The present application claims priority under 35 U.S.C. §119 of Japanese Application No. 2014-158351, filed on Aug. 4, 2014, the disclosure of which is expressly incorporated by reference herein in its entirety.
1. Field of the Invention
The present invention relates to a work vehicle in which a cooling system has a coolant fluid radiator, and a cooling unit adjacent to and facing the coolant fluid radiator.
2. Description of Related Art
In the cooling system described above, it is necessary to move either the coolant fluid radiator or the cooling unit to create a clearance in between the coolant fluid radiator and the cooling unit for maintenance purposes. For example, in a cooling system according to U.S. Pat. No. 8,342,277, a second radiator is movably attached to a first radiator via a first connector and a second connector. The first connector is a swing link mechanism having a slide mechanism and connects upper portions of the first radiator and the second radiator. The second connector is a slide mechanism and connects lower portions of the second radiator and the second radiator. Thus, the upper portion of the second radiator can be significantly separated from the upper portion of the first radiator by swing displacement and slide displacement, and the lower portion of the second radiator can be slightly separated from the bottom portion of the first radiator by slide displacement. As a result, a hand may be inserted between the first radiator and the second radiator. However, such a cooling system requires a swing link mechanism having a slide mechanism and a slide mechanism in order to attach the second radiator to the first radiator, and such an attachment structure is complicated and occupies a large space. A slide mechanism having a long hole and pin, in particular, not only increases manufacturing costs but has the disadvantage of foreign materials easily lodging in the long hole.
In view of the situation above, the present invention provides a technology in which a space for maintenance/inspection purposes is easily created between a coolant fluid radiator and a cooling unit configuring a cooling system for work vehicles.
A working vehicle according to one aspect of the present invention has a vehicle body frame, an engine mounted to the vehicle body frame, a cooling fan unit provided in one direction of an anteroposterior direction of the vehicle body with respect to the engine, a coolant fluid radiator provided on the opposite side of the cooling fan unit with respect to the engine, a cooling unit provided on the opposite side of the coolant fluid radiator with respect to the cooling fan unit, and a link mechanism connecting the coolant fluid radiator and the cooling unit such that a distance between the cooling unit and the coolant fluid radiator in the anteroposterior direction of the vehicle body can be changed. Further, the link mechanism is configured as a four-link mechanism having a left/right pair of upper links and a left/right pair of lower links.
By installing the four-link mechanism between the coolant fluid radiator and the cooling unit, the cooling unit is swingably supported by the coolant fluid radiator. By swinging the cooling unit using the four-link mechanism, a space is formed between the coolant fluid radiator and the cooling unit, thereby facilitating maintenance/inspection of cooling surfaces thereof. As an additional advantage, the four-link mechanism is simple in structure and low in manufacturing costs.
In a preferred embodiment of the present invention, the cooling unit includes a first cooler provided in an upper half area of the coolant fluid radiator and a second cooler provided in a lower half area of the coolant fluid radiator. The first cooler is connected to the coolant fluid radiator via the link mechanism, and a bottom end of the first cooler and an upper end of the second cooler are connected via a connecting unit. In this configuration, the first cooler and the second cooler are provided facing opposite a cooling surface of the coolant fluid radiator having favorable circulation of cooling air, and cooling air can pass through the two types of coolers in an efficient manner. In such a case, when a swinging connection unit, which swingably conncects the first cooler and the second cooler about a swing axis in a transverse direction of the vehicle body, is adopted as the connecting unit, the second cooler is able to maintain an upright posture despite an inclined posture of the first cooler. When the second cooler has an inclined posture in tandem with the first cooler, the bottom end of the second cooler is significantly separated from the coolant fluid radiator, leading to a swing space of the second cooler becoming too large. The swingable connection of the first cooler and the second cooler resolves this.
When the cooling unit is equipped with a third cooler in addition to the first cooler and the second cooler, the third cooler is preferably provided on the opposite side of the second cooler with respect to the coolant fluid radiator, and is preferably connected to the bottom end of the first cooler. As a result, the third cooler is provided across from the coolant fluid radiator with the second cooler in between. That is, the cooling surface of the coolant fluid radiator and a first cooling surface of the second cooler, and a second cooling surface of the second cooler and an inner cooling surface of the third cooler are nearly parallel and positioned in immediate proximity to one another. During maintenance/inspection, by swinging the first cooler into an inclined posture, the third cooler has a similar inclined posture following along an extension from the first cooler. In contrast, the second cooler maintains an upright posture, and thus a space is formed in between the cooling surface of the coolant fluid radiator and the first cooling surface of the second cooler, and the second cooling surface of the second cooler and the inner cooling surface of the third cooler, thereby facilitating maintenance/inspection.
In considering an appropriate swing posture of the cooling unit with respect to the coolant fluid radiator with the minimum distance between the cooling surfaces required for maintenance/inspection purposes and the space provided for the cooling system as constraints thereto, it was found that a length between each support point of the upper links and the lower links on the coolant fluid radiator side is preferably shorter than a length between each support point of the upper links and the lower links on the cooling unit side, and a length between the support points of the upper links on the coolant fluid radiator side and the support points on the cooling unit side is preferably shorter than a length between the support points of the lower links on the coolant fluid radiator side and the support points on the cooling unit side. Further, by making the length between each support point of the lower links and the upper links on the cooling unit side shorter than the length between the support points of the upper links on the coolant fluid radiator side and the support points on the cooling unit side, an efficient use of space and ease of maintenance/inspection is achieved.
