This application is related to U.S. patent application Ser. No. 11/240,110 filed Sep. 29, 2005, entitled “Network Memory Appliance for Providing Data Based on Local Accessibility,” now U.S. Pat. No. 8,312,226 issued Nov. 13, 2012. This application is also related to U.S. patent application Ser. No. 11/998,726 filed Nov. 30, 2007, entitled “Deferred Data Storage,” now U.S. Pat. No. 8,489,562 issued Jul. 16, 2013. The above referenced applications are incorporated herein by reference.
This disclosure relates generally to data optimization within a virtual environment and, more particularly, to workload optimization in a Wide Area Network (WAN) utilizing virtual switches.
The approaches described in this section could be pursued, but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Data centers may be used to provide computing infrastructure by employing a number of computing resources and associated components, such as telecommunication equipment, networking equipment, storage systems, backup power supplies, environmental controls, and so forth. A data center may provide a variety of services (e.g., web applications, email services, and search engine services) for a number of customers simultaneously. To provide these services, the computing infrastructure of the data center may run various software applications and store business and operational data. The computing resources distributed throughout the data center may be physical machines and/or virtual machines running on a physical host.
Computing resources of a data center may transmit and receive data packets via a WAN. Physical switches and routers can be distributed throughout the WAN and configured to connect various network segments and route the data packets within the network environment. It may be desirable to optimize or otherwise transform the data packets transmitted and received via the WAN. Routing of the data packets for optimization may be performed by providing instructions to physical switches and routers to reroute the data packets to a data optimization virtual machine. However, involving reconfiguration of physical network components in data optimization may be costly and require complex coordination of various organizations and departments.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In exemplary embodiments, a method may include instructing a virtual switch associated with a virtual machine to redirect one or more data packets directed to or from a first address associated with the virtual machine to a second address associated with a first data optimization virtual machine. The method may further include receiving, at the first data optimization virtual machine, the one or more data packets redirected by the virtual switch. The method may then selectively perform one or more transformations on the one or more data packets to create one or more transformed data packets, and transmit the one or more transformed data packets to a second data optimization virtual machine.
In further embodiments, a system may comprise an optimization controller to provide redirection instructions to a virtual switch associated with a virtual machine. The virtual switch may redirect, based on the redirection instructions, one or more data packets directed to or from a first address associated with the virtual machine to a second address associated with a first data optimization virtual machine. The first data optimization virtual machine may receive the one or more data packets redirected by the virtual switch, selectively perform one or more transformations on the one or more data packets to create one or more transformed data packets, and transmit the one or more transformed data packets to a second data optimization machine.
In further exemplary embodiments, the above method steps may be stored on a machine-readable medium comprising instructions, which when implemented by one or more processors perform the steps of the method. In yet further examples, subsystems or devices can be adapted to perform the recited steps. Other features, examples, and embodiments are described below.
Embodiments are illustrated by way of example, and not by limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations, in accordance with exemplary embodiments. These exemplary embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.
The embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium, such as a disk drive, or computer-readable medium.
The embodiments described herein relate to computer-implemented methods for data optimization within a virtual environment. The virtual environment may include a number of virtual machines and virtual switches hosted by one or more hosts, which in turn may reside within a data center. The data optimization may be performed by a data optimization virtual machine. An optimization controller may instruct the virtual switches to redirect outbound data packets to the data optimization virtual machine for further processing. The further processing may include encryption and/or compression of data packets to decrease the transmission and computing costs and/or increase the speed of transmission. The optimized data traffic may be forwarded to one or more other data optimization virtual machines. The data traffic outbound from these other data optimization virtual machines may be transmitted to the original intended destinations via a network such as a WAN.
The data optimization virtual machine may optimize data packets based on a number of criteria. These criteria may include workload or virtual machine names, types of data packets which are to be redirected for optimization, source addresses, destination addresses for transmission of data packets, and so forth. The criteria may also include user instructions which can be provided by the users via a GUI (graphical user interface). The GUI may be integrated within the virtual machine manager as a plug-in.
The GUI may list hosts, software applications, and virtual machines. The list may be constructed automatically by communicating with the virtual machine manager resident in the data center. The users may also select which hosts and/or virtual machines are to be in communication with the data optimization virtual machine. The GUI may be displayed on a desktop, web, or a mobile application and interact with a host such as, for example, a Global Management System host, which provides the users with tools to centrally configure, monitor, and manage data traffic from and to the data center(s). The users may be provided with the ability to specify how the data packets are to be optimized.
