The present invention relates to a work vehicle which performs excavation work.
Work vehicles equipped with a work machine used to load dirt, crushed stones, or the like onto a dump truck or the like have been known. As such a work vehicle, there is a wheel loader. A wheel loader is a vehicle having a bucket for performing excavation work, which works by traveling with tires. For example, Patent Literature 1 discloses causing a bucket to perform tilting automatically during rising of a boom.
Patent Literature 1: WO 2010/110386 A
If a bucket is caused to perform tilting automatically during rising of the boom, the bucket performs tilting even when an operator does not perform an operation to tilt the bucket, which may give the operator a sense of discomfort.
An object of the present invention is to reduce a sense of discomfort given to the operator when the bucket is caused to tilt automatically during rising of the boom.
According to the present invention, a work vehicle control method comprises, in controlling a work vehicle including a boom supported by a vehicle body and configured to turn; and a bucket supported by a side, away from the vehicle body, of the boom and configured to turn according to an operation of an actuator: obtaining an operation amount for raising the boom or a rising speed of the boom and an operable amount that the actuator is able to operate before the bucket reaches a stop position on a dump side, the operable amount being obtained based on a posture of the boom and a posture of the bucket; and causing the bucket to perform tilting by operating the actuator from a position where the operable amount is large such that the operable amount becomes larger as the operation amount for raising the boom is larger or the rising speed of the boom is higher.
According to the present invention, a work vehicle control device which controls a work vehicle including a boom supported by a vehicle body and configured to turn; and a bucket supported by a side, away from the vehicle body, of the boom, and configured to turn according to an operation of an actuator, wherein the work vehicle control device obtains an operation amount for raising the boom or a rising speed of the boom, and an operable amount that the actuator is able to operate before the bucket reaches a stop position on a dump side, the operable amount being obtained based on a posture of the boom and a posture of the bucket, and the work vehicle control device causes the bucket to perform tilting by operating the actuator from a position where the operable amount is large such that the operable amount becomes larger as the operation amount for raising the boom is larger or the rising speed of the boom is higher.
According to the present invention, a work vehicle comprises: a boom supported by a vehicle body and configured to turn; a bucket supported by a side, away from the vehicle body, of the boom, and configured to turn according to an operation of an actuator; and the work vehicle control device.
It is preferable to cause the bucket to perform tilting according to the operable amount in the case where the boom is raised and a device for operating the bucket is in a neutral state.
The present invention is able to reduce a sense of discomfort given to the operator when the bucket is caused to tilt automatically during rising of the boom.
A mode for carrying out the present invention (embodiment) will be described in detail with reference to the drawings.
<Wheel Loader>
The wheel loader 1 includes a vehicle body 2, a work machine 5 equipped with a boom 3 and a bucket 4, front wheels 6F and rear wheels 6R, a driver's cabin 7, a boom cylinder 9 corresponding to an actuator, and a bucket cylinder 10 corresponding to an actuator. On the vehicle body 2, the work machine 5, the front wheels 6F and the rear wheels 6R, and the driver's cabin 7 are mounted. In the driver's cabin 7, a driver's seat DS and a control lever CL are provided. A direction from the backrest DSB of the driver's seat DS to the control lever CL is called front, and a direction from the control lever CL to the backrest DSB is called back. Right and left of the wheel loader 1 is determined with reference to the front.
The front wheels 6F and the rear wheels 6R are grounded on a road surface R. The grounded side of the front wheels 6F and the rear wheels 6R is called downward, and a direction separating from the grounded side of the front wheels 6F and the rear wheels 6R is called upward. With rotation of the front wheels 6F and the rear wheels 6R, the wheel loader 1 travels. Steering of the wheel loader 1 is realized by bending the vehicle body 2 between the front wheels 6F and the rear wheels 6R.
The work machine 5 is disposed on the front part of the vehicle body 2. The boom 3 is supported on the front side of the vehicle body 2 and extends toward the front. The boom 3 is supported by the vehicle body 2 and turns. The bucket 4 has an opening 4H and a claw 4C. The bucket 4 excavates the target with the claw 4C which scoops out dirt, crushed stones, or the like. Dirt, crushed stones, or the like, scooped out by the claw 4C is called excavated material SR as appropriate. The excavated material SR scooped out by the claw 4C enters from the opening 4H to the inside of the bucket 4. The bucket 4 turns by being supported on a side of the boom 3 opposite to the vehicle body 2 side, that is, a side away from the vehicle body 2.
The boom cylinder 9, working as a boom driving device, is disposed between the vehicle body 2 and the boom 3. The boom 3 turns about the supporting part on the vehicle body 2 side according to expansion and contraction of the boom cylinder 9. The boom driving device which allows the boom 3 to turn is not limited to the boom cylinder 9. For example, the boom driving device may be an electric motor provided to the root of the boom 3. As described above, the boom driving device is an actuator which allows the boom 3 to turn.
