The present invention relates to a working machine and a method of measuring a work amount of a working machine that can easily and highly accurately measure the number of times of a series of operations of an excavating and loading mechanism, the operations being performed at the time of excavating and loading work, or the like.
When a working machine such as an excavator operated on a work site of civil engineering work performs work to excavate soil and load the soil on a transportation vehicle such as a dump truck (hereinafter, excavating and loading work), a person who performs work management of progress of construction on the work site, and the like needs to manage output of a work amount by everyday excavating and loading work, progress of the excavating and loading work, and work efficiency of the excavating and loading work. Manual measurement of the work amount of the excavating and loading work and the like which are performed by the working machine such as an excavator places a burden on an operator and is also troublesome, and thus automatization of the measurement has been proposed.
For example, Patent Literature 1 describes one that detects operation signals and operation times of an actuator of a construction machine, compares the operation signals and the operation times, and a plurality of conditions stored in advance, when the operation signal and the operation time that accord with a plurality of conditions have been detected, extracts the according conditions, and counts the number of times of loading work, based on extracted values.
Patent Literature 1: Japanese Laid-open Patent Publication No. 2000-129727
However, Patent Literature 1 requires a complicated condition weighting processing program and work determination processing program. Further, for example, to highly accurately measure the number of times of a series of operations of a working device and an upper swing body, such as excavating and loading work in which excavation, forward swing, soil removal, and return swing are repeatedly performed in order among vehicle size classes of excavators having different sizes and the like, it is necessary to perform different setting among the vehicle size classes. Therefore, the work amount measuring device disclosed in Patent Literature 1 lacks versatility.
The present invention has been made in view of the foregoing, and an objective is to provide a working machine and a method of measuring a work amount of a working machine that can easily and highly accurately measure the number of times of a series of operations of an excavating and loading mechanism, which is performed in excavating and loading work.
To solve the above-described problem and achieve the object, a working machine according to the present invention includes: an operation state detection unit configured to detect a physical amount output according to an operation of an operation lever; a time integration unit configured to calculate a time integration value by performing time integration of the physical amount; a determination unit configured to cause the time integration value and a predetermined operating angle of an excavating and loading mechanism associated with the operation of the operation lever to correspond to each other, and to determine that the operation of the operation lever has been performed at a time the time integration value becomes a predetermined integration value or more; and a counting unit configured to count at a time operations of the excavating and loading mechanism determined by the determination unit are performed in a predetermined order, number of times of excavating and loading work, treating the operations of the excavating and loading mechanism performed in the predetermined order, as one time.
Moreover, in the above-described working machine according to the present invention, the operations of the excavating and loading mechanism are excavating and loading operations performed in an order of an excavation operation, a forward swing operation, a soil removal operation, and a return swing operation.
Moreover, in the above-described working machine according to the present invention, the determination unit is configured to determine that the excavation operation has been performed at a time the time integration value is the predetermined integration value or more, and the physical amount is an operation termination predetermined value or less in order to determine the excavation operation.
Moreover, in the above-described working machine according to the present invention, the determination unit is configured to determine that the excavation operation has been performed at a time the time integration value is the predetermined integration value or more, and a predetermined time has passed after the physical amount becomes the operation termination predetermined value or less in order to determine the excavation operation.
Moreover, in the above-described working machine according to the present invention, the time integration unit is configured to reset the time integration value at a time a state where the physical amount is an integration start value or less has passed for a time integration value hold time after start of time integration in order to determine the excavation operation or the oil removal operation.
Moreover, in the above-described working machine according to the present invention, the operation lever is a pilot control lever or an electric lever, and the physical amount is a pilot pressure or an electrical signal.
Moreover, in the above-described invention, the working machine according to the present invention includes an output unit configured to output the number of times of the excavating and loading work counted by the counting unit to a display device or an outside.
Moreover, in the above-described invention, the working machine according to the present invention includes a setting change unit configured to change various setting values.
Moreover, a method of measuring a work amount of a working machine according to the present invention includes the steps of: detecting a physical amount output according to an operation of an operation lever; calculating a time integration value by performing time integration of the physical amount; causing the time integration value and a predetermined operating angle of an excavating and loading mechanism associated with the operation of the operation lever to correspond to each other, and to determine that the operation of the operation lever has been performed, when the time integration value becomes a predetermined integration value or more; and counting, when operations of the excavating and loading mechanism determined by the determining step are performed in a predetermined order, number of times of excavating and loading work, treating the operations of the excavating and loading mechanism performed in the predetermined order, as one time.
According to the invention, a physical amount output according to an operation of an operation lever is detected, a time integration value that is the time-integrated physical value is calculated, the time integration value and a predetermined operating angle of an excavating and loading mechanism associated with the operation of the lever are caused to correspond to each other and it is determined that the operation of the operation lever has been performed when the time integration value becomes a predetermined integration value or more, and when the determined operations of the excavating and loading mechanism are performed in a predetermined order, the number of times of operations of the excavating and loading mechanism is counted, where the operations of the excavating and loading mechanism performed in the predetermined order are treated as one time. Therefore, the number of times of a series of operations of the excavating and loading mechanism, which is performed in excavating and loading work, can be easily and highly accurately measured.
Hereinafter, embodiments for implementing the present invention will be described with reference to the appended drawings.
First,
The upper swing body 5 is swingably provided on the lower traveling body 4, and swings as a swing hydraulic motor 22 is driven. Further, an operator's cab 6 is provided in the upper swing body 5. The upper swing body 5 includes a fuel tank 7, a hydraulic oil tank 8, an engine room 9, and a counter weight 10. The fuel tank 7 stores fuel for driving an engine 17. The hydraulic oil tank 8 stores hydraulic oils discharged from hydraulic pumps 18 to hydraulic cylinders such as a boom cylinder 14 and hydraulic equipment such as the swing hydraulic motor 22 and the hydraulic travel motors 21. The engine room 9 houses devices such as the engine 17 and the hydraulic pumps 18. The counter weight 10 is arranged behind the engine room 9.