The redirecting of data packets by virtual switches may be performed in a variety of ways. In one example, the virtual switches may be provided with one or more access control lists (ACLs) to specify which data packets are to be redirected for optimization. Alternatively, the optimization controller may instruct the virtual machine manager resident in the subject network to automatically perform the workload management function. In addition, the redirecting may be performed in accordance with a command line interface (CLI) protocol, OpenFlow protocol, or any other networking protocols suitable for instructing the virtual machines to redirect the data packets.
The redirecting may involve replacing the destination address of data packets with an address associated with the data optimization virtual machine. Addresses associated with the data optimization virtual machine may also be prepended or appended to the data packets. The destination and/or source addresses may be included in headers of the data packets once the data packets are optimized or otherwise processed by the data optimization virtual machine.
An optimization controller may query the workload manager for a list of all available hosts and virtual machines. The optimization controller may at least in part use that list as a basis to generate a GUI displayed for the user. The system of the present invention may in some exemplary configurations be installed as a plugin in the virtual machine manager.
As illustrated in
The virtual machines 122, 132, 142, and 152 may be provided with dedicated and unique identifiers or addresses such as Internet Protocol (IP) addresses. The virtual machines 122 and 132 may generate data packets, which may include a source address, a destination address, and payload. Hosts 120, 130, 140, 150 may include multiple virtual switches, such as virtual switches 126, 136, 146, and 156.
The hosts 120, 130, 140, and 150 may include hypervisors 124, 134, 144, and 154 respectively. The hypervisors 124, 134, 144, and 154 may utilize hardware or software virtualization techniques allowing multiple guest operating systems to run concurrently on the hosting hosts. The hypervisors 124, 134, 144, and 154 may provide a virtual operating platform and manage execution of the guest operating systems. Multiple instances of a variety of operating systems may share the virtualized hardware resources. Hypervisors can be installed on host hardware and run guest operating systems, which, in turn, may function as hosts for various applications.
The hypervisors 124, 134, 144, and 154 may include virtual switches 126, 136, 146, and 156, respectively. Generally speaking, the virtual switches 126, 136, 146, and 156 may be embodied as software programs, one function of which is to allow one virtual machine to communicate with another virtual machine. Just like their physical counterparts (for example, Ethernet switches), virtual switches may not only forward data packets, but may also intelligently direct communications of a network by inspecting data packets before passing them on. The virtual switches 126, 136, 146, and 156 may be embedded into virtualization software within hypervisors 124, 134, 144, and 154, or, alternatively, the virtual switches 126, 136, 146, and 156 may be included in the hardware of hosts 120, 130, 140, and 150 as part of their firmware. The virtual switches 126, 136, 146, and 156 may also be installed as a module inside a hypervisor.
The system environment 100 may further include a physical switch 180, which may be configured to receive data packets from multiple sources (e.g., hosts 120, 130, 140, and 150) and then transmit the data packets to the intended networked devices. The physical switch 180 may direct data packets from virtual switches 126, 136, 146, and 156 and/or data optimization virtual machines 142 and 152 to virtual switches and/or data optimization virtual machines outside the data center 110, for example to a second data center 190 or to a branch 195. The data packets may be transmitted via a network 170 using a router 185. The second data center 190 and the branch 195 may include one or more data optimization virtual machines.
The network 170 may include one or more of the following: WAN, the Internet, Metropolitan Area Network (MAN), Backbone network, Storage Area Network (SAN), Advanced Intelligent Network (AIN), Local Area Network (LAN), Personal Area Network (PAN), and so forth.
As mentioned above, hosts 140 and 150 may host one or more data optimization virtual machines 142 and 152 which will be described in greater detail below with reference to
The criteria used to program the virtual switches 126, 136, 146 and 156 may include user instructions which can be provided by a user via a GUI 160 facilitated by a GUI interface (plugin), which may also be resident in the management system 400. The GUI interface may reside inside or outside the management system 400.
Even though the optimization controller 410 is shown to program and control various components of the data center 110, it should be understood that it may also control components of other data centers. Additionally, the management system 400 may reside within or outside the data center 110 or any other data center. Additionally, even though a single optimization controller 410 is shown, it will be understood that there may be additional and/redundant controllers. There could be additional and/or redundant controllers controlling the data center 110 and/or data center 190. However, it is not necessary for optimization controller 410 to control both data center 110 and data center 190. Each data center may be controlled by a different controller.
The GUI 160 may enable one or more users to select one or more workloads to be optimized and provide other optimization parameters. For example, a user may provide load balancing parameters with respect to a particular workload by specifying that more than one data optimization virtual machine may receive data packets from a virtual machine. The optimization controller 410 then may automatically select a less loaded data optimization virtual machine. In some embodiments, if all data optimization virtual machines are busy, a new data optimization virtual machine can be started by the optimization controller 410. Conversely, if there are more data optimization virtual machines active than the current traffic requires, the optimization controller 410 may shut down one or more data optimization virtual machines.