The bucket cylinder 10 is configured such that one end thereof is attached to the vehicle body 2 and is supported, and the other end thereof is attached to one end of a bell crank 11. The other end of the bell crank 11 is linked to the bucket 4. The bucket 4 turns about the part supported by the boom 3 according to expansion and contraction of the bucket cylinder 10. The device which allows the bucket 4 to turn is not limited to the bucket cylinder 10.
The control lever CL controls expansion and contraction of the boom cylinder 9 and the bucket cylinder 10. When an operator on the driver's cabin 7 operates the control lever CL, at least one of the boom cylinder 9 and the bucket cylinder 10 expands or contracts. Then, at least one of the boom 3 and the bucket 4 turns. In this way, the boom 3 and the bucket 4 are operated when the operator operates the control lever CL.
<Control System of Work Machine 5>
The work machine hydraulic pump 12 is driven by an engine (EG) 60 as a power generator mounted on the wheel loader 1. The engine 60 is an internal combustion engine, and in the present embodiment, it is a diesel engine. The type of the engine 60 is not limited to a diesel engine. The power of the engine 60 is input to a PTO (Power Take Off) 61, and then output to the work machine hydraulic pump 12 and to a clutch 62 as a power transmission mechanism. With this structure, the work machine hydraulic pump 12 is driven by the engine 60 via the PTO 61, and discharges hydraulic oil.
The input side of the clutch 62 is connected with the engine 60, and the output side of the clutch 62 is connected with a torque converter (TC) 63. The output side of the torque converter 63 is connected with a transmission (TM) 64. With this structure, the power of the engine 60 is transmitted to the transmission 64 via the PTO 61, the clutch 62, and the torque converter 63. The transmission 64 transmits the power of the engine 60, transmitted from the PTO 61, to the front wheels 6F and the rear wheels 6R shown in
The discharge port, from which the work machine hydraulic pump 12 discharges hydraulic oil, is connected with the discharge circuit 12C working as an oil passage through which the hydraulic oil passes. The discharge circuit 12C is connected with the boom operation valve 13 and the bucket operation valve 14. Both the boom operation valve 13 and the bucket operation valve 14 are hydraulic pilot type operation valves. The boom operation valve 13 and the bucket operation valve 14 are connected with the boom cylinder 9 and the bucket cylinder 10, respectively. The work machine hydraulic pump 12, the boom operation valve 13, the bucket operation valve 14, and the discharge circuit 12C constitute a tandem hydraulic circuit.
The boom operation valve 13 is a four-way selector valve having a position A, a position B, a position C, and a position D. The boom operation valve 13 is configured such that the boom 3 moves up at the position A, the boom 3 is neutral and maintains the position at the position B, the boom 3 moves down at the position C, and the boom 3 floats at the position D. The bucket operation valve 14 is a three-way selector value having a position E, a position F, and a position G. The bucket operation valve 14 is configured such that the bucket 4 performs tilting at the position E, the bucket 4 is neutral and maintains the position at the position F, and the bucket 4 performs dumping at the position G.
The tilting of the bucket 4 is an operation that the opening 4H and the claw 4C of the bucket 4 shown in
Each of the pilot pressure receiving parts of the boom operation valve 13 and the bucket operation valve 14 is connected with the pilot pump 15 via the electromagnetic proportional control valve 20. The pilot pump 15 is connected with the PTO 61, and is driven by the engine 60. The pilot pump 15 supplies hydraulic oil of a predetermined pressure (pilot pressure) to a pilot pressure receiving part 13R of the boom operation valve 13 and a pilot pressure receiving part 14R of the bucket operation valve 14 via the electromagnetic proportional control valve 20.
The electromagnetic proportional control valve 20 includes a boom lowering electromagnetic proportional control valve 21, a boom raising electromagnetic proportional control valve 22, a bucket dump electromagnetic proportional control valve 23, and a bucket tilt electromagnetic proportional control valve 24. The boom lowering electromagnetic proportional control valve 21 and the boom raising electromagnetic proportional control valve 22 are connected with the respective pilot pressure receiving parts 13R and 13R of the boom operation valve 13. The bucket dump electromagnetic proportional control valve 23 and the bucket tilt electromagnetic proportional control valve 24 are connected with the respective pilot pressure receiving part 14R and 14R of the bucket operation valve 14. To a solenoid command part 21S of the boom lowering electromagnetic proportional control valve 21, a solenoid command part 22S of the boom raising electromagnetic proportional control valve 22, a solenoid command part 23S of the bucket dump electromagnetic proportional control valve 23, and a solenoid command part 24S of the bucket tilt electromagnetic proportional control valve 24, respective command signals from the control device 40 are input.
The boom lowering electromagnetic proportional control valve 21, the boom raising electromagnetic proportional control valve 22, the boom operation valve 13, and the boom cylinder 9 have a function as a boom driving part to turn (move up and down) the boom 3. The bucket dump electromagnetic proportional control valve 23, the bucket tilt electromagnetic proportional control valve 24, the bucket operation valve 14, and the bucket cylinder 10 have a function as a bucket driving part to turn the bucket (perform tilting or dumping).