The working device 3 is attached to a central position of a front part of the upper swing body 5, and includes a boom 11, an arm 12, a bucket 13, a boom cylinder 14, an arm cylinder 15, and a bucket cylinder 16. A base end portion of the boom 11 is revolvably coupled with the upper swing body 5. Further, a tip portion of the boom 11 is revolvably coupled with a base end portion of the arm 12. A tip portion of the arm 12 is revolvably coupled with the bucket 13. The boom cylinder 14, the arm cylinder 15, and the bucket cylinder 16 are hydraulic cylinders driven by the hydraulic oil discharged from the hydraulic pump 18. The boom cylinder 14 operates the boom 11. The arm cylinder 15 operates the arm 12. The bucket cylinder 16 is coupled with the bucket 13 through a link member, and can operate the bucket 13. A cylinder rod of the bucket cylinder 16 performs an extension/contraction operation, so that the bucket 13 is operated. That is, when the soil is excavated and scooped up with the bucket 13, the cylinder rod of the bucket cylinder 16 is extended, and the bucket 13 is operated revolving from the front to the rear of the excavator 1. Then, when the scooped soil is discharged, the cylinder rod of the bucket cylinder 16 is contracted, and the bucket 13 is operated revolving from the rear to the front of the excavator 1.
In
The hydraulic driving system drives the boom cylinder 14, the arm cylinder 15, the bucket cylinder 16, and the swing hydraulic motor 22 according to operations of operation levers 41 and 42 provided in the operator's cab 6 provided in the vehicle body 2. Further, the hydraulic driving system drives the hydraulic travel motor 21 according to operations of travel levers 43 and 44. The operation levers 41 and 42 is arranged at the right and left of an operator seat (not illustrated) in the operator's cab 6, and the travel levers 43 and 44 are arranged in front of the operator seat side by side. The operation levers 41 and 42 and the travel levers 43 and 44 are pilot control levers, and a pilot pressure is generated according to an operation of each lever. The magnitude of the pilot pressures of the operation levers 41 and 42 and the travel levers 43 and 44 is detected by pressure sensors 55, and output voltages according to the magnitude of the pilot pressures are output as electrical signals. The electrical signals that correspond to the pilot pressures detected by the pressure sensors 55 are sent to a pump controller 31. The pilot pressures from the operation levers 41 and 42 are input to a control valve 20, and control an opening of a main valve that connects the hydraulic pump 18, and the boom cylinder 14, the arm cylinder 15, the bucket cylinder 16, and the swing hydraulic motor 22, in the control valve 20. Meanwhile, the pilot pressures from the travel levers 43 and 44 are input to the control valve 20, and control an opening of a main valve that connects the corresponding hydraulic travel motors 21 and the hydraulic pump 18.
A fuel adjustment dial 29, a monitor 32, and swing lock unit 33 are provided in the operator's cab 6. These units are in the vicinity of the operator seat in the operator's cab 6, and are arranged at positions where the operator can easily operate these units. The fuel adjustment dial 29 is a dial (setting unit) for setting a supply amount of fuel to the engine 17. A setting value of the fuel adjustment dial 29 is converted into an electrical signal and is output to an engine controller 30. Note that the supply amount of fuel may be able to be set by incorporating the fuel adjustment dial 29 in a display/setting unit 27 of the monitor 32, and operating the display/setting unit 27. The monitor 32 is a display device and includes the display/setting unit 27 that performs various types of display and setting. Further, the monitor 32 includes a work mode switching unit 28. The display/setting unit 27 and the work mode switching unit 28 are configured from a liquid crystal panel and a switch, for example. The display/setting unit 27 and the work mode switching unit 28 may be configured as touch panels. Work modes switched by the work mode switching unit 28 include a P mode (power mode), an E mode (economy mode), an L mode (arm crane mode=suspended load mode), a B mode (breaker mode), and an ATT mode (attachment mode). The P mode and the E mode are modes of when normal excavation or loading work is performed. The output of the engine 17 is suppressed in the E mode, compared with the P mode. The L mode is a mode switched when an arm crane operation (suspended load work) is performed. The arm crane operation is an operation in which a hook is attached to an attaching pin for coupling the bucket 13 and the link member, and a load hung on the hook is lifted. The L mode is a fine operation mode to suppress an engine speed to control the output of the engine 17 to be kept constant, and to be able to move the working device 3 slowly. The B mode is a mode switched when a breaker that crushes a rock is attached instead of the bucket 13, as an attachment, and work is performed. The B mode is also a mode to suppress the engine speed to control the output of the engine 17 to be kept constant. The ATT mode is an auxiliary mode switched when a special attachment such as crusher is attached instead of the bucket 13, and is a mode to control the hydraulic equipment and discharge amounts of the hydraulic oils of the hydraulic pumps 18, for example. A work mode signal generated when the operator operates the work mode switching unit 28 is sent to the engine controller 30 and the pump controller 31. Further, the swing lock unit 33 is a switch that turns ON/OFF of a swing parking brake (not illustrated). The swing parking brake is to brake the swing hydraulic motor 22 so as not to allow the upper swing body 5 to swing. The swing lock unit 33 is operated, so that an electromagnetic solenoid (not illustrated) is driven, and a brake that holds down rotary parts of the swing hydraulic motor 22 works, in conjunction with the movement of the electromagnetic solenoid. The ON/OFF signal of the swing parking brake in the swing lock unit 33 is also input to a monitor of the pump controller 31.
