This application claims the benefit of priority to Japanese Patent Application No. 2020-209180 filed on Dec. 17, 2020. The entire contents of this application are hereby incorporated herein by reference.
The present invention relates to a work vehicle.
For example, a work vehicle disclosed in JP 2017-58000A includes a speed changing apparatus (referred to as a “hydromechanical stepless transmission” in the document) that includes a hydrostatic stepless speed changing mechanism (referred to as a “first stepless transmission” in the document). A swashplate angle of the hydrostatic stepless speed changing mechanism is controlled when the work vehicle is being decelerated. Incidentally, when the work vehicle is being decelerated, a hydraulic pressure in a closed circuit of the hydrostatic stepless speed changing mechanism tends to increase. When the hydraulic pressure in the closed circuit increases, the temperature of hydraulic oil tends to be higher than an appropriate temperature, and there is a risk that the efficiency of motive power transmission performed by the hydrostatic stepless speed changing mechanism will be affected. Therefore, it is desirable to employ a configuration in which the swashplate angle of the hydrostatic stepless speed changing mechanism is appropriately controlled based on the hydraulic pressure in the closed circuit of the hydrostatic stepless speed changing mechanism.
Preferred embodiments of the present invention control the swashplate angle of a hydrostatic stepless speed changing mechanism within an appropriate range of load, in a work vehicle.
A work vehicle according to a preferred embodiment of the present invention including:
According to the preferred embodiment of the present invention, the hydraulic pressure in the closed circuit is detected by the pressure detector, and the determination module performs determination processing based on the speed and the hydraulic pressure. Accordingly, the swashplate angle control module is capable of performing control for changing the swashplate angle based on appropriate control of the hydraulic pressure. Therefore, the efficiency of motive power transmission performed by the hydrostatic stepless speed changing mechanism is kept favorable even in an operation environment in which the hydraulic pressure tends to increase. Thus, the swashplate angle of the hydrostatic stepless speed changing mechanism is controlled within an appropriate range of load.
With a preferred embodiment of the present invention, in the work vehicle,
According to this configuration, the rotation speed of the motive power outputted from the speed changing apparatus becomes low, and accordingly, a load on the hydrostatic stepless speed changing mechanism is reduced.
With a preferred embodiment of the present invention, in the work vehicle,
The planetary gear mechanism is precisely configured, but according to this configuration, an excessive load is unlikely to be applied to the planetary gear mechanism because a load on the hydrostatic stepless speed changing mechanism is reduced.
With a preferred embodiment of the present invention, in the work vehicle,
This configuration reduces a risk that a load will be unnecessarily applied to the hydrostatic stepless speed changing mechanism when the speed is low.
With a preferred embodiment of the present invention, the work vehicle further including
The hydraulic pressure in the closed circuit tends to increase particularly in a state where the travelling apparatus is being braked by the braking apparatus, and therefore, control of the hydraulic pressure is important particularly when the travelling apparatus is being braked. With this configuration, the swashplate angle is appropriately controlled when control of the hydraulic pressure is particularly important, such as when sudden braking is applied.
With a preferred embodiment of the present invention, in the work vehicle,
With this configuration, the hydraulic pressure of the hydraulic oil in the closed circuit is reliably detected.
The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
The following describes preferred embodiments as examples of the present invention, based on the drawings.
In the following description, with respect to a travel vehicle body of a tractor, the direction indicated by an arrow “F” shown in
Overall Configuration of Tractor
As shown in
Configuration of Travel Power Transmission Apparatus
Configuration of Speed Changing Apparatus
As shown in
When viewed in the front-rear direction, an output shaft 75 of the staged power transmission portion 18C and an input shaft 90 of the forward/backward travel switch apparatus 19 are located on one side in the lateral direction with respect to a shaft center X of sun gears 51 and 54 of the compound planetary power transmission portion 18B. Also, when viewed in the front-rear direction, a pump shaft 36 and a motor shaft 37 of a stepless output gear 35 of the hydrostatic stepless speed changing portion 18A are located on the other side in the lateral direction with respect to the shaft center X of the sun gears 51 and 54. The hydrostatic stepless speed changing portion 18A corresponds to a “hydrostatic stepless speed changing mechanism” in the present invention.