The data management system may instruct virtual switches to redirect certain data packets to a virtual address associated with the data optimization virtual machine. The instructions to redirect data packets may include one or more criteria including user instructions, types of data packets, and so forth. The data optimization virtual machine may be configured to optimize the data packets to generate one or more optimized data packets. The optimization may include encryption and/or compression of the data packets, their transformation, relations between the data packets, and so forth. The data optimization virtual machine may also be configured to create new or update existing headers to replace the address with the original destination address.
The GUI 450 may be configured to enable users to configure the data optimizing machine, preferences related to data optimization, preferences related to data packet redirecting, and so forth. The settings, instructions, software codes, and other related data may be stored in the storage. The GUI 450 may be shown on a display of a user device (not shown) such as a personal computer (PC), a tablet computer, a mobile device, or any other suitable device. In an example, the GUI 450 may be shown on the display of the user device via a browser or some other software application.
As shown in
Even though only checkboxes are shown in the optimization table, other selectable items can be provided. Example selectable items are described in more detail with reference to
As shown in
In operation 630, the data optimization appliance may receive the data packets redirected by the virtual switch. It may be determined at decision block 640 whether or not there is an optimization virtual machine at the destination site. If it is determined that there is no optimization virtual machine at the destination site, the data optimization appliance may not perform any transformation on the data packets and the data packets are transmitted to the destination address in operation 650.
If on the other hand it is determined that the destination site has one or more corresponding optimization virtual machines, the optimization virtual machine may perform optimization transformations on the data packets in operation 660. The optimization transformations may include encryption, compression, and other transformation facilitating data packet transmission over the network 170. The transformed data packets may then be sent to a second optimization virtual machine in step 670. In step 680, the transformation is reversed. Thereafter, in step 690, the original information is received at the original destination.
The example computer system 700 includes a processor or multiple processors 705 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), and a main memory 710 and a static memory 715, which communicate with each other via a bus 720. The computer system 700 can further include a video display unit 725 (e.g., a LCD or a cathode ray tube (CRT)). The computer system 700 also includes at least one input device 730, such as an alphanumeric input device (e.g., a keyboard), a cursor control device (e.g., a mouse), a microphone, a digital camera, a video camera, and so forth. The computer system 700 also includes a disk drive unit 735, a signal generation device 740 (e.g., a speaker), and a network interface device 745.
The disk drive unit 735 includes a computer-readable medium 750, which stores one or more sets of instructions and data structures (e.g., instructions 755) embodying or utilized by any one or more of the methodologies or functions described herein. The instructions 755 can also reside, completely or at least partially, within the main memory 710 and/or within the processors 705 during execution thereof by the computer system 700. The main memory 710 and the processors 705 also constitute machine-readable media.
The instructions 755 can further be transmitted or received over the communications network 170 via the network interface device 745 utilizing any one of a number of well-known transfer protocols (e.g., Hyper Text Transfer Protocol (HTTP), CAN, Serial, and Modbus).
While the computer-readable medium 750 is shown in an example embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and hosts) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present application, or that is capable of storing, encoding, or carrying data structures utilized by or associated with such a set of instructions. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media. Such media can also include, without limitation, hard disks, floppy disks, flash memory cards, digital video disks (DVDs), random access memory (RAM), read only memory (ROM), and the like.
The example embodiments described herein can be implemented in an operating environment comprising computer-executable instructions (e.g., software) installed on a computer, in hardware, or in a combination of software and hardware. The computer-executable instructions can be written in a computer programming language or can be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interfaces to a variety of operating systems. Although not limited thereto, computer software programs for implementing the present method can be written in any number of suitable programming languages such as, for example, Hypertext Markup Language (HTML), Dynamic HTML, XML, Extensible Stylesheet Language (XSL), Document Style Semantics and Specification Language (DSSSL), Cascading Style Sheets (CSS), Synchronized Multimedia Integration Language (SMIL), Wireless Markup Language (WML), Java™, Jini™, C, C++, C#, .NET, Adobe Flash, Perl, UNIX Shell, Visual Basic or Visual Basic Script, Virtual Reality Markup Language (VRML), ColdFusion™ or other compilers, assemblers, interpreters, or other computer languages or platforms.
