Work zone safety may be important for personnel working in areas subject to vehicle traffic, such as on roadways, industrial throughways, and other areas. Some systems can alert workers when an unauthorized vehicle enters the work zone. Existing devices may utilize some of the following methods to provide an alert to a worker; 1) a compressed CO2 canister, 2) wireless network communication, and 3) air compression hoses linked to portable vibration alert devices that are worn by the workers.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key factors or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
One or more techniques and systems described herein can be utilized to provide an alert to one or more workers in a work zone of a potential intrusion by a vehicle. For example, by providing an alert, such as an audible, visible, or sensory warning, in one or more locations, the work zone intrusion alert system, described herein, can alert personnel working in an established work zone that an unauthorized vehicle has penetrated the work zone perimeter. This type of alert may provide the personnel time to move out of the way of the vehicle. For example, the system can be deployed in frequently moving, or temporary work zones, where safety barriers may not be a viable option, such as where a vehicle lane closure is undertaken.
In one implementation of a system for alerting personnel proximate a work zone to a work zone intrusion, a master device can be configured to operably engage with a first boundary marker. The master device can activate an alert state resulting in the master device wirelessly transmitting an alert signal to one or more portable alert devices. Further, the example system can comprise a tripwire that comprising a coupler. The coupler can selectably, operably engage with the master device; and the coupler can disengage from the master device upon receiving a pre-determined amount of pulling force equivalent to an impact force on the tripwire. Additionally, the example system can comprise a first boundary marker engaging component that is operably, fixedly engaged with the tripwire at a first distance from the coupler. The first boundary marker engaging component can be operably, selectably engaged with a second boundary marker. In this system, the disengaging of the coupler from the master device can result in the master device activating the alert state. The one or more portable alerters can respectively receive the alert signal from the master device and provide an alert to proximate personnel.
To the accomplishment of the foregoing and related ends, the following description and annexed drawings set forth certain illustrative aspects and implementations. These are indicative of but a few of the various ways in which one or more aspects may be employed. Other aspects, advantages and novel features of the disclosure will become apparent from the following detailed description when considered in conjunction with the annexed drawings.
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are generally used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. It may be evident, however, that the claimed subject matter may be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to facilitate describing the claimed subject matter.
In one aspect, a temporary work environment, such as one that is frequently on the move (e.g., on a roadway), does not typically permit the use of barriers to mitigate intrusion by vehicles (e.g., concrete barriers) to protect workers from vehicles that may breach a work zone's perimeter. Often, the workers utilize a set of one or more temporary boundary markers (e.g., cones, barrels, etc.), or the like, to demarcate the work zone, which merely provide a visual indication of a barrier, and provide little protection from intruding vehicles, for example. A system may be devised for providing a work zone intrusion alert, which could increase a worker's safety in these types of situations, while also being convenient and easy to use. As an example, when a vehicle crosses the traffic boundary marker perimeter, the system can activate an intrusion alert that provides an alert (e.g., audible, visual, sensory) at one or more appropriate locations. In this example, this type of advanced warning may give the workers the added time to take action to avoid the intruding vehicle.
As illustrated in
As an example, the coupler 108 can engage with master device 102 by coupling with a connection (216,
In one implementation, the master device 102 can be configured to detect when the coupler 108 is disengaged from the connection 216. For example, when operably engaged, the coupler 108 may hold a switch in an open position, and when the coupler is disengaged the switch may default to a closed position, which can provide for detection of the coupler 108 disengaging from the connection 216. As another example, breaking of a magnetic coupling may activate a signal that indicates the coupler 108 disengaging from the connection 216. It should be appreciated that it is anticipated that there are several ways to detect decoupling of one component from another.
As an illustrative example, the tripwire 104 is operably, selectably engaged with the master device 102 using the coupler 108. In this example, when the tripwire 104 is impacted and pulled by a vehicle that crosses the work zone boundary, the coupler 108 can be disengaged from the master device 102, which can result in an activation the system to provide an alert.
Further, as shown in
As one example, the boundary marker engaging components 106 may comprise cone mountable rings, that are selectably engagable in an operably, fixed engagement (e.g., or integrated) with the tripwire 104, and attach (e.g., slide on) to the respective boundary markers 152. In this way, for example, the boundary marker engaging components 106 can be used to engage the tripwire 104 with the respective boundary markers 152. For example, the tripwire 104 can comprise segments that are attached to a boundary marker engaging components 106, in a chain, with respective boundary marker engaging components 106 selectably engaged with a boundary marker 152, to form a physically demarcated boundary to the work zone. Additionally, as illustrated in
In one implementation, as illustrated in
In one implementation, the respective sections of the tripwire 104 can comprise a pre-determined, specified distance, for example, appropriate for a particular use. That is, for example, a first distance 110a can comprise the distance from the coupler 108 to the first boundary marker engaging component 106a on the tripwire. Further, a second distance 110b can comprise the distance between the first boundary marker engaging component 106a and the second boundary marker engaging component 106b on the tripwire 104 (e.g., and so-on for a third distance 110c, etc.).
As illustrated in
With continued reference to
In one implementation, the master device 102 can comprise an accelerometer 214 that can detect movement of the master device 102. For example, if the accelerometer 214 detects that the master device 102 has moved past a threshold acceleration (e.g., or tilt), such as when impacted with sufficient force, the alert system can be activated. As an example, the work zone boundary marker 152a (e.g., cone, barrel, etc.) with which the master device 102 is engaged may be struck directly, or at any angle, by a vehicle, and the tripwire 104, described above, may not disconnect from the master device 102. In this example, the accelerometer 214 can detect the sudden acceleration caused by the impact, resulting in activation of the alert system (e.g., alert state). In one implementation, the master device 102 can comprise an attachment component 218 that is used to operably, selectably engage the master device 102 (e.g., the housing of the master device 102) with the work zone boundary marker 152a.
With continued reference to
In the illustrative implementation of
In the illustrative implementation of
Moreover, the word “exemplary” is used herein to mean serving as an example, instance or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. Further, At least one of A and B and/or the like generally means A or B or both A and B. In addition, the articles “a” and “an” as used in this application and the appended claims may generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Also, although the disclosure has been shown and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art based upon a reading and understanding of this specification and the annexed drawings. The disclosure includes all such modifications and alterations and is limited only by the scope of the following claims. In particular regard to the various functions performed by the above described components (e.g., elements, resources, etc.), the terms used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary implementations of the disclosure. In addition, while a particular feature of the disclosure may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
The implementations have been described, hereinabove. It will be apparent to those skilled in the art that the above methods and apparatuses may incorporate changes and modifications without departing from the general scope of this invention. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof
This application claims priority to U.S. Ser. No. 62/631,525, entitled WORK ZONE INTRUSION ALERT SYSTEM, filed Feb. 16, 2018, which is incorporated in its entirety herein.
Number | Date | Country | |
---|---|---|---|
62631525 | Feb 2018 | US |