The hydrostatic stepless speed changing portion 18A is a hydrostatic stepless speed changing apparatus. The hydrostatic stepless speed changing portion 18A includes a variable-capacity axial-plunger hydraulic pump 30, a fixed-capacity axial-plunger hydraulic motor 31, and a pair of driving oil paths 32. The hydraulic pump 30 is driven by motive power transmitted from the engine 1. The hydraulic motor 31 is driven by hydraulic oil discharged from the hydraulic pump 30. The pair of driving oil paths 32 are a pair of hydraulic paths (an inlet path and a return path) through which the hydraulic oil circulates between the hydraulic pump 30 and the hydraulic motor 31. In other words, the hydraulic pump 30, the hydraulic motor 31, and the pair of driving oil paths 32 are provided in a closed circuit of the hydrostatic stepless speed changing portion 18A.
The hydrostatic stepless speed changing portion 18A includes a stepless input gear 34 and the stepless output gear 35. The stepless input gear 34 is provided in a rear portion of the hydrostatic stepless speed changing portion 18A so as to be rotatable. The stepless output gear 35 is provided in a front portion of the hydrostatic stepless speed changing portion 18A so as to be rotatable. The stepless input gear 34 is provided on the pump shaft 36 so as not to be rotatable freely relative to the pump shaft 36, and rotates together with the pump shaft 36. The stepless output gear 35 is provided on the motor shaft 37 so as not to be rotatable freely relative to the motor shaft 37, and rotates together with the motor shaft 37. Although details will be described later, a first pressure detector 25 and a second pressure detector 26 are respectively provided on the inlet path and the return path of the driving oil paths 32, and each of the first pressure detector 25 and the second pressure detector 26 detects a hydraulic pressure in the closed circuit of the hydrostatic stepless speed changing portion 18A.
A second motive power transmission mechanism 40 is provided, spanning between the stepless input gear 34 and a portion of a rotary shaft 38 that passes through a shaft center portion of the compound planetary power transmission portion 18B in the front-rear direction, the portion being located on the rearward of the compound planetary power transmission portion 18B. The rotary shaft 38 and the input shaft 17 of the hydromechanical speed changing apparatus 18 are engaged through spline engagement so as not to be rotatable freely relative to each other.
The second motive power transmission mechanism 40 includes a rotatable second relay shaft 41, a motive power take-out gear 42, a third relay gear 43, and a fourth relay gear 44. The second relay shaft 41 is arranged parallel to the pump shaft 36. The motive power take-out gear 42 provided on the rotary shaft 38 so as not to be rotatable freely relative to the rotary shaft 38. The third relay gear 43 is provided on a rear end portion of the second relay shaft 41 so as not to be rotatable freely relative to the second relay shaft 41, in a state of meshing with the motive power take-out gear 42. The fourth relay gear 44 is provided on a front end portion of the second relay shaft 41 so as not to be rotatable freely relative to the second relay shaft 41, in a state of meshing with the stepless input gear 34. The second motive power transmission mechanism 40 transmits motive power of the rotary shaft 38 to the stepless input gear 34. The rotary shaft 38 is interlockingly joined to the motive power take-off shaft 14 via a relay shaft 45 and a PTO speed changing apparatus 46, and transmits the motive power of the engine 1, which has been transmitted to the input shaft 17, to the motive power take-off shaft 14.
Transmission of motive power in the hydrostatic stepless speed changing portion 18A will be described. Motive power of the engine 1 is transmitted from the output shaft 1a to the rotary shaft 38 via the damper disc 16 and the input shaft 17. The motive power transmitted to the rotary shaft 38 is transmitted to the stepless input gear 34 by the second motive power transmission mechanism 40, and the motive power is subjected to stepless speed change and is changed to motive power in a forward rotation direction or a reverse rotation direction by the hydraulic pump 30 and the hydraulic motor 31. After being subjected to speed change, the motive power in the forward rotation direction or the motive power in the reverse rotation direction is outputted from the stepless output gear 35.
The compound planetary power transmission portion 18B includes the two sun gears 51 and 54, and is provided in a state where the shaft center X of the two sun gears 51 and 54 and a shaft center Z of the output shaft 1a of the engine 1 are aligned along a straight line. The compound planetary power transmission portion 18B includes planetary gear mechanisms 50A and 50B that are arranged in two trains in the front-rear direction. The planetary gear mechanism 50A of the first train includes the sun gear 51, an internal gear 52, and three planetary gears 53. The planetary gear mechanism 50B of the second train includes the sun gear 54, an internal gear 55, and three planetary gears 56. The planetary gear mechanism 50A of the first train includes three interlocking gears 57 that mesh with the three planetary gears 53, respectively. The three interlocking gears 57 are interlockingly joined respectively to the three planetary gears 56 of the planetary gear mechanism 50B of the second train. The interlocking gears 57 and the planetary gears 56 are interlockingly joined as a result of corresponding ones of the interlocking gears 57 and the planetary gears 56 being formed as a single piece.