The control device 40 includes a processing unit 41 such as a CPU (Central Processing Unit), a memory unit 42 such as a ROM (Read Only Memory), an input unit 43, and an output unit 44. The processing unit 41 sequentially executes various types of commands described in a computer program to thereby control operation of the work machine 5. The processing unit 41 is electrically connected with the memory unit 42, the input unit 43, and the output unit 44. With this structure, the processing unit 41 is able to read information stored in the memory unit 42, write information in the memory unit 42, receives information from the input unit 43, and output information to the output unit 44.
The memory unit 42 stores a computer program for controlling the operation of the work machine 5 and information for controlling the operation of the work machine 5. In the present embodiment, the memory unit 42 stores a computer program for realizing a work vehicle control method according to the present embodiment. The processing unit 41 reads the computer program from the memory unit 42 and executes it to thereby implement the work vehicle control method according to the present embodiment.
The input unit 43 is connected with a boom angle detection sensor 46, a bucket angle detection sensor 47, a boom cylinder pressure sensor 48 which detects pressure (bottom pressure) of the hydraulic oil filling the boom cylinder 9, the TM control device 49 which controls the transmission 64, a vehicle speed sensor 50, the engine control device 51 which controls the engine 60, a first potentiometer 31, and a second potentiometer 33. The processing unit 41 obtains detection values or command values thereof, and controls the operation of the work machine 5.
In the present embodiment, a stroke of the boom cylinder 9 and a stroke of the bucket cylinder 10 are obtained from the angle of the boom 3 detected by the boom angle detection sensor 46 and the angle of the bucket 4 detected by the bucket angle detection sensor 47 or the angle of the bell crank 11. The control device 40 obtains at least one of a stroke of the boom cylinder 9 or a stroke of the bucket cylinder 10 using at least one of the boom angle detection sensor 46 and the bucket angle detection sensor 47 to thereby control the operation of the boom 3 and the bucket 4.
The vehicle speed sensor 50 as a vehicle speed detection device detects a speed (vehicle speed) at which the wheel loader 1 travels. The vehicle speed sensor 50 may obtain the vehicle speed of the wheel loader 1 from the rotational speed of the output shaft of the transmission 64 shown in
The output unit 44 is connected with the solenoid command part 21S of the boom lowering electromagnetic proportional control valve 21, the solenoid command part 22S of the boom raising electromagnetic proportional control valve 22, the solenoid command part 23S of the bucket dump electromagnetic proportional control valve 23, the solenoid command part 24S of the bucket tilt electromagnetic proportional control valve 24, and an input/output device 45. The processing unit 41 gives a command value for operating the boom cylinder 9 to the solenoid command part 21S of the boom lowering electromagnetic proportional control valve 21 or the solenoid command part 22S of the boom raising electromagnetic proportional control valve 22 to thereby extend or contract the boom cylinder 9. With extension or contraction of the boom cylinder 9, the boom 3 moves up and down. The processing unit 41 gives a command value for operating the boom cylinder 9 to the solenoid command part 23S of the bucket dump electromagnetic proportional control valve 23 or the solenoid command part 24S of the bucket tilt electromagnetic proportional control valve 24 to thereby extend or contract the bucket cylinder 10. With extension or contraction of the bucket cylinder 10, the bucket 4 performs tilting or dumping. In this way, the processing unit 41 controls operation of the work machine 5, that is, operation of the boom 3 and the bucket 4.
The input/output device 45, connected with both the input unit 43 and the output unit 44, includes an input device 45S, a sound generation device 45B, and a display device 45M. The input/output device 45 is configured to input a command value from the input device 45S to the control device 40, generate an alarm sound from the sound generation device 45B, display a state of the work machine 5 or information relating to the control of the work machine 5 on the display device 45M, and the like. The input device 45S may be a push-button switch, for example. When the input device 45S is operated, information displayed on the display device 45M is switched, or the operation mode of the wheel loader 1 is switched.
The control lever CL as an operation device includes a boom control lever 30 and a bucket control lever 32. The boom control lever 30 is a device for operating the boom 3. The boom control lever 30 is equipped with the first potentiometer 31 which detects the operation amount with respect to the boom control lever 30. The bucket control lever 32 is a device for operating the bucket 4. The bucket control lever 32 is equipped with the second potentiometer 33 which detects the operation amount with respect to the bucket control lever 32. Detection signals of the first potentiometer 31 and the second potentiometer 33 are input to the input unit 43 of the control device 40. A selector lever 18L of the transmission 64 is used for shifting the gear stage of the transmission 64, switching between moving forward and backward, and the like.
<Structure and Operation of Work Machine 5>
The bucket 4 is pin-connected with the second end side of the boom 3, that is, an end side opposite to the vehicle body 2 side (an end side away from the vehicle body 2), by a connecting pin 4Pa. With this structure, the bucket 4 turns about a central axis Z2 of the connecting pin 4Pa. The bucket cylinder 10 is configured such that a first end thereof is pin-connected with the vehicle body 2 by the connecting pin 3P, and a second end thereof is pin-connected with a first end of the bell crank 11 by a connecting pin 11a. A second end of the bell crank 11 is pin-connected with a first end of a connecting member 11L by a connecting pin 11b. A second end of the connecting member 11L is pin-connected with the bucket 4 by a connecting pin 4Pb.