Thus, methods and systems for data traffic optimization within a virtual environment are disclosed. Although embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4494108 | Langdon, Jr. et al. | Jan 1985 | A |
4558302 | Welch | Dec 1985 | A |
4612532 | Bacon et al. | Sep 1986 | A |
5023611 | Chamzas et al. | Jun 1991 | A |
5243341 | Seroussi et al. | Sep 1993 | A |
5307413 | Denzer | Apr 1994 | A |
5357250 | Healey et al. | Oct 1994 | A |
5359720 | Tamura et al. | Oct 1994 | A |
5373290 | Lempel et al. | Dec 1994 | A |
5483556 | Pillan et al. | Jan 1996 | A |
5532693 | Winters et al. | Jul 1996 | A |
5592613 | Miyazawa et al. | Jan 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5627533 | Clark | May 1997 | A |
5635932 | Shinagawa et al. | Jun 1997 | A |
5652581 | Furlan et al. | Jul 1997 | A |
5659737 | Matsuda | Aug 1997 | A |
5675587 | Okuyama et al. | Oct 1997 | A |
5710562 | Gormish et al. | Jan 1998 | A |
5748122 | Shinagawa et al. | May 1998 | A |
5754774 | Bittinger et al. | May 1998 | A |
5802106 | Packer | Sep 1998 | A |
5805822 | Long et al. | Sep 1998 | A |
5883891 | Williams et al. | Mar 1999 | A |
5903230 | Masenas | May 1999 | A |
5955976 | Heath | Sep 1999 | A |
6000053 | Levine et al. | Dec 1999 | A |
6003087 | Housel, III et al. | Dec 1999 | A |
6054943 | Lawrence | Apr 2000 | A |
6081883 | Popelka et al. | Jun 2000 | A |
6084855 | Soirinsuo et al. | Jul 2000 | A |
6175944 | Urbanke et al. | Jan 2001 | B1 |
6191710 | Waletzki | Feb 2001 | B1 |
6295541 | Bodnar et al. | Sep 2001 | B1 |
6308148 | Bruins et al. | Oct 2001 | B1 |
6311260 | Stone et al. | Oct 2001 | B1 |
6339616 | Kovalev | Jan 2002 | B1 |
6374266 | Shnelvar | Apr 2002 | B1 |
6434641 | Haupt et al. | Aug 2002 | B1 |
6434662 | Greene et al. | Aug 2002 | B1 |
6438664 | McGrath et al. | Aug 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6463001 | Williams | Oct 2002 | B1 |
6489902 | Heath | Dec 2002 | B2 |
6493698 | Beylin | Dec 2002 | B1 |
6570511 | Cooper | May 2003 | B1 |
6587985 | Fukushima et al. | Jul 2003 | B1 |
6614368 | Cooper | Sep 2003 | B1 |
6618397 | Huang | Sep 2003 | B1 |
6633953 | Stark | Oct 2003 | B2 |
6643259 | Borella et al. | Nov 2003 | B1 |
6650644 | Colley et al. | Nov 2003 | B1 |
6653954 | Rijavec | Nov 2003 | B2 |
6667700 | McCanne et al. | Dec 2003 | B1 |
6674769 | Viswanath | Jan 2004 | B1 |
6718361 | Basani et al. | Apr 2004 | B1 |
6728840 | Shatil et al. | Apr 2004 | B1 |
6738379 | Balazinski et al. | May 2004 | B1 |
6769048 | Goldberg et al. | Jul 2004 | B2 |
6791945 | Levenson et al. | Sep 2004 | B1 |
6856651 | Singh | Feb 2005 | B2 |
6859842 | Nakamichi et al. | Feb 2005 | B1 |
6862602 | Guha | Mar 2005 | B2 |
6910106 | Sechrest et al. | Jun 2005 | B2 |
6963980 | Mattsson | Nov 2005 | B1 |
6968374 | Lemieux et al. | Nov 2005 | B2 |
6978384 | Milliken | Dec 2005 | B1 |
7007044 | Rafert et al. | Feb 2006 | B1 |
7020750 | Thiyagaranjan et al. | Mar 2006 | B2 |
7035214 | Seddigh et al. | Apr 2006 | B1 |
7047281 | Kausik | May 2006 | B1 |
7069268 | Burns et al. | Jun 2006 | B1 |
7069342 | Biederman | Jun 2006 | B1 |
7110407 | Khanna | Sep 2006 | B1 |
7111005 | Wessman | Sep 2006 | B1 |
7113962 | Kee et al. | Sep 2006 | B1 |
