The invention relates generally to a method for cleaning a working surface of a cleaning device and in particular to an apparatus and method for cleaning a surface of a semiconductor tester/prober cleaning device.
Individual semiconductor (integrated circuit) devices are typically produced by fabricating multiple devices on a wafer using well known semiconductor processing techniques including photolithography, deposition, and sputtering. Generally, these processes are intended to create multiple, fully functional integrated circuit devices prior to separating (singulating) the individual devices (dies) from the semiconductor wafer. However, in practice, physical defects in the wafer material and/or defects in the manufacturing processes invariably cause some of the individual devices to be non-functional, some of which may be repairable. It is desirable to identify the defective devices prior to separating or cutting the dies from the wafer. In particular, some product is actually repairable when the flaws are caught at the wafer lever. Other product may not be repairable but may be used in a downgraded application from the original product. This determination of the product's capabilities (a product definition provided by electrical probe testing) at the wafer level saves the manufacturer considerable cost later in the manufacturing process. In addition, product cost may be reduced if defective devices are identified.
To enable the manufacturer to achieve this testing capability, a probe card, prober and tester are employed to make temporary electrical connections to the bonding pads, solder or gold bumps or any surface on the chip where connection can be made by making manual contact to that surface. The surface may be on the individual circuit device or on multiple circuit devices when the devices are still part of a wafer. Once the connections between the tester and the circuit device are made, power and electrical signals are transferred from the tester to the device for testing to determine its functionality and whether the device is accepted or rejected for further processing. Typically, the temporary connections to the device bonding elements are made by contacting multiple electrically conductive probes (often needle like structures) against the electrically conductive bonding elements of the device. By exerting controlled pressure (downwards force on the bonding pads) of the probe tips against the bonding pads, solder balls and/or gold bumps, a satisfactory electrical connection is achieved allowing the power, ground and test signals to be transmitted.
The tester and prober need a manual interface to the bonding elements on the die to achieve contact. A probe card having a plurality of probes is used to make the connection with the bonding pads of the semiconductor die. The probes may be cantilever beams or needles or vertical beams. Typically, each probe is an inherently resilient spring device acting as a cantilever beam, or as an axially loaded column. A variation is to mount multiple probes in a spring-loaded support. In a conventional prober, the probe card, and its multiple probes, are held in precise mechanical alignment with the bonding elements of the device under test (or multiple devices, or wafer as the case may be) and the device is vertically translated into contact with the tips of the probes. In the typical prober, the tips of the probes may perform a scrubbing action in which the tip of the probes moves horizontally as it contacts the bonding pad in order to scrub away oxide, or any other material on the pad, that may inhibit the electrical contact between the probes and the bonding pads. Although the scrubbing action improves the electrical contact between the probe tip and the bonding pad, it unfortunately also generates some debris (the scraped up oxide or other debris) that may also prevent the probe tip from making a good electrical contact with the bonding pad. Alternatively, the probe tip may press vertically into the bonding pad, solder or gold bump with sufficient force to penetrate any surface material and establish good electrical contact. The probe tip may become contaminated with contaminates such as aluminum, copper, lead, tin, gold, bi-products, organic films or oxides resulting from the wafer and semiconductor device manufacturing and testing processes.
Typically, the debris generated by probing needs to be periodically removed from the probe elements to prevent a build-up which causes increased contact resistance, continuity failures and false test indications, which in turn results in artificially lower yields and subsequent increased product costs. In the industry, it has been seen that a 1% change in yield from an individual prober can equate to more than $1,000,000 per annum. Therefore, with thousands of probers operating worldwide, the impact to the industry from maintaining clean probes during testing can be very substantial. Typically, the entire probe card with the plurality of probes must be removed from the prober and cleaned or abrasively cleaned in the prober. In a typical prober, the probe card can be cleaned several times an hour, several time during a single wafer test, several times during a wafer lot, several times before lot start, and several times after lot start. Also, some operators may clean the probe several times during the initial setup of the test equipment.