The boom 3 has a support member 8 which supports the bell crank 11, between the both ends. The bell crank 11 is pin-connected, at the part between the both ends, with the support member 8 by a connecting pin 11c. With this structure, the bell crank 11 turns about a central axis Z3 of the connecting pin 11c. When the bucket cylinder 10 is contracted, the first end of the bell crank 11 moves to the vehicle body 2 side. As the bell crank 11 turns about the central axis Z3 of the connecting pin 11c, the second end of the bell crank 11 moves in a direction away from the vehicle body 2. Then, the bucket 4 performs dumping via the connecting member 11L. When the bucket cylinder 10 is extended, the first end of the bell crank 11 moves away from the vehicle body 2 side. Then, as the second end of the bell crank 11 comes close to the vehicle body 2, the bucket 4 performs tilting via the connecting member 11L.
On the second end side of the boom 3, a stopper of the dump side (hereinafter referred to as a dump stopper as appropriate) STPD, which regulates the dumping of the bucket 4, is provided. The dump stopper STPD comes in contact with the bucket 4 to thereby prevent excessive dumping of the bucket 4. The position of the bucket 4, when the bucket 4 is in contact with the dump stopper STPD, is called a dump end. On the side opposite to the bucket 4 of the bell crank 11, a stopper on the tilt side (hereinafter referred to as a tilt stopper as appropriate) STPT, which regulates the tilting of the bucket 4, is provided. The tilt stopper STPT comes in contact with the bucket 4 to thereby prevent excessive tilting of the bucket 4. The position of the bucket 4, when the bucket is in contact with the tilt stopper STPT, is called a tilt end. In the present embodiment, while the dump stopper STPD is used to regulate the dumping of the bucket 4, the present invention is not limited to this. For example, a stroke end of the bucket cylinder 10 may regulates the dumping of the bucket 4, instead of the dump stopper STPD. The bucket 4 is configured such that dumping stops at the stop position on the dump side. In the present embodiment, the stop position on the dump side may be the position of the dump stopper STPD or the position of the stroke end of the bucket cylinder 10, for example.
<Boom Angle α and Bucket Angle β>
In the work machine 5, the angle of the boom 3 (hereinafter referred to as a boom angle) α is a small one of angles between a line L1 linking the central axis Z1 of the connecting pin 3P and the central axis Z2 of the connecting pin 4Pa, and a horizontal line L2 passing through the connecting pin 3P parallel to the grounding surface of the front wheels 6F and the rear wheels 6R. In the present embodiment, the boom angle α becomes negative if the boom 3 is tilted toward a road surface R side from the horizontal line L2. When the boom 3 moves up, the boom angle α increases.
The angle of the bucket 4 (hereinafter referred to as a bucket angle as appropriate) β is an angle between the road surface R (corresponding to the horizontal line L2 in
The boom angle detection sensor 46 which detects the boom angle α is provided to the part of the connecting pin 3P for pin-connecting the boom 3 with the vehicle body 2. The bucket angle detection sensor 47 which detects the bucket angle β is provided to the part of the connecting pin 11c, and indirectly detects the angle of the bucket 4 via the bell crank 11. The bucket angle detection sensor 47 may be provided to the part of the connecting pin 4Pa which connects the boom 3 and the bucket 4. In the present embodiment, while potentiometers are used as the boom angle detection sensor 46 and the bucket angle detection sensor 47, for example, the present invention is not limited to this.
The boom angle α detected by the boom angle detection sensor 46 serves as an index indicating the posture of the boom 3. As such, the boom angle detection sensor 46 works as a boom posture detection device which detects the posture of the boom 3. The bucket angle β detected by the bucket angle detection sensor 47 serves as an index indicating the posture of the bucket 4. As such, the bucket angle detection sensor 47 works as a bucket posture detection device which detects the posture of the bucket 4.
When the operator of the wheel loader 1 operates the boom control lever 30 or the bucket control lever 32, the control device 40 obtains a signal of the operation amount of the boom control lever 30 or the bucket control lever 32 from the first potentiometer 31 or the second potentiometer 33. Then, the control device 40 outputs a work machine speed control command, corresponding to the signal of the operation amount, to the boom lowering electromagnetic proportional control valve 21, the boom raising electromagnetic proportional control valve 22, the bucket dump electromagnetic proportional control valve 23, or the bucket tilt electromagnetic proportional control valve 24.
The boom lowering electromagnetic proportional control valve 21, the boom raising electromagnetic proportional control valve 22, the bucket dump electromagnetic proportional control valve 23, or the bucket tilt electromagnetic proportional control valve 24 outputs a pilot pressure corresponding to the magnitude of the work machine speed control command, to the pilot pressure receiving part of the corresponding boom operation valve 13 or the bucket operation valve 14. Then, the boom cylinder 9 or the bucket cylinder 10 is operated in a corresponding direction at a speed corresponding to the respective pilot oil pressure.
