tables described above. For example, the speed stage of the transmission 26 may be included in the low-load conditions. The vehicle speed Vmax of the torque reduction amount table may be set to the maximum speed that corresponds to each speed stage.
The mode of the operation member is not limited to that exemplified above. For example, it is also possible to use sliding or dialed switches, and other operation members without limitation to levers and/or pedals.
In the work vehicle 1 according to the embodiment described above, the first controller 10a and the second controller 10b are separately provided, but these may be integrally provided. For example, the functions of first controller 10a and the second controller 10b may be implemented by a single computer. Conversely, the functions of the first controller 10a or the second controller 10b may be shared by a plurality of computers.
The work vehicle to which the present invention is applied is not limited to that described above. The present invention may be applied to a work vehicle other than a wheel loader described above. The present invention may also be applied to a work vehicle comprising a hydraulic static transmission (HST); or a hydraulic mechanical transmission (HMT) or another mechanical continuously variable transmission (CVT); or an electric continuously variable transmission. For example, in a work vehicle comprising a HST (hereinafter referred to as “HST work vehicle”), a hydraulic pump 41 for travel is driven by drive force from the engine 21, and the hydraulic fluid discharged from the hydraulic pump 41 for travel is fed to a hydraulic motor 43 via a travel circuit 42, as shown in
The second controller 10b processes output signals from the engine rotation speed sensor 91 and the travel circuit hydraulic pressure sensor 44, and outputs command signals for the pump displacement to the pump displacement control section 45. In this case, the second controller 10b refers to the pump displacement/travel circuit hydraulic pressure characteristics data stored in the second controller 10b, sets the pump displacement from the value of the engine rotation speed and the value of the travel circuit hydraulic pressure, and outputs to the pump displacement control section 45 the pump displacement command value that corresponds to the pump displacement thus set.
The second controller 10b processes output signals from the engine rotation speed sensor 91 and the travel circuit hydraulic pressure sensor 44, and outputs command signals for the motor displacement to the motor displacement control section 46. In this case, the second controller 10b refers to the motor displacement and travel circuit hydraulic pressure characteristics data stored in the second controller 10b, sets the motor displacement from the value of the engine rotation speed and the value of the travel circuit hydraulic pressure, and outputs to the motor displacement control section 46 the change command of the tilt angle that corresponds to the motor displacement thus set.
The HST work vehicle comprises the same gear shift operation member 85a as that of the work vehicle 1 according to the embodiment described above. The second controller 10b stores the maximum vehicle speed that corresponds to each speed stage selected by the gear shift operation member 85a. The second controller 10b controls the motor displacement control section 46 so that the vehicle speed does not exceed the maximum speed for the selected speed stage. The same gear shift control as that of the work vehicle according to the embodiment described above is thereby performed. In this HST work vehicle, the same control of the engine 21 as that of the work vehicle according to the embodiment described above is performed by the first controller 10a.
The illustrated embodiment has an effect in which it is possible to inhibit a reduction in the ease of operation and to improve the effect of reduced fuel consumption. Accordingly, the illustrated embodiment is useful as a work vehicle and as a work vehicle control method.
Number | Date | Country | Kind |
---|---|---|---|
2010-107115 | May 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/053203 | 2/16/2011 | WO | 00 | 9/6/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/138880 | 11/10/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8316983 | Shirao | Nov 2012 | B2 |
8504257 | Yamaguchi et al. | Aug 2013 | B2 |
8532888 | Ishibashi et al. | Sep 2013 | B2 |
8666610 | Shirao | Mar 2014 | B2 |
8706364 | Shirao | Apr 2014 | B2 |
20050071067 | Guven et al. | Mar 2005 | A1 |
20060172853 | Ishibashi et al. | Aug 2006 | A1 |
20060276948 | Toda | Dec 2006 | A1 |
20070287589 | Kadono et al. | Dec 2007 | A1 |
20080269011 | Sopko et al. | Oct 2008 | A1 |
20090120175 | Assaf et al. | May 2009 | A1 |
20090223215 | Kelly et al. | Sep 2009 | A1 |
20090247356 | Hatanaka | Oct 2009 | A1 |
20090320461 | Morinaga et al. | Dec 2009 | A1 |
20100089051 | Ohtsukasa | Apr 2010 | A1 |
20100106382 | Kodaka et al. | Apr 2010 | A1 |
20100138118 | Tsukada et al. | Jun 2010 | A1 |
20100167873 | Akiyama et al. | Jul 2010 | A1 |
20100186402 | Ariga et al. | Jul 2010 | A1 |
20100317486 | Hyodo et al. | Dec 2010 | A1 |
20100324788 | Toda | Dec 2010 | A1 |
20110231070 | Toda | Sep 2011 | A1 |
20110276238 | Toda | Nov 2011 | A1 |
20130118160 | Toda | May 2013 | A1 |
Number | Date | Country |
---|---|---|
1846047 | Oct 2006 | CN |
61-110625 | May 1986 | JP |
11-293710 | Oct 1999 | JP |
11-293710 | Oct 1999 | JP |
2001-352612 | Dec 2001 | JP |
2002-54475 | Feb 2002 | JP |
2009-156173 | Jul 2009 | JP |
2011-236759 | Nov 2011 | JP |
WO-2005024208 | Mar 2005 | WO |
WO-2011138880 | Nov 2011 | WO |
Entry |
---|
International Search Report of corresponding PCT Application No. PCTI2011/053203. |
The Office Action for the corresponding Chinese application No. 201180022882.6, issued on Oct. 8, 2014. |
Number | Date | Country | |
---|---|---|---|
20130041561 A1 | Feb 2013 | US |