The engine controller 30 is configured from an arithmetic unit such as a CPU (numeric data processor) and a memory (storage device). A fuel injection device 80 is attached to the engine 17. For example, as the fuel injection device 80, a common rail-type fuel injection device is used. The engine controller 30 generates a signal of a control command, based on a set value of the fuel adjustment dial 29, sends the signal to the fuel injection device 80, and adjusts an injection amount of the fuel to the engine 17.
The pump controller 31 receives the signals transmitted from the engine controller 30, the monitor 32, the operation levers 41 and 42, and the travel levers 43 and 44, and generates signals of control commands for tilting and controlling swash plate angles of the hydraulic pumps 18 to adjust discharge amounts of the hydraulic oils from the hydraulic pumps 18. Note that signals from swash plate angle sensors 18a that detect the swash plate angles of the hydraulic pumps 18 are input to the pump controller 31. The swash plate angle sensors 18a detect the swash plate angles, so that pump capacities of the hydraulic pumps 18 can be calculated.
Further, the pump controller 31 receives the signals transmitted from the monitor 32, the pressure sensors 55 attached to the operation levers 41 and 42 and the travel levers 43 and 44, and the swing lock unit 33, and performs processing of measuring the work amount of the excavator 1. To be specific, the pump controller 31 performs processing of calculating the number of times of excavating and loading work (hereinafter, the number of times of loading) that is the base of the measurement of the work amount, and a basic excavating and loading time. Details of the number of times of loading and the basic excavating and loading time will be described below.
The pump controller 31 includes an operation state detection unit 31a, a time integration unit 31b, a determination unit 31c, a counting unit 31d, a mode detection unit 31e, a travel operation detection unit 31f, and a swing lock detection unit 31g. The operation state detection unit 31a detects the pilot pressures that are physical amounts output in response to the signals output from the pressure sensors 55 according to the operations of the operation levers 41 and 42. In the embodiment, the operation state detection unit 31a detects the pilot pressures that drive the bucket cylinder 16 and the swing hydraulic motor 22 in order to capture the excavating and loading work being performed. Note that, in the embodiment, the physical amounts output according to the operations of the operation levers 41 and 42 are used as the pilot pressures. This is because the operation levers 41 and 42 are pilot control levers. When the operation levers 41 and 42 are electric levers, the physical amounts are electrical signals such as voltages output by potentiometers or rotary encoders. Further, instead of detecting the pilot pressures, stroke amounts of the cylinders are directly detected by stroke sensors attached to the cylinder rods of the boom cylinder 14, the arm cylinder 15, and the bucket cylinder 16, for example, the rotary encoders, and detected data may be treated as the physical amounts output according to the operations of the operation levers 41 and 42. Stroke amounts of spool are detected using stroke sensors that detect operation amounts of spool of the valves, and detected data may be treated as the physical amounts output according to the operations of the operation levers 41 and 42. Further, flow rate sensors that detect flow rates of the physical oils from the main valves are used, and the flow rates may be used as the physical amounts. Further, angle sensors are respectively provided to revolving axes of the working devices 3 such as the boom 11, the arm 12, and the bucket 13, and an angle sensor that detects the angle of the upper swing body 5 is provided. Then, the operating angles of the working device 3 and the upper swing body 5 are directly detected with the respective angle sensors, and data of the detected operating angles of the working device 3 and the upper swing body 5 may be treated as the physical amounts output according to the operations of the operation levers 41 and 42. Note that, hereinafter, the bucket 13 and the upper swing body 5 are referred to as excavating and loading mechanism.
The time integration unit 31b calculates a time integration value by performing time integration of the pilot pressure. The determination unit 31c causes the time integration value and a predetermined operating angle of the excavating and loading mechanism associated with the operations of the operation levers 41 and 42 to correspond to each other, and determines that the operation levers 41 and 42 have been operated when the time integration value is a predetermined integration value or more. When the operations of the excavating and loading mechanism determined in the determination unit 31c have been performed in a predetermined order, the counting unit 31d counts the number of times of the operations (the number of times of the excavating and loading work, that is, the number of times of loading), treating the operations of the excavating and loading mechanism performed in the predetermined order, as one time. The series of operations of the excavating and loading mechanism is the excavating and loading work, and operations performed in an order of excavation, forward swing, soil removal, and return swing. The counting unit 31d treats the operations performed in the order as a pattern of the excavating and loading work, and counts the number of times by which the pattern is performed, as the number of times of loading. Details of the excavating and loading work will be described below.
The mode detection unit 31e detects a work mode switched and instructed in the work mode switching unit 28. The travel operation detection unit 31f determines whether the travel operations by the travel levers 43 and 44 have been performed, according to the signals that indicate the pilot pressures output by the pressure sensors 55. The swing lock detection unit 31g determines whether the swing lock unit 33 has turned the swing lock ON. Note that the operation state detection unit 31a detects whether the pressure sensors 55 that detect the pilot pressures are in an abnormal state. The abnormal state is, for example, a case where the pressure sensor 55 outputs an abnormal voltage values, which falls outside a range of normal voltage value, for a several seconds. Therefore, disconnection of the pressure sensor 55 is also treated as the abnormal state.