7120666 | McCanne et al. | Oct 2006 | B2 |
7145889 | Zhang et al. | Dec 2006 | B1 |
7197597 | Scheid et al. | Mar 2007 | B1 |
7200847 | Straube et al. | Apr 2007 | B2 |
7215667 | Davis | May 2007 | B1 |
7242681 | Van Bokkelen et al. | Jul 2007 | B1 |
7243094 | Tabellion et al. | Jul 2007 | B2 |
7266645 | Garg et al. | Sep 2007 | B2 |
7278016 | Detrick et al. | Oct 2007 | B1 |
7318100 | Demmer et al. | Jan 2008 | B2 |
7366829 | Luttrell et al. | Apr 2008 | B1 |
7380006 | Srinivas et al. | May 2008 | B2 |
7383329 | Erickson | Jun 2008 | B2 |
7383348 | Seki et al. | Jun 2008 | B2 |
7388844 | Brown et al. | Jun 2008 | B1 |
7389357 | Duffie, III et al. | Jun 2008 | B2 |
7389393 | Karr et al. | Jun 2008 | B1 |
7417570 | Srinivasan et al. | Aug 2008 | B2 |
7417991 | Crawford et al. | Aug 2008 | B1 |
7420992 | Fang et al. | Sep 2008 | B1 |
7428573 | McCanne et al. | Sep 2008 | B2 |
7451237 | Takekawa et al. | Nov 2008 | B2 |
7453379 | Plamondon | Nov 2008 | B2 |
7454443 | Ram et al. | Nov 2008 | B2 |
7457315 | Smith | Nov 2008 | B1 |
7460473 | Kodama et al. | Dec 2008 | B1 |
7471629 | Melpignano | Dec 2008 | B2 |
7532134 | Samuels et al. | May 2009 | B2 |
7555484 | Kulkarni et al. | Jun 2009 | B2 |
7571343 | Xiang et al. | Aug 2009 | B1 |
7571344 | Hughes et al. | Aug 2009 | B2 |
7587401 | Yeo et al. | Sep 2009 | B2 |
7596802 | Border et al. | Sep 2009 | B2 |
7619545 | Samuels et al. | Nov 2009 | B2 |
7620870 | Srinivasan et al. | Nov 2009 | B2 |
7624446 | Wilhelm | Nov 2009 | B1 |
7630295 | Hughes et al. | Dec 2009 | B2 |
7639700 | Nabhan et al. | Dec 2009 | B1 |
7643426 | Lee et al. | Jan 2010 | B1 |
7644230 | Hughes et al. | Jan 2010 | B1 |
7676554 | Malmskog et al. | Mar 2010 | B1 |
7698431 | Hughes | Apr 2010 | B1 |
7702843 | Chen et al. | Apr 2010 | B1 |
7714747 | Fallon | May 2010 | B2 |
7746781 | Xiang | Jun 2010 | B1 |
7764606 | Ferguson et al. | Jul 2010 | B1 |
7810155 | Ravi | Oct 2010 | B1 |
7827237 | Plamondon | Nov 2010 | B2 |
7849134 | McCanne et al. | Dec 2010 | B2 |
7853699 | Wu et al. | Dec 2010 | B2 |
7873786 | Singh et al. | Jan 2011 | B1 |
7917599 | Gopalan et al. | Mar 2011 | B1 |
7925711 | Gopalan et al. | Apr 2011 | B1 |
7941606 | Pullela et al. | May 2011 | B1 |
7945736 | Hughes et al. | May 2011 | B2 |
7948921 | Hughes et al. | May 2011 | B1 |
7953869 | Demmer et al. | May 2011 | B2 |
7970898 | Clubb et al. | Jun 2011 | B2 |
7975018 | Unrau et al. | Jul 2011 | B2 |
8069225 | McCanne et al. | Nov 2011 | B2 |
8072985 | Golan et al. | Dec 2011 | B2 |
8090027 | Schneider | Jan 2012 | B2 |
8095774 | Hughes et al. | Jan 2012 | B1 |
8140757 | Singh et al. | Mar 2012 | B1 |
8171238 | Hughes et al. | May 2012 | B1 |
8209334 | Doerner | Jun 2012 | B1 |
8225072 | Hughes et al. | Jul 2012 | B2 |
8271325 | Silverman et al. | Sep 2012 | B2 |
8307115 | Hughes | Nov 2012 | B1 |
8312226 | Hughes | Nov 2012 | B2 |
8352608 | Keagy et al. | Jan 2013 | B1 |
8370583 | Hughes | Feb 2013 | B2 |
8386797 | Danilak | Feb 2013 | B1 |
8392684 | Hughes | Mar 2013 | B2 |
8442052 | Hughes | May 2013 | B1 |
8447740 | Huang et al. | May 2013 | B1 |
8473714 | Hughes et al. | Jun 2013 | B2 |
8489562 | Hughes et al. | Jul 2013 | B1 |
8516158 | Wu et al. | Aug 2013 | B1 |