To clean the prober and the probe elements, a cleaning device may be used that has a working surface attached to a wafer such as disclosed in U.S. Pat. No. 6,777,966. The cleaning device substantially cleans the probe elements while reducing debris and the like, but the polymer surface of the cleaning device eventually accumulates a substantial amount of probing debris as well as air-borne particulates. Thus, it is desirable to provide an apparatus and method for cleaning the surface of a cleaning device and it is to this end that the present invention is directed.
A method and apparatus for cleaning the surface of a cleaning device is described. The cleaning device is designed to remove loose debris and adherent materials which are generated during a probing operation in a semiconductor manufacturing process. After repeated use, the polymer surface of the cleaning device accumulates a substantial amount of debris as well as various air-borne particulates, such as dust, skin, etc., found within a prober. The cleaning method provides a method for cleaning the surface of cleaning device so that the debris and particulate is removed from the cleaning device so that the cleaning device may be used again once it is cleaned.
In accordance with the invention, a method for cleaning the surface of a cleaning device is provided. In this method, a working surface of the cleaning device is visually inspected to detect debris associated with the working surface and the working surface is brushed with a brush when embedded debris is observed within the working surface. The working surface is then rinsed to remove other debris from the working surface and the working surface is dried following the rinsing.
In accordance with the invention, an apparatus for cleaning a cleaning device that has a working surface on top of a substrate is provided. The apparatus comprises a microscope for inspecting the working surface of the cleaning device to detect debris associated with the working surface. The apparatus further comprises a brush for brushing the working surface when debris embedded in the working surface is observed during the inspection of the working surface and a rinse device that is used to rinse the working surface to remove debris from the working surface.
The invention is particularly applicable to a working surface cleaning method that may be used with the prober element cleaning device described below and it is in this context that the invention will be described. It will be appreciated, however, that the method in accordance with the invention has greater utility since the method may be used to clean various different polymer surfaces.
The pad 24 may be made of a material with predetermined properties that contribute to the cleaning of the probe elements tips that contact the pad. For example, the pad may have abrasive, density, elasticity, and/or tacky properties that contribute to cleaning the probe tips. The abrasiveness of the pad will loosen debris during the scrubbing action and remove unwanted material from the tips. Using a more dense material, the abrasiveness of the pad may round or sharpen the probe tips. The pad may further be used to reshape a flat probe tip into a semi-radius or a radius probe tip. Furthermore, the pad may be used to re-furbish the tip shape of “used” probe cards. Typical abrasives that may be incorporated into the pad may include aluminum oxide, silicon carbide, and diamond although the abrasive material may also be other well known abrasive materials. The abrasive may include spatially distributed particles of aluminum oxide, silicon carbide, or diamond. The tackiness of the pad may cause any debris on the probe tip to preferentially stick to the pad and therefore be removed from the probe tip. In a preferred embodiment, the pad may be made of an elastomeric material that may include rubbers and both synthetic and natural polymers. The elastomeric material may be a material manufactured with a slight tackiness or some abrasive added to the body of the material. The material may have a predetermined elasticity, density and surface tension parameters that allow the probe tips to penetrate the elastomeric material and remove the debris on the probe tips without damage to the probe tip, while retaining the integrity of the elastomeric matrix. In one example, the elastomeric material may be the Probe Clean material commercially sold by International Test Solutions, Inc. The material may have a thickness generally between 1 and 20 mils thick. The thickness of the pad may be varied according the specific configuration of the probe tip.
As the one or more probe elements of the prober contact the pad during the normal operation of the prober machine, they exert a vertical contact force to drive the probe element into the pad where the debris on the probe elements will be removed and retained by the pad material. In other embodiments of the cleaning system, the cleaning efficiency of the material can be improved with either a horizontal translation and/or an orbital motion of the cleaning unit during the probe tip cleaning operation.
The amount and size of the abrasive material added to the elastomer may vary according the configuration and material of the probe elements to achieve a pad that will remove the debris but will not damage the probe elements. The pad material and abrasiveness may be adjusted during the manufacturing of a pad when the pad is used to reshape, sharpen or refurbish the probe element tips. The same cleaning and reshaping may also be accomplished by the substrate alone.