As described above, the operation levers 41 and 42 are arranged at the right and left of the operator seat (not illustrated) in the operator's cab 6. The operation lever 41 is arranged at the left-hand side when the operator seat is occupied by the operator, and the operation lever 42 is arranged at the right-hand side, which is the side opposite to the operation lever 41. Note that the operation lever 41 can drive the swing hydraulic motor 22 to perform left swing and right swing of the upper swing body 5 when being tilted rightward and leftward on the drawing, as illustrated in
First, the excavating and loading work by the excavator 1 will be described with reference to
When the number of times of loading is measured, the respective operations of the excavation, forward swing, soil removal, and return swing needs to be accurately detected. Therefore, in the embodiment, the time integration value that is the time-integrated pilot pressure, and a predetermined operating angle of the bucket 13 and the upper swing body 5 as the excavating and loading mechanism associated with the operations of the operation levers 41 and 42 are caused to correspond to each other by the time integration unit 31b, and when the time integration value becomes a predetermined integration value, it is determined that the operations by the operation levers 41 and 42 such as excavation have been performed. That is, the operations (the excavation, forward swing, soil removal, and return swing) of the excavating and loading work having being performed is determined using the time integration value of the pilot pressures. The determination is performed according to whether the obtained time integration value is the predetermined integration value or more. The predetermined integration value corresponds to a case where the excavating and loading mechanism that is the bucket 13 or the upper swing body 5 is moved by a predetermined angle in association with the operations. The predetermined angle, that is, the predetermined operating angle corresponds to an angle by which the excavating and loading mechanism is operated when the operations are performed. In terms of the bucket 13, an angle corresponding to the movement of the bucket 13 upon performing the operation of the excavation or the soil removal is the predetermined operating angle. In terms of the upper swing body 5, an angle corresponding to the movement of swing at the excavating and loading work is the predetermined operating angle. These predetermined operating angles have the same values in even an excavator 1 in a different vehicle size class, and the time integration value corresponding to the predetermined operating angle is different according to the vehicle size class. Therefore, even the excavator 1 in a different vehicle size class can measure the number of times of loading of each vehicle size class, as long as the correspondence between the time integration value that is the time-integrated pilot pressure obtained by the time integration unit 31b for each vehicle size class, and the predetermined operating angle of the excavating and loading mechanism associated with the operations of the operation levers 41 and 42 is determined in advance.
For example, in the excavation, as illustrated in
That is, in the embodiment, whether each operation has been performed is determined using the time integration value of the pilot pressure as a threshold, which is defined with the predetermined operating angle of the upper swing body 5 and the bucket 13, that is, the excavating and loading mechanism. Then, when it is determined that the operations of the excavating and loading mechanism have been performed in the order of the excavation, forward swing, soil removal, and return swing, the number of times of loading is counted as one time, and the number of times of loading is cumulatively calculated. By use of the time integration value defined with the predetermined operating angle of the excavating and loading mechanism, the pilot pressures detected by the pressure sensors 55 mounted on the existing excavator 1 can be used. Therefore, the number of times of loading can be simply and easily performed. Furthermore, the time integration value is defined with the predetermined operating angle, and thus, even among the excavators 1 in different vehicle size classes, the different time integration values among the vehicle size classes may just be simply obtained in advance using the same predetermined operating angle, and the time integration values can be used as the thresholds of the operation determination. That is, such measuring processing of the number of times of loading has high versatility. Further, if such basic measuring processing of the number of times of loading is used, it is not necessary to perform setting that depends on a work site. Therefore, the number of times of loading can be measured without considering where the work site in which the excavator 1 is operated is.
Information of the accumulated number of times of loading is transmitted to the monitor 32, for example, and the monitor 32 measures the work amount. The measurement of the work amount is obtained by multiplication of the cumulatively calculated number of times of loading by a bucket capacity set in advance. A result of the measurement is displayed in a display unit of the monitor 32. Note that, in the embodiment, the operation time for the series of excavating and loading work is accumulated, and the accumulated operation time is output to the monitor 32, as the basic excavating and loading time, for example. The accumulated operation time is displayed on the display/setting unit 27 of the monitor 32. The measurement of the work amount may be performed using a computer or a mobile-type computer located outside the excavator 1, for example, located in a remote location. That is, the information of the accumulated number of times of loading is transmitted to the outside in a wireless or wired manner, a receiving device provided outside receives the accumulated number of times of loading, and the measurement of the work amount may be performed using the bucket capacity stored in an external storage device.
Further, the time integration processing of the respective operations is simultaneously processed in parallel. Therefore, when the time integration values S1 to S4 of the respective operations are obtained, the time integration processing in the respective operations is reset, and the excavating and loading work is repeatedly performed, and thus the time integration processing needs to be repeatedly performed.
Here, the basic measuring processing of the number of times of loading will be described with reference to a state transition diagram illustrated in
First, in the initial state ST0, a state stay time TT is set to 0, and a swing direction flag FA is set to 0. When a condition 01 is satisfied in the initial state ST0, the processing is moved onto the excavation state ST1 (S01). The condition 01 is that the excavation time integration value is S1 or more and the pilot pressure is P2 or less, and an elapsed time after the pilot pressure becomes P2 or less becomes ΔTS or more. The pilot pressure P2 is a threshold used for determining whether the operation of the excavation is terminated, and state transition of
The lower drawing of
By the way, there is a case where, in the excavating and loading work, the operation is moved onto the next excavation operation during the return swing operation, and there is a case where the next return swing operation is erroneously determined when the determination termination of the excavation operation is performed with the time integration value. That is, there is a case where the operation of the bucket excavation of the operation lever 42 is performed while the operation lever 41 is operated for the return swing, after the soil removal, is terminated. The excavator 1 in such a case performs movement that the bucket 13 performs the excavation while the upper swing body 5 swings in the direction of the return swing.
