The present invention is directed to a workholding apparatus for machine tools. In particular, the workholding apparatus is configured such that it is urged into an operating position on a machine spindle or loosened from the operating position on the spindle by rotation of the spindle.
In metalworking operations where a workpiece is machined, equipment of some type is necessary to hold the workpiece in position in a machine tool so the machining process can be successfully carried out. This type of equipment is known as “workholding” equipment. In the production of toothed articles, such as gears, workholding equipment may be generally categorized as arbor chucks. Examples of arbor chucks for gripping pinion shanks can be found in U.S. Pat. Nos. 3,083,976 to Stark and 3,244,427 to Taschl. An example of an arbor chuck for a ring gear can be found in U.S. Pat. No. 3,735,994 to Jaehn. An arbor chuck for expanding into contact with the bore of a pinion can be found in U.S. Pat. No. 3,517,939 to Jaehn.
Securing workholding equipment to a machine tool spindle, or ejecting it from the machine tool spindle, have traditionally been manually performed operations that are very time consuming since there are usually many bolts that must be tightened to specifications. When removing an arbor chuck, aside from the time necessary to loosen and remove all of the bolts, ejector screws usually must be utilized to “break” the contact between the arbor chuck outer tapered surface and the tapered inner surface of the spindle bore.
Workholding equipment may also be secured to a machine spindle via an interface attached to the spindle. The interface comprises a plurality of lugs arranged thereon. A workholding module having a spirally arranged groove on an inner surface is positioned over the interface to engage the lugs. The interface is then manually turned via a removable handle to “draw down” the module via the cooperating threading-like action of the lugs and spiral groove. The module is loosened from the interface by inserting the handle and turning the interface in the opposite direction.
Additionally, workholding equipment may be secured to a machine spindle via action of the machine draw rod as is shown in U.S. Pat. No. 6,260,855 to Curtis. The motion of the draw rod occurs in two segments with one rearward motion utilized to secure the workholding equipment on the tapered inner surface of the spindle bore and a further rearward motion utilized to activate the workholding equipment to secure a workpiece in position for machining. The workpiece is released from the workholding equipment by a first forward motion of the draw rod and an additional forward motion of the draw rod is utilized to loosen the workholding equipment from the tapered inner surface of the spindle bore.
The present invention is directed to an arbor chuck workholding assembly comprising an arbor chuck, outer ring, clamp ring and backing ring. The arbor chuck comprises a plurality of holding angle lugs and ejecting angle lugs located about its periphery. The outer ring comprises a plurality of complementary holding angle ramps and ejecting angle ramps located on its inner diameter surface. The arbor chuck is inserted into a machine spindle which is then rotated to engage the holding angled lugs with the holding angle ramps such that the arbor chuck will be drawn into position against the spindle. For disengaging, a reverse rotation of the spindle results in ejecting angle ramps engaging ejecting angle lugs to loosen the arbor chuck from the spindle. Therefore, with the present invention, no tools are required to secure the arbor chuck to the machine spindle.
Before any features and at least one construction of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other constructions and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein is for the purposes of description and should not be regarded as limiting.
The use of “including”, “having” and “comprising” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Although references may be made below to directions such as upper, lower, upward, downward, rearward, bottom, top, front, rear, etc., in describing the drawings, the references are made relative to the drawings (as normally viewed) for convenience.
Holding angle lug 18 is oriented on the periphery of arbor chuck 2 in a manner such that when arbor chuck 2 is inserted into outer ring 6 and rotated a predetermined amount for holding by spindle 4 (for example, 90 degrees rotation in a clockwise direction or to a predetermined amount of torque), holding angled lug 18 will engage holding angle ramp 22 and arbor chuck 2 will be drawn into position against the spindle 4 (
Although backing ring 10 together with outer ring 6 are rotatable with respect to spindle 4 and clamp ring 8, securing the arbor chuck 2 in spindle 4 and ejecting arbor chuck 2 from spindle 4 is accomplished with the backing ring 10 and outer ring 6 held stationary during rotation of the spindle 4 as will be discussed further below. A preferred mechanism for holding backing ring 10 and outer ring 6 stationary is shown in
Additionally, it may be desirable to include means to safeguard against rotation of backing ring 10 and outer ring 6 relative to spindle 4 during machining operations.
Preferably, end cap 42 includes an extended portion 50 (
In operation, with clamp ring 8, backing ring 10 and outer ring 6 assembled on spindle 4 as recited above and as shown in
When it becomes necessary to remove arbor chuck 2 from spindle 4, backing ring 10 and outer ring 6 are locked against rotation via plunger 32 being advanced and plunger 36, if present, is retracted from groove 28. Spindle 4 is then rotated by an appropriate amount and in an appropriate direction (opposite of the engaging procedure discussed above) thereby bringing ejecting angle ramp 24 into engagement with ejecting angle lug 20 to loosen the arbor chuck 2 from the spindle 4 (i.e. tapered shank 26 of the arbor chuck 2 will be loosened from its position against the tapered surface 3 in bore 5 of machine spindle 4). The arbor chuck 2 may then be removed from the machine.
It is to be understood that upon inserting arbor chuck 2 into spindle bore 5, sufficient friction usually exists between tapered surface 26 of the arbor chuck shank and the tapered bore surface 3 whereby arbor chuck 2 will rotate with spindle 4 without slippage in order to engage the holding angle lugs 18 and the holding angle ramps 22. However, a key and keyway arrangement (not shown) may be included at appropriate locations on the arbor chuck and spindle to enhance contact therebetween.
If desired, covers 56, 58 and/or 60 may be included to prevent or reduce contamination of arbor chuck assembly components by machining fluids, metal particles, lapping compound, grinding swarf, etc.
While the present invention has been discussed and illustrated showing a type of arbor chuck that includes a nose piece and a contracting workpiece shank gripping collet, the present invention does not contemplate nor is it to be limited to the inclusion of, or to specific types or designs of, such elements. The manner by which a workpiece is supported, gripped or spatially positioned on the inventive arbor chuck is dependent upon the particular geometry and dimensions of the workpiece being machined as is well understood by the skilled artisan. Therefore, the means by which a workpiece is supported, gripped or spatially positioned on the inventive arbor chuck does not form part of the present invention. For example, an expanding collet may be utilized in the present inventive arbor chuck for gripping ring gears.
While the invention has been described with reference to preferred embodiments it is to be understood that the invention is not limited to the particulars thereof. The present invention is intended to include modifications which would be apparent to those skilled in the art to which the subject matter pertains without deviating from the spirit and scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/048723 | 9/14/2010 | WO | 00 | 1/20/2012 |
Number | Date | Country | |
---|---|---|---|
61243206 | Sep 2009 | US |