A first planetary input gear 58 is provided in a front portion of the compound planetary power transmission portion 18B. The first planetary input gear 58 is interlockingly joined to the sun gear 51 of the planetary gear mechanism 50A of the first train so as not to be rotatable freely relative to the sun gear 51. The first planetary input gear 58 is interlockingly joined to the stepless output gear 35 of the hydrostatic stepless speed changing portion 18A by a motive power transmission mechanism 60. The motive power transmission mechanism 60 includes a rotatable relay shaft 61, a first relay gear 62, and a second relay gear 63. The relay shaft 61 is arranged parallel to the motor shaft 37 of the stepless output gear 35. The first relay gear 62 is provided on a rear end portion of the relay shaft 61 so as not to be rotatable freely relative to the relay shaft 61, in a state of meshing with the stepless output gear 35. The second relay gear 63 is provided on a front end portion of the relay shaft 61 so as not to be rotatable freely relative to the relay shaft 61, in a state of meshing with the first planetary input gear 58. Motive power of the stepless output gear 35 is transmitted to the first planetary input gear 58 by the motive power transmission mechanism 60, and is inputted from the first planetary input gear 58 to the sun gear 51.
A second planetary input gear 59 is provided in the front portion of the compound planetary power transmission portion 18B, and is interlockingly joined to the internal gear 52 of the planetary gear mechanism 50A of the first train so as not to be rotatable freely relative to the internal gear 52. The second planetary input gear 59 is interlockingly joined to the input shaft 17 by an input power transmission mechanism 65. The input power transmission mechanism 65 includes an input shaft gear 66, a fourth relay gear 68, and a fifth relay gear 69. The input shaft gear 66 is provided on the input shaft 17 so as not to be rotatable freely relative to the input shaft 17. The fourth relay gear 68 is provided on a front end portion of a third relay shaft 67 so as not to be rotatable freely relative to the third relay shaft 67, in a state of meshing with the input shaft gear 66. The fifth relay gear 69 is provided on a rear end portion of the third relay shaft 67 so as not to be rotatable freely relative to the third relay shaft 67, in a state of meshing with the second planetary input gear 59. Motive power of the engine 1 is transmitted from the output shaft 1a to the input shaft 17 via the damper disc 16, is transmitted to the second planetary input gear 59 by the input power transmission mechanism 65, and is inputted from the second planetary input gear 59 to the internal gear 52.
A first output shaft 71, a second output shaft 72, and a third output shaft 73 are provided in a rear portion of the compound planetary power transmission portion 18B so as not to be rotatable freely relative to each other. The first output shaft 71, the second output shaft 72, and the third output shaft 73 are configured as triple shafts. The first output shaft 71 is interlockingly joined to the internal gear 55 of the planetary gear mechanism 50B of the second train, and transmits motive power to a first gear interlocking mechanism 76. The second output shaft 72 is interlockingly joined to a carrier 70, and transmits motive power to a third gear interlocking mechanism 78. The carrier 70 is configured to support the planetary gears 53 of the planetary gear mechanism 50A of the first train and the planetary gears 56 of the planetary gear mechanism 50B of the second train. The third output shaft 73 is interlockingly joined to the sun gear 54 of the planetary gear mechanism 50B of the second train, and transmits motive power to a second gear interlocking mechanism 77 and a fourth gear interlocking mechanism 79.
The hydrostatic stepless speed changing portion 18A outputs motive power in the forward rotation direction or the reverse rotation direction from the stepless output gear 35. The motive power outputted from the hydrostatic stepless speed changing portion 18A is inputted to the sun gear 51 of the planetary gear mechanism 50A of the first train by the motive power transmission mechanism 60. Motive power transmitted from the engine 1 is inputted to the internal gear 52 of the planetary gear mechanism 50A of the first train by the input power transmission mechanism 65. In the compound planetary power transmission portion 18B, the motive power of the hydrostatic stepless speed changing portion 18A and the motive power of the engine 1 are composited by the planetary gear mechanisms 50A and 50B arranged in the two trains, and the composited motive power is outputted from the first output shaft 71, the second output shaft 72, and the third output shaft 73.