For example, as illustrated in
Here, the point P2 is the time integration value obtained from the pilot pressure generated at the time of the right swing, and thus the forward swing is determined as the right swing. Following that, the pump controller 31 acquires the time integration value of the soil removal operation that is the operation after the forward swing. Therefore, the time integration value of the normal forward swing exists on the curved line L2, but the state transition to the forward swing is skipped, and the operation of the soil removal is further performed, and the termination determination of the soil removal operation is performed because the time integration value has reached S3 at a point P3 on the curved line L3, which is the time integration value of the soil removal operation. Further, the pump controller 31 acquires the time integration value of the return swing operation. However, because the time integration value has reached S4 at a point P4 on the curved line L4, the return swing operation is performed. While the time integration value for determining that the return swing operation has been performed is satisfied, the swing direction is the right swing, instead of the left swing, although the forward swing has already been determined as the right swing, and thus erroneous determination to skip the return swing is performed.
The reason why the erroneous determination is performed that the time integration value of the previous swing operation is not reset and is remained immediately after the point of time t1 when the termination determination of the excavation operation is performed at the point P1. Therefore, in the embodiment, the termination determination of the excavation operation is delayed, and at the time of the termination determination of the excavation operation, the time integration value of the return swing operation is caused to be in a reset state. To make this state, in addition to the fact that time integration value of the excavation operation is S1 or more, the pilot pressure becomes PP2 or less, and the termination determination of the excavation operation is performed after the elapse of a predetermined time ΔTS from the point of time when the pilot pressure becomes PP2 or less, in order to eliminate the effect of noises and the like. This predetermined time ΔTS is twice the sampling period (see
When such processing is performed, to be specific, as illustrated in
Referring back to
Further, when a state stay time T1 of the excavation state ST1 is a predetermined time TT1 or more (condition 10), the state is moved onto the initial state ST0 (S10).
When the state becomes the forward swing state ST2, the state stay time TT of the forward swing state ST2 is timed. Here, assume that the state stay time TT is T2. In the forward swing state ST2, when a condition 23 is satisfied, the state is moved onto the soil removal state ST3 (S23). The condition 23 is that the soil removal time integration value is S3 or more, and the right and left swing time integration values are less than ΔS. Further, at the transition to the soil removal state ST3, the state stay time TT is reset to 0. The reason why whether the right and left swing time integration values are less than ΔS is provided in the condition 23 will be described. When the soil removal is performed, it is supposed the swing is not performed. The right or left swing time integration value is the time integration value of the pilot pressure generated by the right swing or left swing operation of the operation lever 41. In the forward swing state (ST2), by determining whether the swing with the right or left swing time integration value that exceeds the predetermined value (ΔS) is performed, whether the state transition can be moved onto the soil removal state ST3 is determined. If the right or left swing time integration value exceeds ΔS, work to swing while performing soil removal is expected, and for example, the work is to scatter the soil in a predetermined range. In this case, the state is moved onto the initial state ST0 (S20), the count of the number of times of loading is prevented from being erroneously determined.
Further, when a state stay time T2 of the forward swing state ST2 is a predetermined time TT2 or more (condition 20), the state is moved onto the initial state ST0 (S20).
When the state becomes the soil removal state ST3, the state stay time TT of the soil removal state ST3 is timed. Here, assume that the state stay time TT is T3. In the soil removal state ST3, when a condition 34 is satisfied, the state is moved onto the return swing state ST4 (S34). The condition 34 is that the swing time integration value is S4 or more. Note that it is also the condition that the swing time integration value is the time integration value of the left swing when the swing direction is the opposite direction to the forward swing, that is, when the swing direction flag FA is right, and the swing time integration is the time integration value of the right swing when the swing direction flag FA is left. Further, at the transition to the return state ST4, the state stay time TT is reset to 0.
Further, when a state stay time T3 of the soil removal state ST3 is a predetermined time TT3 or more (condition 30), the state is move onto the initial state ST0 (S30).
When the state becomes the return swing state ST4, the state stay time TT of the return swing state ST4 is timed. Here, assume that the state stay time TT is T4. In the return swing state ST4, when a condition 45 is satisfied, the state is moved onto the completion state ST5 (S45). The condition 45 is that the swing time integration value of the left swing is 0 when the swing direction flag FA is right, the swing time integration value of the right swing is 0 when the swing direction flag FA is left, and the state stay time T4 is a predetermined time TT4 or more.
Further, when the state stay time T4 of the return swing state ST4 is less than the predetermined time TT4 (condition 40), the state is moved onto the initial state ST0 (S40).
When the state becomes the completion state ST5, the number of times of loading is counted only once, and is cumulatively added. When there is the number of times of loading accumulated in the past, 1 is added to the number of times of loading. The obtained number of times of loading is stored in a storage device (not illustrated) provided in the pump controller 31. A timer function (not illustrated) is incorporated in the pump controller 31, and a time required from the start of the excavation to the completion of the return swing of when the number of times of loading is counted as one time is measured. That is, timing with the timer is started from when it has been detected that the pilot pressure of the excavation has exceeded the predetermined integration start pressure P1 as illustrated in
By the way, in the above-described series of excavating and loading work, there is a case where the operations from the excavation operation to the forward swing operation are performed in the first excavating and loading work, and the excavator 1 stands still in a state of waiting for the dump truck 50. Further, there is a case where the return swing is not performed after the soil removal, and the excavator 1 waits for the next dump truck 50 coming. In these cases, the timed state stay time T2 exceeds the predetermined time TT2, and the state is moved onto the initial state (S20). Therefore, one time of the number of times of loading is not cumulatively added, and the number of times of loading may be erroneously determined. Further, there is a case where, after the soil removal, the excavator 1 stands still without performing the return swing operation, and waits for the dump truck 50. Even in this case, the timed state stay time T3 exceeds the predetermined time TT3, and the state is moved onto the initial state (S30), one time of the number of times of loading is not cumulatively added, and the number of times of loading may be erroneously determined.