8565118 | Shukla et al. | Oct 2013 | B2 |
8595314 | Hughes | Nov 2013 | B1 |
8613071 | Day et al. | Dec 2013 | B2 |
8681614 | McCanne et al. | Mar 2014 | B1 |
8699490 | Zheng et al. | Apr 2014 | B2 |
8700771 | Ramankutty et al. | Apr 2014 | B1 |
8706947 | Vincent | Apr 2014 | B1 |
8725988 | Hughes et al. | May 2014 | B2 |
8732423 | Hughes | May 2014 | B1 |
8738865 | Hughes et al. | May 2014 | B1 |
8743683 | Hughes | Jun 2014 | B1 |
8755381 | Hughes et al. | Jun 2014 | B2 |
8811431 | Hughes | Aug 2014 | B2 |
8885632 | Hughes et al. | Nov 2014 | B2 |
8929380 | Hughes et al. | Jan 2015 | B1 |
8929402 | Hughes | Jan 2015 | B1 |
8930650 | Hughes et al. | Jan 2015 | B1 |
9003541 | Patidar | Apr 2015 | B1 |
9036662 | Hughes | May 2015 | B1 |
9054876 | Yagnik | Jun 2015 | B1 |
9092342 | Hughes et al. | Jul 2015 | B2 |
9130991 | Hughes | Sep 2015 | B2 |
9143455 | Hughes | Sep 2015 | B1 |
9152574 | Hughes et al. | Oct 2015 | B2 |
9191342 | Hughes et al. | Nov 2015 | B2 |
9253277 | Hughes et al. | Feb 2016 | B2 |
9306818 | Aumann et al. | Apr 2016 | B2 |
9307442 | Bachmann et al. | Apr 2016 | B2 |
9363309 | Hughes | Jun 2016 | B2 |
9397951 | Hughes | Jul 2016 | B1 |
9438538 | Hughes et al. | Sep 2016 | B2 |
9549048 | Hughes | Jan 2017 | B1 |
9584403 | Hughes et al. | Feb 2017 | B2 |
9584414 | Sung et al. | Feb 2017 | B2 |
9613071 | Hughes | Apr 2017 | B1 |
9626224 | Hughes et al. | Apr 2017 | B2 |
20010026231 | Satoh | Oct 2001 | A1 |
20010054084 | Kosmynin | Dec 2001 | A1 |
20020007413 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020010702 | Ajtai et al. | Jan 2002 | A1 |
20020040475 | Yap et al. | Apr 2002 | A1 |
20020061027 | Abiru et al. | May 2002 | A1 |
20020065998 | Buckland | May 2002 | A1 |
20020071436 | Border et al. | Jun 2002 | A1 |
20020078242 | Viswanath | Jun 2002 | A1 |
20020101822 | Ayyagari et al. | Aug 2002 | A1 |
20020107988 | Jordan | Aug 2002 | A1 |
20020116424 | Radermacher et al. | Aug 2002 | A1 |
20020129158 | Zhang et al. | Sep 2002 | A1 |
20020129260 | Benfield et al. | Sep 2002 | A1 |
20020131434 | Vukovic et al. | Sep 2002 | A1 |
20020150041 | Reinshmidt et al. | Oct 2002 | A1 |
20020163911 | Wee et al. | Nov 2002 | A1 |
20020169818 | Stewart et al. | Nov 2002 | A1 |
20020181494 | Rhee | Dec 2002 | A1 |
20020188871 | Noehring et al. | Dec 2002 | A1 |
20020194324 | Guha | Dec 2002 | A1 |
20030002664 | Anand | Jan 2003 | A1 |
20030009558 | Ben-Yehezkel | Jan 2003 | A1 |
20030012400 | McAuliffe et al. | Jan 2003 | A1 |
20030046572 | Newman et al. | Mar 2003 | A1 |
20030123481 | Neale et al. | Jul 2003 | A1 |
20030123671 | He et al. | Jul 2003 | A1 |
20030131079 | Neale et al. | Jul 2003 | A1 |
20030133568 | Stein et al. | Jul 2003 | A1 |
20030142658 | Ofuji et al. | Jul 2003 | A1 |
20030149661 | Mitchell et al. | Aug 2003 | A1 |
20030149869 | Gleichauf | Aug 2003 | A1 |
20030204619 | Bays | Oct 2003 | A1 |
20030214502 | Park et al. | Nov 2003 | A1 |
20030214954 | Oldak et al. | Nov 2003 | A1 |
20030233431 | Reddy et al. | Dec 2003 | A1 |
20040008711 | Lahti et al. | Jan 2004 | A1 |
20040047308 | Kavanagh et al. | Mar 2004 | A1 |
20040083299 | Dietz et al. | Apr 2004 | A1 |
20040086114 | Rarick | May 2004 | A1 |
20040088376 | McCanne et al. | May 2004 | A1 |