The wheel loader 1 enters into dirt, crushed stones, or the like at a lower position DU illustrated in
The wheel loader 1 raises the boom 3 to thereby lift the bucket 4 which scooped dirt, quarried stones, or the like to an upper position UP, and load the dirt, crushed stores, or the like on a vessel of the dump truck, for example. When loading the dirt, crushed stones, or the like, the wheel loader 1 contracts the bucket cylinder 10 so as to allow the bucket 4 to perform dumping to thereby cause the claw 4C of the bucket 4 to face downward. Then, the dirt, crushed stones, or the like, held by the bucket 4, is released from the bucket 4 to the vessel. Dumping is an operation that the claw 4C of the bucket 4 moves downward (operation to move in a direction shown by an arrow DP in
When the bucket 4 performs dumping, the bucket 4 comes in contact with the dump stopper STPD illustrated in
<Control in Dumping>
At the time of dumping by the bucket 4, an operating speed when the bucket 4 is operated is limited corresponding to the distance up to a point where the bucket 4 comes in contact with the dump stopper STPD. This control is called dumping impact suppression control, as appropriate. The dumping of the bucket 4 is performed even during rising of the boom 3. In that case, dumping by the bucket 4 is performed as a complex operation with the boom 3. The rising speed of the boom 3 varies depending on the condition of the work site. If the operating speed of the bucket 4 is limited uniformly, suppression of an impact may become insufficient, or the productivity may be lowered. Further, as an operation similar to the dumping, there is a process to turn the bucket 4 upward and downward in turn so as to cause the bucket 4 to bump into the dump stopper STPD to thereby drop the mud or the like (hereinafter referred to as mud dropping, as appropriate) attached to the bucket 4. If the operating speed, when the bucket 4 is operated, is limited by the dumping impact suppression control, an impact when the bucket 4 bumps into the dump stopper STPD is suppressed. Consequently, the mud dropping process may be insufficient, or mud dropping process may take time.
The control device 40 illustrated in
The operable amount of the bucket cylinder 10 before the bucket 4 reaches the dump stopper STPD is represented by a distance up to a position where the bucket 4 reaches the dump stopper STPD (hereinafter referred to as a reach distance as appropriate). If the reach distance is represented as SCR, it is a value calculated by subtracting the current length (entire length) of the bucket cylinder 10, from a length (entire length) of the bucket cylinder 10 when the bucket 4 reaches the dump stopper STPD at a boom angle α.
As the positional relationship among the boom 3, the bell crank 11, and the bucket 4 is changed according to the boom angle α, the reach distance SCR is also changed according to the boom angle α. In the present embodiment, the memory unit 42 of the control device 40 illustrated in
The first table TBA illustrated in
The operation amount for raising the boom (hereinafter referred to as a boom raising operation amount as appropriate) BVC is an operation amount of the boom control lever 30 illustrated in
The operating speed of the bucket cylinder 10 varies according to the flow rate of the hydraulic oil supplied to the bucket cylinder 10. In the present embodiment, the operating speed of the bucket cylinder 10 is limited by limiting the target flow rate of the hydraulic oil supplied to the bucket cylinder 10 at the time of dumping (hereinafter referred to as dump time target flow rate as appropriate). The dump time target flow rate is determined by the operation amount of the bucket control lever 32 illustrated in
If the dump time target flow rate is represented as QTd, and the operation amount of the bucket control lever 32 at the time of dumping (hereinafter referred to as bucket dump operation amount, as appropriate) is represented as QBKd, as the bucket dump operation amount QBKd increases, the dump time target flow rate QTd also increases, and consequently, the speed at the time of dumping by the bucket 4 also becomes higher. The bucket dump operation amount QBKd is 100% when the operation amount of the bucket control lever 32 for causing the bucket 4 to dump is maximum, and is 0% when the bucket control lever 32 is neutral.
In the present embodiment, at the time of dumping, the control device 40 controls the operation of the bucket cylinder 10 using a corrected dump time target flow rate QTdc calculated by multiplying the dump time target flow rate QTd, determined by the bucket dump operation amount QBKd, by the limit rate LQ. Consequently, the operating speed of the bucket cylinder 10 becomes smaller compared with the case before it is limited by the limit rate LQ.
The limit rates LQ described in the first table TBA illustrated in
Regarding the first table TBA in
If the boom raising operation amount BVC in the first table TBA illustrated in
In the first table TBA, the limit rate LQ becomes smaller as the reach distance SCR becomes shorter, that is, the distance up to a point where the bucket 4 reaches the dump stopper STPD becomes shorter. This means that as the bucket 4 comes closer to the dump stopper STPD, the limit amount of the operating speed of the actuator becomes larger, and the operating speed of the bucket cylinder 10 becomes lower.
In the second table TBB, when the boom raising operation amount BVC is not zero (0%), as the limit rate LQ becomes smaller as the reach distance SCR becomes shorter, the limit amount of the operating speed of the actuator becomes larger, and the operating speed of the bucket cylinder 10 becomes lower. The boom 3 is raised when the boom raising operation amount BVC is not zero (0%), and the boom 3 stops when the boom raising operation amount BVC is zero (0%).