That is, in the basic measuring processing of the number of times of loading, in determining whether there has been an operation of the excavating and loading mechanism such as the excavation operation that configures the series of excavating and loading work, the state is moved onto the initial state and the measuring processing of the number of times of loading is reset if a condition to make transition to the next operation of the excavating and loading mechanism is not satisfied and a predetermined state stay time, which is the state of the same operation of the excavating and loading mechanism, has passed. However, even when such reset processing is performed, there is a specific state to be counted as the number of times of loading, and failure to notice such a specific state leads to erroneous determination.
Therefore, in the present embodiment, a state transition transfer condition illustrated in
First, a non-operation time Δtα after swing is set in advance. When a specific state like a condition 25 is satisfied in the forward swing state ST2, the state is moved onto the completion state ST5, and the number of times of loading is cumulatively counted by one time (S25). The condition 25 is that non-operation times of other than the excavation and the swing are Δtα or more, and a deemed completion flag Fα is 0, that is, the deemed counting processing has never been performed. The non-operation times of other than the excavation and the swing include a bucket soil removal non-operation time, a boom rising non-operation time, a boom lowering non-operation time, an arm excavation non-operation time, and an arm soil removal non-operation time, and all of the non-operation times become the non-operation time Δtα after swing or more. Note that the reason why the non-operation times of the excavation and the swing are excluded is that there is a case where the operation is stopped in the middle of the swing operation or there is a case where the bucket 13 is moved bit by bit and the operation is performed during standstill. This is because the bucket 13 filled with the soil and the like may sometimes be lowered under its own weight, and it is necessary to perform an operation to raise the lowered bucket 13 (an operation to tilt the operation lever 42 leftward, that is, to the bucket excavation side).
Note that a case that requires the deemed counting processing with the condition 25 is a case where the excavator 1 performs the excavating and loading work five times in order to fully load the soil on one dump truck 50. That is, the first (first time) series of excavating and loading work, or the last (fifth time) series of excavating and loading work, of the five times of excavating and loading work, requires the deemed counting processing. Therefore, when the condition 25 is satisfied, the deemed completion flag Fα is set to 1, and the deemed completion flag Fα being 0 is included in the condition 25. That is, the deemed counting processing having never been performed is included in the condition. Note that, when the soil removal operation is performed next, the deemed completion flag Fα is set to 0.
Further, a non-operation time Δtβ after soil removal is set in advance. Then, when a specific state like a condition 35 is satisfied in the soil removal state ST3, the state is moved onto the completion state ST5, and the number of times of loading is cumulatively counted by one time (S35). The condition 35 is that the non-operation times of other than the excavation are the non-operation time Δtβ after soil removal or more. That is, when a specific state occurs, in which the order of the operations of the excavating and loading mechanism is stagnated and does not proceed, the deemed counting processing is performed. Note that the reason why the non-operation time of the excavation is excluded is that there is a case where an operation to move the bucket bit by bit is performed during standstill.
By the way, incidental work may sometimes be included in the series of excavating and loading work in practical operation. For example, there is a case where the soil removal operation is performed immediately after the excavation operation, or a reverse swing operation is performed immediately after the swing operation. This incidental work is work in which the order of the operations of the excavating and loading mechanism, which configure the series of excavating and loading work, is different, and is similar to the series of excavating and loading work. Therefore, erroneous determination may occur. Therefore, in the present embodiment, such incidental work is treated as a specific state and is excluded in a positive manner so as to eliminate the erroneous determination. That is, when a specific state in which the order of the operations of the excavating and loading mechanism is skipped, that is, the incidental work occurs, the excluding processing of the incidental work is performed so as not to count the incidental work as the number of times of loading.
That is, in the excavation state ST1, a condition 10a with which the soil removal time integration value becomes a soil removal time integration value after the excavation S3a or more is added. When the condition 10a is satisfied, the state is moved onto the initial state ST0 (S10). The soil removal time integration value after the excavation S3a is a value set in advance. Further, in the forward swing state ST2, a condition 20a, with which the swing time integration value in the opposite direction to the swing direction indicated by the current swing direction flag FA becomes a value S4a or more, is added. When the condition 20a is satisfied, the state is moved onto the initial state ST0 (S20). The swing time integration value after the swing S4a is a value set in advance.
By the way, there is a case where a series of operations in which the travel levers 43 and 44 are operated and travel operations are mixed is not the series of excavating and loading operations. However, if such a case is not considered, the number of times of loading may be counted as long as the operations of the operation levers 41 and 42 are detected with the pilot pressures. Such erroneous determination needs to be eliminated.
Further, when the work mode is a mode in which the series of excavating and loading work is not performed, if such a case is not considered, the number of times of loading may be counted as long as the operations of the operation levers 41 and 42 are detected with the pilot pressures.
Further, when the swing lock unit 33 is operated and the swing lock of the upper swing body 5 is performed, the swing is not intended. However, if such a case is not considered, the number of times of loading may be counted as long as the operations of the operation levers 41 and 42 are detected with the pilot pressures.
Further, when the pressure sensor 55 that detects the pilot pressure is broken down, or when a communication line that connects the pressure sensor 55 and the pump controller 31 is disconnected, if such a case is not considered, a wrong time integration value is obtained, and the erroneous determination occurs. The erroneous determination in such a case needs to be eliminated.
The above states are states (specific operation states) in which a specific operation unrelated to the series of operations of the excavating and loading mechanism is performed in a state where an operation of the excavating and loading mechanism related to the operations of the series of excavating and loading work can be performed. In such a specific operation state, it is necessary to reset the counting processing of the number of times of loading to prevent the erroneous determination.