The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the forms of the present invention may be embodied in practice.
Before describing an embodiment of a work vehicle according to the present invention and specifically a cooling system thereof, a basic configuration of the cooling system is described with reference to
In
The link mechanism 7 is a four-link mechanism having a left/right pair of upper links 71 and a left/right pair of lower links 72. By selecting the appropriate link length and distance between support points, it is possible to select an optimum swing posture of the cooling unit 6 with respect to the coolant fluid radiator 5.
In the example shown in
A bottom end of the first cooler 6a and a top end of the second cooler 6b are serially connected in a vertical direction by a connecting unit 8. In
The relative positional relationship between the first cooler 6a and the third cooler 6c is not changed by the swing of the link mechanism 7. Thus, in the second swing posture of the link mechanism 7 shown in
The distance between the first cooler 6a and the coolant fluid radiator 5 and the angle of the first cooler 6a relative to the coolant fluid radiator 5, which are formed upon the swing of the link mechanism 7, are determined by the configuration of the link mechanism 7. Excessive distance or angle leads to interference with other devices, and therefore such distance and angle must be selected appropriately. As shown in
Next, a tractor, which is an embodiment of a work vehicle according to the present invention, is described with reference to the drawings.
The interior of the cabin 24 serves as an operator's compartment, with a steering handle 11 provided in a front portion to steer the front wheels 2a and an operator's seat 12 provided in a rear portion between a left/right pair of rear wheel fenders. An armrest controller 14 having a multi-function console 15 is provided along a side and up to forward of the operator's seat 12. A display 13 which visually notifies the operator of various information is provided forward of the armrest controller 14.
As shown in
The coolant fluid radiator 5 stands on a base plate 30 which is fixed to a vehicle body frame 10, and the cooling fan unit 4 is attached on a rear side of the coolant fluid radiator 5. A cooling surface 51 on a fan side (rear surface) of the coolant fluid radiator 5 is substantially parallel with and adjacent to a rotation trajectory plane of a fan of the cooling fan unit 4. A panel-shaped partition wall frame 50 stands on the left, right, and top surfaces of the coolant fluid radiator 5, and such partition wall frame 50, in conjunction with the hood 21, separates the engine compartment and cooling system.
In this embodiment, too, the cooling unit 6 includes the first cooler 6a, second cooler 6b, and third cooler 6c. The first cooler 6a is an air intercooler, the second cooler 6b is an oil cooler, and the third cooler 6c is an AC (air conditioner) condenser.
The coolant fluid radiator 5 and the first cooler 6a are swingably connected by the four-link mechanism 7. The upper links 71 of the four-link mechanism 7 form an arc-like shape which imitates an exterior shape of a pipe portion extending from the first cooler 6a. The lower links 72 of the four-link mechanism 7 include an arc-shaped portion similar to the upper links 71 and a linear portion extending downward. First ends of the upper links 71 and lower links 72 are swingably supported by the lateral surface of the coolant fluid radiator 5 via brackets, and second ends of the upper links 71 and lower links 72 are swingably supported by the lateral surface of the first cooler 6a via swing pin bolts.
As shown in
The first cooler 6a and the second cooler 6b are swingably connected by the connecting unit 8. The connecting unit 8 has an integrated first bracket 81 and second bracket 82. The first bracket 81 is fixed to a bottom surface of the first cooler 6a and also has a swing pin mechanism to swingably suspend the second cooler 6b. The second bracket 82 is a bracket extending downward to secure and support the third cooler 6c. While not shown in the drawing, a cushion is provided on a bottom portion of the second bracket 82 to soften contact with the second cooler 6b.
Even in the inclined state (swing state) of the first cooler 6a as illustrated in
During normal use of the cooling system as shown in
Further, as shown in
(1) In the tractor embodiment above, the engine 20 is provided forward of the operator's seat 12, and the cooling fan unit 4, coolant fluid radiator 5, and cooling unit 6 are provided forward of the engine 20, in that order. Alternatively, the cooling fan unit 4, coolant fluid radiator 5, and cooling unit 6 may be provided rearward of the engine 20, in that order. Further, the cooling system may be provided as stated above even when the engine 20 is provided rearward of the operator's seat 12. When the engine 20 is provided horizontally, the cooling system can also be provided horizontally.
(2) While the dampler 74 is used to make the first cooler 6a swing smoothly, a stopper mechanism may be provided which maintains an inclined posture of the first cooler 6a. Further, the stopper mechanism may replace the damper 74.
(3) A lock mechanism, which is capable of temporarily holding the swing angle of the second cooler 6b relative to the first cooler 6a, may be provided to the swing connecting unit 8 which connects the first cooler 6a and the second cooler 6b.
In addition to tractors, the present invention can also be applied to agricultural vehicles such as rice transplanters and combines, and construction vehicles such as front loaders.
It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to exemplary embodiments, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular structures, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
The present invention is not limited to the above described embodiments, and various variations and modifications may be possible without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-158351 | Aug 2014 | JP | national |