In the first table TBA and the second table TBB, as the bucket 4 comes closer to the dump stopper STPD, the operating speed of the bucket cylinder 10 becomes lower. As such, by executing the dumping impact suppression control using the first table TBA and the second table TBB, the control device 40 is able to suppress an impact at the dump end when the bucket 4 comes in contact with the dump stopper STPD.
When the boom raising operation amount BVC is zero (0%), that is, when the boom 3 has stopped, in the second table TBB, the limit rate LQ is 100% regardless of the reach distance SCR. As such, when the boom raising operation amount BVC is zero (0%), the limit amount of the operating speed of the bucket cylinder 10 is zero, whereby hydraulic oil is supplied to the bucket cylinder 10 at the dump time target flow rate QTd determined according to the bucket dump operation amount QBKd. Consequently, the operating speed of the bucket cylinder 10 is not limited, and the operating speed corresponding to the operation of the bucket control lever 32 by the operator is realized.
In the first table TBA and the second table TBB, if the reach distance SCR is the same, when the boom raising operation amount BVC is changed from 100% to 0%, the limit rate LQ becomes larger, and when the boom raising operation amount BVC is changed from 0% to 100%, the limit rate LQ becomes smaller. This means that in the first table TBA and the second table TBB, the limit amount of the operating speed of the bucket cylinder 10 is changed to be larger if the boom raising operation amount BVC is larger or the rising speed of the boom 3 is higher, and is changed to be smaller if the boom raising operation amount BVC is smaller or the rising speed of the boom is lower.
If the bucket 4 comes in contact with the dump stopper STPD when the rising speed of the boom 3 is higher, an impact is larger, compared with the case where the bucket 4 comes in contact with the dump stopper STPD when the rising speed of the boom 3 is lower. Further, if the boom 3 is raised when the bucket 4 comes in contact with the dump stopper STPD, an impact may be caused at the dump end at the time of tilting of the bucket 4 or an operation to lower the boom 3, due to the hydraulic oil in the bucket cylinder 10 being pressurized. Such an impact is more remarkable as the rising speed of the boom 3 is higher.
According to the first table TBA and the second table TBB, by allowing the limit amount of the operating speed of the bucket cylinder 10 to be larger as the boom raising operation amount BVC or the rising speed of the boom 3 is larger, it is possible to suppress an impact to be caused when the bucket 4 comes in contact with the dump stopper STPD during rising of the boom 3. Further, according to the first table TBA and the second table TBB, it is possible to suppress an impact to be caused at a dump end at the time of tilting of the bucket 4 or at the time of operation to lower the boom 3, due to the hydraulic oil in the bucket cylinder 10 being pressurized.
In the present embodiment, as the limit amount of the operating speed of the bucket cylinder 10 is changed based on the boom raising operation amount BVC or the rising speed of the boom 3, the reduction amount of the operating speed of the bucket 4 is also changed. As such, the operating speed of the bucket 4 can be faster, compared with the case where the operating speed of the bucket cylinder 10 is limited uniformly in the dumping impact suppression control. In this way, as operation delay of the bucket 4 with respect to the bucket control lever 32 performed by the operator can be suppressed, a sense of discomfort felt by the operator can be suppressed, and a reduction in productivity can also be prevented.
In the present embodiment, the control device 40 performs the dumping impact suppression control by using the second table TBA if the operating time operable amount SCRm is less than the predetermined value SCRc. If the bucket 4 performs dumping in a state where the operating time operable amount SCRm is less than the predetermined value SCRc and the boom raising operation amount BVC or the rising speed of the boom 3 is zero, it can be determined that the mud dropping, described above, is performed. For example, if the remaining length of the bucket cylinder 10, up to the point where the bucket 4 comes in contact with the dump stopper STPD, is about 100 mm, as it can be determined that mud dropping is performed, it can be set to 100 mm. As such, while the predetermined value SCRc may be set to 100 mm, for example, the present invention is not limited to this.
If the boom raising operation amount BVC or the rising speed of the boom 3 is zero, in the second table TBB, as the limit rate LQ is 100% regardless of the reach distance SCR as described above, the operating speed of the bucket cylinder 10 is not limited, and the bucket 4 is operated at an operating speed corresponding to the operation of the bucket control lever 32 by the operator. As such, the control device 40 releases the limit on the moving speed of the bucket cylinder 10. In this way, if it is determined that mud dropping is performed, as the control device 40 does not limit the operating speed of the bucket cylinder 10, it is possible to cause the bucket 4 to bump into the dump stopper STPD vigorously to thereby drop the mud from the bucket 4 speedy and reliably.