Therefore, like the state transition diagram illustrated in
That is, as illustrated in
While the conditions 10 and 10a and the conditions 20 and 20a are OR conditions, conditions 10b, 20b, 30b, and 40b are further added as OR conditions. The conditions 10b, 20b, 30b, and 40b are that the travel time integration value is the travel determination travel time integration value Sα or more, or the work mode is set to any of the ATT/B/L modes (the ATT/B/L mode signal is ON), abnormality occurs in the pressure sensors 55 that detect the pilot pressures (the pilot pressure sensor abnormality flag is ON), or the swing lock unit 33 is operated and the upper swing body 5 is not swingable (the swing lock flag is ON). Note that, when the state is the above-described specific operation state, the above-described counting processing of the number of times of loading is not reset, and when the state is the specific operation state, the number of times of loading is tentatively cumulatively added, and the number of times of occurrence of the specific operation states may be separately subjected to the counting processing. Then, calculation to perform subtraction processing of the number of occurrence of the specific operation states from the obtained number of times of loading, that is, correction processing is performed, and the correct number of times of loading may be obtained. The subtraction processing is performed after termination of everyday work, whereby the obtained correct number of times of loading can be used in everyday work management. As described above, even there is the specific operation state, the counting processing of the number of times of the excavating and loading work is subjected to the reset processing or the correction processing, whereby the erroneous determination of the number of times of loading can be prevented.
The monitor 32 acquires at least the number of times of loading and the basic excavating and loading time from the storage device (not illustrated) of the pump controller 31. As illustrated in
The specified value setting unit 62 stores, in the storage unit 67, the bucket capacity of the excavator 1, the number of dump trucks, data that indicates a dump truck load capacity, which are set and input through the input/output unit 66. The dump truck load capacity is an amount of soil that can be loaded on one dump truck. Note that, in the present embodiment, a case of loading the soil on the dump truck 50 has been described. However, when the excavator 1 loads the soil and the like on a carrying vessel that includes a carrier used for dredging work of port and harbor, in place of the dump truck 50, work management processing as described below can be executed. The load capacity and the number of the carrying vessels are stored in the storage unit 67. Further, when the soil and the like are excavated and loaded on a train or a cart, in place of the dump truck 50, necessary data is stored in the storage unit 67, so that the work management processing can be executed. That is, the present embodiment can be applied to when the soil and the like are loaded onto various collecting bodies such as the dump truck 50, the carrying vessel, the train, and the cart.
The workload calculation unit 63 calculates the workload obtained by integrating the number of times of loading acquired by the number of times of loading acquisition unit 60 and the bucket capacity, and stores the obtained workload in the storage unit 67 for each day, for example. The soil volume calculation unit 64 calculates the soil volume obtained by multiplying the number of dump trucks by the dump truck load capacity, and stores the obtained soil volume in the storage unit 67 for each day, for example. The power calculation unit 65 calculates a value obtained by dividing the soil volume by the workload, as power, and stores the obtained power in the storage unit 67 for each day, for example.
Here, the workload is deemed as a sum of the soil volume and work to be counted. The work to be counted means work that is not the actual excavating and loading work by the excavator 1. For example, when the soil is not actually excavated, and the bucket 13 is operated and the upper swing body 5 is operated to swing, such operations may be determined as one time of excavating and loading work (the number of times of loading). In this way, when an operation of the excavating and loading mechanism not like the actual excavating and loading work is performed (when the work to be counted is performed), whether the soil is in the bucket 13 is not detected, and thus the number of times of loading is counted. Therefore, the number of times of loading obtained by the number of times of loading acquisition unit 60 becomes a larger number of times than the number of times of loading corresponding to the soil volume. That is, there is a case where the workload and the soil volume are not completely the same. The workload in such a case becomes a larger value than the soil volume. Therefore, if the power is obtained, to what extent the work to be counted has been performed can be grasped, and to what extent the excavating and loading work has been performed can be thus grasped.
The monitor 32 makes a graph about data such as the workload, the soil volume, and the power, for each day, and outputs the data from the input/output unit 66. The graph using the data may be displayed on the display/setting unit 27 of the monitor 32. Further, the monitor 32 may output the data such as the workload, the soil volume, and the power to an outside of the excavator 1.
Further, the monitor 32 outputs and displays a ratio of the excavating and loading work time to the operation time of the excavator 1 for each day, as illustrated in
Note that the operator identification unit 70 identifies operator identification information (hereinafter, identification information), and holds the identified identification information, and the number of times of loading and the basic excavating and loading time of each operator, in the storage unit 67, in association with each other.
Here, the excavator 1 may mount an immobilizer device. Engine start of the excavator 1 is possible with an ID key in which individual identification information is stored. When the immobilizer device reads the identification information of the ID key, the identification information, a predetermined period, for example, the number of times of loading of one day are associated with each other, for example, and the associated information (the number of times of loading of each operator) is output to an outside through the input/output unit 66, whereby the operator management to manage which operator has performed how much work (excavating and loading work) becomes possible.
Further, when one excavator 1 is used by a plurality of operators, a plurality of ID keys is used. Therefore, work amount management of each operator can be performed about the one excavator 1. Further, when it is set to enable the engine start of a plurality of excavators 1 with one ID key, data of vehicle identification information that identifies respective vehicles of the plurality of excavators 1, the identification information of the ID key, data of the number of times of loading, and the like are output to an outside, whereby to what extent of the work amount has been performed by one operator with which excavator can be managed.
Further, the above-described management may be performed such that the individual ID number is input through the input/output unit 66 of the monitor 32 without using the immobilizer device, and an ID number identification device that recognizes the operator or an ID card reading device is provided, and the operator is individually recognized. Note that a fingerprint authentication device may be used as a device to individually recognize the operator. That is, with the operator identification unit 70, the work management of the operator can be performed.