20040114569 | Naden et al. | Jun 2004 | A1 |
20040117571 | Chang et al. | Jun 2004 | A1 |
20040123139 | Aiello et al. | Jun 2004 | A1 |
20040158644 | Albuquerque et al. | Aug 2004 | A1 |
20040179542 | Murakami et al. | Sep 2004 | A1 |
20040181679 | Dettinger et al. | Sep 2004 | A1 |
20040199771 | Morten et al. | Oct 2004 | A1 |
20040202110 | Kim | Oct 2004 | A1 |
20040203820 | Billhartz | Oct 2004 | A1 |
20040205332 | Bouchard et al. | Oct 2004 | A1 |
20040243571 | Judd | Dec 2004 | A1 |
20040250027 | Heflinger | Dec 2004 | A1 |
20040255048 | Lev Ran et al. | Dec 2004 | A1 |
20050010653 | McCanne | Jan 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050053094 | Cain et al. | Mar 2005 | A1 |
20050055372 | Springer, Jr. et al. | Mar 2005 | A1 |
20050055399 | Savchuk | Mar 2005 | A1 |
20050071453 | Ellis et al. | Mar 2005 | A1 |
20050091234 | Hsu et al. | Apr 2005 | A1 |
20050111460 | Sahita | May 2005 | A1 |
20050131939 | Douglis et al. | Jun 2005 | A1 |
20050132252 | Fifer et al. | Jun 2005 | A1 |
20050141425 | Foulds | Jun 2005 | A1 |
20050171937 | Hughes et al. | Aug 2005 | A1 |
20050177603 | Shavit | Aug 2005 | A1 |
20050190694 | Ben-Nun et al. | Sep 2005 | A1 |
20050207443 | Kawamura et al. | Sep 2005 | A1 |
20050210151 | Abdo et al. | Sep 2005 | A1 |
20050220019 | Melpignano | Oct 2005 | A1 |
20050220097 | Swami et al. | Oct 2005 | A1 |
20050235119 | Sechrest et al. | Oct 2005 | A1 |
20050240380 | Jones | Oct 2005 | A1 |
20050243743 | Kimura | Nov 2005 | A1 |
20050243835 | Sharma et al. | Nov 2005 | A1 |
20050256972 | Cochran et al. | Nov 2005 | A1 |
20050278459 | Boucher et al. | Dec 2005 | A1 |
20050283355 | Itani et al. | Dec 2005 | A1 |
20050286526 | Sood et al. | Dec 2005 | A1 |
20060013210 | Bordogna et al. | Jan 2006 | A1 |
20060026425 | Douceur et al. | Feb 2006 | A1 |
20060031936 | Nelson et al. | Feb 2006 | A1 |
20060036901 | Yang et al. | Feb 2006 | A1 |
20060039354 | Rao et al. | Feb 2006 | A1 |
20060045096 | Farmer et al. | Mar 2006 | A1 |
20060059171 | Borthakur et al. | Mar 2006 | A1 |
20060059173 | Hirsch et al. | Mar 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060136913 | Sameske | Jun 2006 | A1 |
20060143497 | Zohar et al. | Jun 2006 | A1 |
20060195547 | Sundarrajan et al. | Aug 2006 | A1 |
20060195840 | Sundarrajan et al. | Aug 2006 | A1 |
20060212426 | Shakara et al. | Sep 2006 | A1 |
20060218390 | Loughran et al. | Sep 2006 | A1 |
20060227717 | van den Berg et al. | Oct 2006 | A1 |
20060250965 | Irwin | Nov 2006 | A1 |
20060268932 | Singh et al. | Nov 2006 | A1 |
20060280205 | Cho | Dec 2006 | A1 |
20070002804 | Xiong et al. | Jan 2007 | A1 |
20070008884 | Tang | Jan 2007 | A1 |
20070011424 | Sharma et al. | Jan 2007 | A1 |
20070038815 | Hughes | Feb 2007 | A1 |
20070038816 | Hughes et al. | Feb 2007 | A1 |
20070038858 | Hughes | Feb 2007 | A1 |
20070050475 | Hughes | Mar 2007 | A1 |
20070076693 | Krishnaswamy | Apr 2007 | A1 |
20070081513 | Torsner | Apr 2007 | A1 |
20070097874 | Hughes et al. | May 2007 | A1 |
20070110046 | Farrell et al. | May 2007 | A1 |
20070115812 | Hughes | May 2007 | A1 |
20070127372 | Khan et al. | Jun 2007 | A1 |
20070130114 | Li et al. | Jun 2007 | A1 |
20070140129 | Bauer et al. | Jun 2007 | A1 |