<Exemplary Control>
If the bucket dump operation amount QBKd is the bucket dump operation amount threshold QBKdc or larger (step S101, Yes), the process proceeds to step S102, and the control device 40 determines whether or not the operation of the boom 3 is an operation other than the boom lowering operation. An operation other than the boom lowering operation means either rising of the boom 3 or a stop of the boom 3. If the operation of the boom 3 is other than the boom lowering operation (step S102, Yes), the process proceeds to step S103, and the control device 40 compares the operating time operable amount SCRm and a predetermined value SCRc. In that case, the control device 40 obtains the operating time operable amount SCRm based on the posture of the boom 3 and the posture of the bucket 4 at the time when an operation to cause the bucket 4 to perform dumping is started with respect to the bucket control lever 32 for operating the bucket 4.
If the operating time operable amount SCRm is the predetermined value SCRc or larger (step S103, Yes), the process proceeds to step S104, and the control device 40 uses the first table TBA to perform dumping impact suppression control. If the operating time operable amount SCRm is smaller than the predetermined value SCRc (step S103 No), the process proceeds to step S105, and the control device 40 uses the second table TBB to perform control in dumping. In that case, as it is determined that mud dropping is performed, the control device 40 does not perform dumping impact suppression control, and the hydraulic oil is supplied to the bucket cylinder 10 so as to realize the dump time target flow rate calculated from the operation amount of the bucket control lever 32. When step S104 and S105 end, the control device 40 goes back to the start and performs the process after step S101.
At step S101, if the bucket dump operation amount QBKd is less than the bucket dump operation amount threshold QBKdc (step S101, No), the control device 40 does not perform dumping impact suppression control, and goes back to the start and performs the process after step S101.
In the present embodiment, the control device 40 performs dumping impact suppression control if the bucket dump operation amount QBKd is the bucket dump operation amount threshold QBKdc or larger, which is one of the conditions. In the dumping impact suppression control, if the operator operates the bucket control lever 32 and the bucket dump operation amount QBKd becomes less than the bucket dump operation amount threshold QBKdc (step S101), the dumping impact suppression control is not performed. If an input is given to the bucket control lever 32 by which the bucket dump operation amount QBKd becomes close to the bucket dump operation amount threshold QBKdc, there is a possibility of occurrence of a hunting phenomenon in which execution and suppression of the dumping impact suppression control is performed in turn.
As such, as illustrated in
If the bucket dump operation amount QBKd is small, even if the bucket 4 performs dumping to thereby come in contact with the dump stopper STPD, the operating speed of the bucket 4 is small, so that an impact is also small. If an impact when the bucket 4 comes in contact with the dump stopper STPD has a magnitude which is of an allowable level, it is possible to improve the productivity and operability by not performing the dumping impact suppression control. In the present embodiment, a condition that the bucket dump operation amount QBKd becomes the bucket dump operation amount threshold QBKdc or larger is taken as a condition for starting the dumping impact suppression control. With this configuration, if the bucket dump operation amount QBKd has a magnitude in which an impact when the bucket 4 comes in contact with the dump stopper STPD is in an allowable level, it is possible to improve the productivity and operability by not performing the dumping impact suppression control.
<Control for Automatic Tilting>
In the wheel loader 1 illustrated in
As such, if the bucket control lever 32 is neutral, that is, if the operation amount of the bucket control lever 32 is zero (0%), when the boom 3 is raised, the control device 40 illustrated in
The automatic tilt is performed in a state where the bucket 4 is stopped, that is, in a state where the operator does not operate the bucket control lever 32. When the automatic tilt is performed, as the bucket 4 is operated automatically, the operator may recognize that unintentional operation of the bucket 4 is caused and feel a sense of discomfort. As such, it is preferable that the operation of the bucket 4 in the automatic tilt should be kept to a requisite minimum. In order to keep the operation of the bucket 4 to a requisite minimum in the automatic tilt, it is only necessary that the length of the bucket cylinder 10 equals to the length when the bucket 4 comes in contact with the dump stopper STPD. The control device 40 illustrated in
The automatic tilt table TBC illustrated in
If the boom raising operation amount BVC in the automatic tilt table TBC is 0%, the tilt command CC varies as a line “e” illustrated in
The tilt command CC is a command to cause the bucket 4 to perform tilting, and is a command to change the operation amount of the bucket cylinder 10. Specifically, the operating speed of the bucket cylinder 10 is changed by the tilt command CC. For example, if the tilt command CC is −10, the bucket cylinder 10 is extended at an operating speed corresponding to the tilt command CC. The tilt command CC is configured such that as the absolute value thereof is larger, the operation amount of the bucket cylinder 10 to cause the bucket 4 to perform tilting, that is, an operating speed in the present embodiment, is larger.