The staged power transmission portion 18C includes a first clutch CL1, a second clutch CL2, a third clutch CL3, and a fourth clutch CL4. The first to fourth clutches CL1 to CL4 are constituted by hydraulic multi-plate clutches. The output shaft 75 is interlockingly joined to output-side rotary members of the first to fourth clutches CL1 to CL4 so as not to be rotatable freely relative to the output-side rotary members.
The first gear interlocking mechanism 76 is provided, spanning between an input-side rotary member of the first clutch CL1 and the first output shaft 71 of the compound planetary power transmission portion 18B, and sets a first range. The second gear interlocking mechanism 77 is provided, spanning between an input-side rotary member of the second clutch CL2 and the third output shaft 73 of the compound planetary power transmission portion 18B, and sets a second range. The third gear interlocking mechanism 78 is provided, spanning between an input-side rotary member of the third clutch CL3 and the second output shaft 72 of the compound planetary power transmission portion 18B, and sets a third range. The fourth gear interlocking mechanism 79 is provided, spanning between an input-side rotary member of the fourth clutch CL4 and the third output shaft 73 of the compound planetary power transmission portion 18B, and sets a fourth range.
On the output speed V axis (vertical axis) of
An intersection C1 of the first range and the second range is shown in
In a region indicated by Z0in the first range shown in
In a state where the output speed V of the output shaft 75 is V1, when the first clutch CL1 is switched to a motive power cut-off state and the second clutch CL2 is switched to the motive power transmitting state, the speed range shifts from the first range to the second range. When switching from the first clutch CL1 to the second clutch CL2 is performed at the intersection C1, the output speed V is kept at V1. Then, the output speed V of the output shaft 75 steplessly increases from V1 to V2 in the second range as a result of speed change control being performed on the swashplate of the hydrostatic stepless speed changing portion 18A from a region near the maximum speed in the forward rotation direction (near +MAX) toward a region near the maximum speed in the reverse rotation direction (near −MAX).
In a state where the output speed V of the output shaft 75 is V2, when the second clutch CL2 is switched to the motive power cut-off state and the third clutch CL3 is switched to the motive power transmitting state, the speed range shifts from the second range to the third range. When switching from the second clutch CL2 to the third clutch CL3 is performed at the intersection C2, the output speed V is kept at V2. Then, the output speed V of the output shaft 75 steplessly increases from V2 to V3 in the third range as a result of speed change control being performed on the swashplate of the hydrostatic stepless speed changing portion 18A from a region near the maximum speed in the reverse rotation direction (near −MAX) toward a region near the maximum speed in the forward rotation direction (near +MAX).
In a state where the output speed V of the output shaft 75 is V3, when the third clutch CL3 is switched to the motive power cut-off state and the fourth clutch CL4 is switched to the motive power transmitting state, the speed range shifts from the third range to the fourth range. When switching from the third clutch CL3 to the fourth clutch CL4 is performed at the intersection C3, the output speed V is kept at V3. Then, the output speed V of the output shaft 75 steplessly increases from V3 to V4 in the fourth range as a result of speed change control being performed on the swashplate of the hydrostatic stepless speed changing portion 18A from a region near the maximum speed in the forward rotation direction (near +MAX) toward a region near the maximum speed in the reverse rotation direction (near −MAX).
In a case where the output speed V of the output shaft 75 is reduced from V4 to zero, speed change control is performed on the swashplate of the hydrostatic stepless speed changing portion 18A in the direction reverse to the direction of the case where the output speed V is increased, and the clutches are switched to the motive power transmitting state in the order of the fourth clutch CL4, the third clutch CL3, the second clutch CL2, and the first clutch CL1. As a result, the output speed V of the output shaft 75 steplessly decreases in the order of the fourth range, the third range, the second range, and the first range.