Once the optimal probe tip shape has been established, conventional abrasive methods affect the integrity of the tip shape, probe card planarity and alignment, and, over time, degrade probe card performance and reduce probe card service life. Furthermore, these destructive cleaning methods remove material from the test probe tip and reduce the probe card life by damaging the test probe tip, degrading the electrical performance and compromising any test probe tip shape related properties. In accordance with the invention, the cleaning system and pad not only removes and collects adherent particulates from the test probe contact surface but maintains the shape and geometric properties of the test probe tip contact surface. The insertion of the test probe tips into the cleaning device 20 removes adherent debris from the probe tip length and probe beam without leaving any organic residue that must be removed. Spectral analysis shows no material transfer from the cleaning material onto the contact surface of the test probe. Furthermore, the overall probe card electrical characteristics are unaffected. Now, several other examples of cleaning devices that may be cleaned in accordance with the invention are described.
Next, an adhesive layer 84 is formed on the pad layer 86. The adhesive layer is a compound and adheres a pad layer 86 to a substrate 22 (See
Then, as shown in
The cleaning device described above removes loose debris and adherent materials which are generated during a probing operation in a semiconductor manufacturing process. After repeated use, the polymer surface of the cleaning device accumulates a substantial amount of debris as well as various air-borne particulates, such as dust, skin, etc., found within a prober. The cleaning method provides a method for cleaning the surface of cleaning device so that the debris and particulate is removed from the cleaning device so that the cleaning device may be used again once it is cleaned.
Returning to
In step 112, if debris exists on the polymer working surface, gently flood the entire surface of the polymer with a liberal amount of IPA until it is covered with a thin layer of the liquid. Then in step 114, with a folded lint-free clean-room cloth (since paper based materials, such as towels, tissue, TEX-Wipes, etc., may not remove the IPA uniformly from the surface of the polymer material) carefully and gently wipe the IPA across the surface of the wafer in one direction to avoid redistributing debris on the polymer surface. The rinsing operation can be performed using a standard rinse bottle; however, excessive fluid pressure should not be used as excessive fluid pressure will force the IPA into any surface discontinuities and into the polymer thickness. However, prolonged exposure to liquid IPA may cause the polymer to swell and form “bumps” across the surface. In order to avoid redepositing material onto the working surface of the cleaning device, use a fresh surface of the lint free cloth with each wipe and this can be accomplished by refolding the clean-room wipe or by using a new wipe.
In step 116, the polymer surface may be dried with a low pressure blow-off across the polymer surface using an inert gas or compressed dry air (CDA). Preferably, the blow-off should not be directly perpendicular to the polymer surface. Furthermore, some forced air sources, such as pressurized canisters or “standard” house air, may contain hydrocarbon residues and are not recommended. Preferably, directing the air so that the IPA is blown from one side of the wafer to the other is suggested and using a diffuser is recommended to avoid driving the IPA into any of the surface discontinuities. In steps 118 and 120, a visual inspection of the polymer working surface for smoothness, i.e., no surface “bumps” are visible, as well as any other damage such as tears, shredded material, or significant surface discontinuities is performed. As above, if these or any other surface defects are observed, the polymer should be discarded in step 122. In step 124, the polymer surface is air-dried for at least 1 to 2 hours (24 hours, if possible) to volatilize any residual IPA from the polymer surface. Preferably, oven drying should not be used to accelerate the IPA volatilization process. In step 126, a final visual inspection of the polymer working surface for smoothness, i.e., no surface “bumps” are visible, as well as any other damage such as tears, shredded material, or significant surface discontinuities is performed. If these or any other surface defects are observed, the polymer should be discarded in step 128. In step 130, if the polymer surface is free from the aforementioned or any other defects, it can be re-installed into the prober according to recommended practices.
While the foregoing has been with reference to a particular embodiment of the invention, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the invention, the scope of which is defined by the appended claims.
This application claims priority under 35 USC 119(e) to U.S. Provisional Application Ser. No. 60/614,073 filed on Sep. 28, 2004 and entitled “Working Surface Cleaning System and Method” which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60614073 | Sep 2004 | US |