The automatic tilt table TBC is configured such that as the absolute value of the reach distance SCR of the bucket cylinder 10 is smaller, that is, as the bucket 4 comes closer to the dump stopper STPD, the tilt command CC is larger. Further, the automatic tilt table TBC is configured such that the tilt command CC is given when the boom raising operation amount BVC is larger than 0%. At the time of automatic tilt, the control device 40 illustrated in
If the rising speed of the boom 3 is higher, as the bucket 4 comes in contact with the dump stopper STPD faster than the case where the rising speed of the boom 3 is lower, even if the automatic tilt is performed, there is a possibility that a pressure contact between the bucket 4 and the dump stopper STPD occurs. In the present embodiment, the automatic tilt table TBC is configured such that as the boom raising operation amount BVC is larger or the rising speed of the boom 3 is higher, the bucket cylinder 10 is caused to be operated from a position where the reach distance SCR is large so as to cause the bucket 4 to perform tilting. As such, if the boom raising operation amount BVC is large or the rising speed of the boom 3 is high, as the bucket 4 performs tilting automatically at earlier timing, a pressure contact between the bucket 4 and the dump stopper STPD can be prevented reliably.
In the automatic tilt, the control device 40 sets zero to the tilt command CC when the reach distance SCR is zero to thereby stop tilting of the bucket 4. In the automatic tilt table TBC, if the boom raising operation amount BVC is 0% or the rising speed of the boom 3 is zero, the tilt command CC is zero when the reach distance SCR is zero. However, if the boom raising operation amount BVC is 50% or 100%, the tilt command CC is −10. As such, if the boom raising operation amount BVC is 50% or 100%, even if the reach distance SCR is zero, the bucket 4 performs tilting. With this configuration, when the boom raising operation amount BVC becomes 0% or the rising speed of the boom 3 becomes zero during rising of the boom 3, the control device 40 is able to stop the bucket 4 at a target position, that is, a position closer to a position where the bucket 4 comes in contact with the dump stopper STPD. Consequently, the control device 40 is able to keep the operation of the bucket 4 in the automatic tilt to be a requisite minimum. Thereby, it is possible to reduce a sense of discomfort given to the operator.
If the boom raising operation amount BVC is larger than 0%, when the boom 3 is raised, there is a possibility that intervention and non-intervention of automatic tilt may be repeated near the area where the bucket 4 and the dump stopper STPD contact with each other. In order to avoid this case, the automatic tilt table TBC is configured such that if the boom raising operation amount BVC is larger than 0%, a value other than zero (−10 in the present embodiment) is set to the tilt command CC, to thereby reduce the possibility that intervention and non-intervention of automatic tilt are repeated. Consequently, a sense of discomfort given to the operator in automatic tilt can be further reduced.
If the bucket 4 is neutral (step S201, Yes), the process proceeds to step S202, and the control device 40 determines the boom raising operation, that is, whether or not the boom 3 is being raised or stopped. The control device 40 determines that the boom 3 is being raised or stopped if the boom raising operation amount BVC is 0% or larger. If the boom 3 is being raised (step S202, Yes), at step S203, the control device 40 performs automatic tilting by using the automatic tilt table TBC. If the bucket 4 is not neutral (step S201, No) and the boom 3 is not being raised or stopped (step S202, No), the control device 40 goes back to the start and performs the process after step S101. If the boom 3 is not being raised or stopped, it means the boom 3 is being lowered.
While the present embodiment has been described above, the present embodiment is not limited to that described above. Further, the above-described constituent elements include elements which are easily expected by those skilled in the art, which are substantially the same, and which are in the so-called equal scope. Further, the above-described constituent elements can be combined appropriately. Further, at least one of omission, replacement, and modification of various types of the constituent elements can be made within the scope without departing from the substance of the present embodiment.
1 wheel loader
2 vehicle body
3 boom
4 bucket
4C claw
5 work machine
7 driver's cabin
9 boom cylinder
10 bucket cylinder
11 bell crank
12 work machine hydraulic pump
20 electromagnetic proportional control valve
23 bucket dump electromagnetic proportional control valve
24 bucket tilt electromagnetic proportional control valve
30 boom control lever
32 bucket control lever
40 control device
41 processing unit
42 memory unit
46 boom angle detection sensor
47 bucket angle detection sensor
60 engine
BVC operation amount
CC tilt command
CS control system
LQ limit rate
QBKd bucket dump operation amount
QBKdc bucket dump operation amount threshold
QBKdd suspension determination threshold
QTd dump time target flow rate
QTdc corrected dump time target flow rate
SCR reach distance
SCRc predetermined value
SCRm operable amount (operating time operable amount)
STPD dump stopper
STPT tilt stopper
TBA first table
TBB second table
TBC tilt table
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/064540 | 5/30/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/102059 | 7/9/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6275757 | Watanabe | Aug 2001 | B1 |
20100312437 | Saito | Dec 2010 | A1 |
20120024146 | Saito | Feb 2012 | A1 |
20140129093 | Shirao et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
101946045 | Jan 2011 | CN |
102362035 | Feb 2012 | CN |
2251494 | Nov 2010 | EP |
2412875 | Feb 2012 | EP |
58-218524 | Dec 1983 | JP |
2010-110386 | May 2010 | JP |
2014-055439 | Mar 2014 | JP |
WO-2010110386 | Sep 2010 | WO |
Entry |
---|
International Search Report and Written Opinion dated Aug. 19, 2014, issued for PCT/JP2014/064540. |
Number | Date | Country | |
---|---|---|---|
20160265185 A1 | Sep 2016 | US |