Motive Power after Speed Change
As shown in
The forward/backward travel switch apparatus 19 includes a forward clutch CLF and a backward clutch CLR. An input-side rotary member of the forward clutch CLF and an input-side rotary member of the backward clutch CLR are joined to the input shaft 90 so as not to be rotatable freely relative to the input shaft 90. A forward travel gear mechanism 92 is provided, spanning between an output-side rotary member of the forward clutch CLF and the output shaft 91. A backward travel gear mechanism 93 is provided, spanning between an output-side rotary member of the backward clutch CLR and the output shaft 91. A reverse rotation gear 93a of the backward travel gear mechanism 93 is supported by an input shaft 20a of the rear wheel differential mechanism 20 so as not to be rotatable freely relative to the input shaft 20a. A gear interlocking mechanism 95 is provided, spanning between a front portion of the output shaft 91 of the forward/backward travel switch apparatus 19 and a front portion of the input shaft 20a of the rear wheel differential mechanism 20.
When the forward clutch CLF is in the motive power transmitting state and the backward clutch CLR is in the motive power cut-off state, motive power inputted from the output shaft 75 to the input shaft 90 is transmitted as forward travel motive power to the output shaft 91 via the forward clutch CLF and the forward travel gear mechanism 92. When the forward clutch CLF is in the motive power cut-off state and the backward clutch CLR is in the motive power transmitting state, motive power inputted from the output shaft 75 to the input shaft 90 is transmitted as backward travel motive power in the rotation direction reverse to the rotation direction of the forward travel motive power, to the output shaft 91 via the backward clutch CLR and the backward travel gear mechanism 93.
Forward travel motive power or backward travel motive power outputted from the output shaft 91 by the forward/backward travel switch apparatus 19 is transmitted to the input shaft 20a of the rear wheel differential mechanism 20 by the gear interlocking mechanism 95, and is transmitted to the left and right rear wheels 7 by the rear wheel differential mechanism 20. The motive power is transmitted from the rear wheel differential mechanism 20 to the left and right rear wheels 7 via a planetary gear final deceleration mechanism 96 provided between an output shaft 20b of the rear wheel differential mechanism 20 and a rear wheel shaft 7a. A brake 97 for braking the rear wheels 7 is provided on the output shaft 20b of the rear wheel differential mechanism 20. The brake 97 corresponds to a “braking apparatus” in the present embodiment.
The front wheel power transmission mechanism 21 includes an input shaft 103 and an output shaft 104. The input shaft 103 is interlockingly joined to a front portion of the input shaft 20a of the rear wheel differential mechanism 20 via a second gear interlocking mechanism 100, a relay shaft 101, and a coupling member 102. The output shaft 104 is arranged parallel to the input shaft 103. An input-side rotary member of an equal speed clutch 105 and an input-side rotary member of an acceleration clutch 106 are joined to the input shaft 103 so as not to be rotatable freely relative to the input shaft 103. An equal speed gear mechanism 107 that transmits motive power to the output shaft 104 at a rotation speed substantially equal to the rotation speed of the input shaft 103 is provided, spanning between an output-side rotary member of the equal speed clutch 105 and the output shaft 104. An acceleration gear mechanism 108 that transmits motive power to the output shaft 104 while increasing the rotation speed as compared to the rotation speed of the input shaft 103 is provided, spanning between an output-side rotary member of the acceleration clutch 106 and the output shaft 104. The output shaft 104 is interlockingly joined to an input shaft 22a of the front wheel differential mechanism 22 via a rotary shaft 109, and outputs the motive power to the left and right front wheels 6. It should be noted that a parking brake 101A is attached to the relay shaft 101.
When the equal speed clutch 105 is in the motive power transmitting state and the acceleration clutch 106 is in the motive power cut-off state, the front wheels 6 and the rear wheels 7 are driven in a state where an average circumferential speed of the left and right front wheels 6 is substantially equal to an average circumferential speed of the left and right rear wheels 7. When the equal speed clutch 105 is in the motive power cut-off state and the acceleration clutch 106 is in the motive power transmitting state, the front wheels 6 and the rear wheels 7 are driven in a state where the average circumferential speed of the left and right front wheels 6 is higher than the average circumferential speed of the left and right rear wheels 7. When both of the equal speed clutch 105 and the acceleration clutch 106 are in the motive power cut-off state, transmission of motive power from the input shaft 103 to the output shaft 104 is stopped, and output to the front wheels 6 is stopped. In this case, the left and right front wheels 6 are not driven, and only the left and right rear wheels 7 are driven.