Further, the setting change unit 71 can change various setting values (parameters) necessary for determining the series of excavating and loading operations such as the time integration values S1 to S4 and the integration start pressure P1. The setting change unit 71 can change the various setting values from an outside through the input/output unit 66, using an external communication device that can perform communication in a wireless or wired manner. Note that the various setting values may be changed through the input/output unit 66, using input means such as a switch provided in the display/setting unit 27 of the monitor 32.
Note that the various setting values can be set by teaching or statistical processing. For example, the setting change unit 71 can change the setting of the various setting values (parameters) such as the integration start pressure P1 for each operator or work site, by teaching. To be specific, an operation of the bucket excavation is actually performed, and the bucket is operated from an excavation start attitude to an excavation end attitude of the bucket. In the excavation start attitude, a predetermined memory button (not illustrated) is operated, and in the excavation end attitude, the predetermined memory button (not illustrated) is further operated. Accordingly, the time integration value S1 of the pilot pressures at the time of respective operations generated between the operations of the memory button is acquired, and the time integration value is used as the setting value. The memory button may be provided at the operation levers 41 and 42, or may be provided on the monitor 32. Further, other setting values can be set by similar teaching.
Meanwhile, when the various setting values are changed by the statistical processing, a predetermined number of times of excavating and loading work is conducted in advance, the predetermined operating angle or the data such as the time integration values S1 to S4 of the pilot pressures at the time of respective operations are statistically obtained using the results, the statistical processing of obtaining average values of the data and the like is performed, and obtained results may be used as the setting values.
The excavator 1 includes a moving body monitoring device 110, and the moving body monitoring device 110 is connected to a GPS sensor 116 and a transmitter/receiver 117. The GPS sensor 116 detects an own position, based on information transmitted from a plurality of GPS satellites 107 through an antenna 116a to generate own position information, and the moving body monitoring device 110 acquires the own position information. The transmitter/receiver 117 is communication-connected to the communication satellite 102 through an antenna 117a, and processing of transmitting/receiving information is performed between the moving body monitoring device 110 and the management server 104.
The work management server 105 has the same configuration and function as the monitor 32. The input/output unit 66 of the monitor 32 corresponds to the user terminal 106. Therefore, by accessing the work management server 105, the user terminal 106 can perform work management similar to the monitor 32, and can perform a wide range of and a large number of work management.
That is, fleet management can be performed in relation to progress of the work or efficiency of the work from a place away from a work site.
Note that the work management server 105 does not necessarily have the same configuration and function as the monitor 32, and the monitor 32 may be kept having the configuration and function illustrated in
Further, the excavator 1 has a satellite communication function. However, the function is not limited thereto, and the excavator 1 may have various communication functions such as a wireless LAN communication function and a mobile communication function. That is, the excavator 1 includes an external communication function. Further, when wireless communication is not available in a place where an infrastructure related to wireless communication has not been set up, a connector that enables wired connection for data communication is provided in the excavator 1, as a configuration that achieves the external communication function by wired communication and the work information and the moving body information may be downloaded through the wired communication.
Number | Date | Country | Kind |
---|---|---|---|
2012-254694 | Nov 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/080603 | 11/12/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/080805 | 5/30/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4035621 | Kemp | Jul 1977 | A |
5257177 | Bach | Oct 1993 | A |
5308219 | Lee | May 1994 | A |
5446980 | Rocke | Sep 1995 | A |
5924493 | Hartman | Jul 1999 | A |
5999872 | Kinugawa | Dec 1999 | A |
6079131 | Oshina | Jun 2000 | A |
6167336 | Singh | Dec 2000 | A |
6728619 | Adachi | Apr 2004 | B2 |
6931772 | Furuno et al. | Aug 2005 | B2 |
7395184 | Takeda | Jul 2008 | B2 |
7659677 | Yoshimatsu et al. | Feb 2010 | B2 |
7894961 | Blackburn | Feb 2011 | B2 |
8014974 | Doddek | Sep 2011 | B2 |
8103418 | Osswald | Jan 2012 | B2 |
8509999 | Suzuki | Aug 2013 | B2 |
8775033 | Magaki | Jul 2014 | B2 |
8798872 | Kagoshima et al. | Aug 2014 | B2 |
9013289 | Nishikawa et al. | Apr 2015 | B2 |
9303390 | Nagato | Apr 2016 | B2 |
9304501 | Danko | Apr 2016 | B2 |
9469972 | Ge | Oct 2016 | B2 |
20030023325 | Adachi | Jan 2003 | A1 |
20090038186 | Osswald | Feb 2009 | A1 |
20100245542 | Kim | Sep 2010 | A1 |
20110010059 | Suzuki | Jan 2011 | A1 |
20120089288 | Kawashima | Apr 2012 | A1 |
20120315119 | Magaki | Dec 2012 | A1 |
20130041561 | Asami | Feb 2013 | A1 |
20130213026 | Yamamoto | Aug 2013 | A1 |
20130325268 | Ishihara | Dec 2013 | A1 |
20130332036 | Yamamoto | Dec 2013 | A1 |
20150006010 | Ito | Jan 2015 | A1 |
20150240458 | Nagato | Aug 2015 | A1 |
20150292185 | Nagato | Oct 2015 | A1 |
20150299989 | Nagato | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
1571872 | Jan 2005 | CN |
1938485 | Mar 2007 | CN |
101153496 | Apr 2008 | CN |
102224304 | Oct 2011 | CN |
02-016417 | Apr 1990 | JP |
11-140910 | May 1999 | JP |
2000-129727 | May 2000 | JP |
2011-094453 | May 2011 | JP |
2012-225004 | Nov 2012 | JP |
Entry |
---|
International Search Report dated Feb. 18, 2014, issued for PCT/JP2013/080603. |
Number | Date | Country | |
---|---|---|---|
20150292178 A1 | Oct 2015 | US |