Swashplate Angle Control Module
As described above, when the output speed V of the output shaft 75 is reduced from V4 to zero, the output speed V of the output shaft 75 steplessly decreases in the order of the fourth range, the third range, the second range, and the first range. If a brake operation is performed by an operator, deceleration control to the hydrostatic stepless speed changing portion 18A is performed while a braking action is performed by brakes 97 respectively provided on the pair of left and right rear wheels 7. However, if the braking action of the brakes 97 is strong (so-called sudden braking), there is a risk that a braking force of the brakes 97 will act on the output shaft 75 at a speed faster than an operation speed of the swashplate of the hydrostatic stepless speed changing portion 18A, and the output shaft 20b and the output shaft 75 will be restrained before operation of the swashplate completes. At this time, there is a risk that the hydraulic pressure in the driving oil paths 32 will become excessively high, and a relief valve provided on the driving oil paths 32 will operate or the temperature of the hydraulic oil in the driving oil paths 32 will be higher than an appropriate temperature. In such a case, there is a risk that the efficiency of motive power transmission performed by the hydrostatic stepless speed changing portion 18A will be affected. Control systems for avoiding these problems will be described based on
As shown in
The determination module 81 determines whether or not the swashplate angle of the hydrostatic stepless speed changing portion 18A is an angle suitable for stopping the tractor, based on a speed detected by the vehicle speed detector 27 and a hydraulic pressure detected by the first pressure detector 25 and the second pressure detector 26. The swashplate angle suitable for stopping the tractor is an angle at which the rotation speed of motive power outputted from the output shaft 75 is not greater than a predetermined rotation speed. That is, the determination module 81 determines whether or not the swashplate angle is an angle at which the rotation speed of the motive power outputted from the hydromechanical speed changing apparatus 18 is not greater than the predetermined rotation speed. Based on a result of the determination by the determination module 81, the swashplate angle control module 82 performs control for changing the swashplate angle of the hydrostatic stepless speed changing portion 18A.
When the braking force of the brakes 97 is greater than or equal to the predetermined value (step #01: Yes), the determination module 81 determines that sudden braking is applied. Then, the determination module 81 determines whether or not the output speed V of the output shaft 75 is V0 or less (step #02). V0 is smaller than V1, and is a speed within the first range shown in
When the output speed V is V0 or less (step #02: Yes), the determination module 81 determines whether or not the hydraulic pressure in the driving oil paths 32, which is the closed circuit, is higher than or equal to a predetermined value (step #03). When the hydraulic pressure in the driving oil paths 32 is higher than or equal to the predetermined value (step #03: Yes), the determination module 81 determines that an excessive load is applied to the hydrostatic stepless speed changing portion 18A in a stopped state of the tractor. At this time, the swashplate angle control module 82 controls and operates the swashplate of the hydrostatic stepless speed changing portion 18A to the region indicated by Z0shown in
When the pressure in the driving oil paths 32 is lower than the predetermined value (step #03: No), the determination processing performed by the determination module 81 ends, and the swashplate angle control module 82 does not perform control for changing the swashplate angle.
The preferred embodiments of the present invention is not limited to the configuration described as examples in the above embodiments. The following describes other representative preferred embodiments of the present invention.
(1) The flowchart shown in
(2) V0 shown in
(3) In the preferred embodiment described above, the speed changing apparatus is the hydromechanical speed changing apparatus 18 that includes the planetary gear mechanisms 50A and 50B on the output side of the hydrostatic stepless speed changing portion 18A, but the speed changing apparatus may be configured to include only the hydrostatic stepless speed changing portion 18A.
(4) In the preferred embodiment described above, the first pressure detector 25 and the second pressure detector 26 are respectively provided on the inlet path and the return path of the driving oil paths 32, but there is no limitation to this embodiment. For example, a configuration is also possible in which at least one of the pair of driving oil paths 32 is provided with a pressure detector.
(5) In the preferred embodiment described above, the front wheels 6 and the rear wheels 7 are provided as the travelling apparatus, but the travelling apparatus may be a crawler-type travelling apparatus.
(6) In the preferred embodiment described above, when the hydraulic pressure in the driving oil paths 32 is higher than or equal to the predetermined value, the swashplate angle control module 82 causes the swashplate of the hydrostatic stepless speed changing portion 18A to operate to the range indicated by Z0shown in
Preferred embodiments of the present invention are applicable to a work vehicle that includes a speed changing apparatus including a hydrostatic stepless speed changing mechanism.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims
Number | Date | Country | Kind |
---|---|---|---|
2020-209180 | Dec 2020 | JP | national |