20070150497 | De La Cruz et al. | Jun 2007 | A1 |
20070174428 | Lev Ran et al. | Jul 2007 | A1 |
20070179900 | Daase et al. | Aug 2007 | A1 |
20070195702 | Yuen et al. | Aug 2007 | A1 |
20070195789 | Yao | Aug 2007 | A1 |
20070198523 | Hayim | Aug 2007 | A1 |
20070226320 | Hager et al. | Sep 2007 | A1 |
20070237104 | Alon et al. | Oct 2007 | A1 |
20070244987 | Pedersen et al. | Oct 2007 | A1 |
20070245079 | Bhattacharjee et al. | Oct 2007 | A1 |
20070248084 | Whitehead | Oct 2007 | A1 |
20070258468 | Bennett | Nov 2007 | A1 |
20070263554 | Finn | Nov 2007 | A1 |
20070276983 | Zohar et al. | Nov 2007 | A1 |
20070280245 | Rosberg | Dec 2007 | A1 |
20080005156 | Edwards et al. | Jan 2008 | A1 |
20080013532 | Garner et al. | Jan 2008 | A1 |
20080016301 | Chen | Jan 2008 | A1 |
20080028467 | Kommareddy et al. | Jan 2008 | A1 |
20080031149 | Hughes et al. | Feb 2008 | A1 |
20080031240 | Hughes et al. | Feb 2008 | A1 |
20080071818 | Apanowicz et al. | Mar 2008 | A1 |
20080095060 | Yao | Apr 2008 | A1 |
20080133536 | Bjorner et al. | Jun 2008 | A1 |
20080133561 | Dubnicki et al. | Jun 2008 | A1 |
20080184081 | Hama et al. | Jul 2008 | A1 |
20080205445 | Kumar et al. | Aug 2008 | A1 |
20080222044 | Gottlieb et al. | Sep 2008 | A1 |
20080229137 | Samuels et al. | Sep 2008 | A1 |
20080243992 | Jardetzky et al. | Oct 2008 | A1 |
20080267217 | Colville et al. | Oct 2008 | A1 |
20080300887 | Chen et al. | Dec 2008 | A1 |
20080313318 | Vermeulen et al. | Dec 2008 | A1 |
20080320151 | McCanne et al. | Dec 2008 | A1 |
20090006801 | Shultz et al. | Jan 2009 | A1 |
20090024763 | Stepin et al. | Jan 2009 | A1 |
20090037448 | Thomas | Feb 2009 | A1 |
20090060198 | Little | Mar 2009 | A1 |
20090063696 | Wang et al. | Mar 2009 | A1 |
20090080460 | Kronewitter, III et al. | Mar 2009 | A1 |
20090089048 | Pouzin | Apr 2009 | A1 |
20090092137 | Haigh et al. | Apr 2009 | A1 |
20090100483 | McDowell | Apr 2009 | A1 |
20090158417 | Khanna et al. | Jun 2009 | A1 |
20090175172 | Prytz et al. | Jul 2009 | A1 |
20090204961 | DeHaan | Aug 2009 | A1 |
20090234966 | Samuels et al. | Sep 2009 | A1 |
20090245114 | Vijayaraghavan | Oct 2009 | A1 |
20090265707 | Goodman et al. | Oct 2009 | A1 |
20090274294 | Itani | Nov 2009 | A1 |
20090279550 | Romrell et al. | Nov 2009 | A1 |
20090281984 | Black | Nov 2009 | A1 |
20100005222 | Brant et al. | Jan 2010 | A1 |
20100011125 | Yang et al. | Jan 2010 | A1 |
20100020693 | Thakur | Jan 2010 | A1 |
20100054142 | Moiso et al. | Mar 2010 | A1 |
20100070605 | Hughes et al. | Mar 2010 | A1 |
20100077251 | Liu et al. | Mar 2010 | A1 |
20100082545 | Bhattacharjee et al. | Apr 2010 | A1 |
20100085964 | Weir et al. | Apr 2010 | A1 |
20100115137 | Kim et al. | May 2010 | A1 |
20100121957 | Roy et al. | May 2010 | A1 |
20100124239 | Hughes | May 2010 | A1 |
20100131957 | Kami | May 2010 | A1 |
20100169467 | Shukla | Jul 2010 | A1 |
20100177663 | Johansson et al. | Jul 2010 | A1 |
20100225658 | Coleman | Sep 2010 | A1 |
20100232443 | Pandey | Sep 2010 | A1 |
20100242106 | Harris et al. | Sep 2010 | A1 |
20100246584 | Ferguson et al. | Sep 2010 | A1 |
20100290364 | Black | Nov 2010 | A1 |
20100318892 | Teevan et al. | Dec 2010 | A1 |
20100333212 | Carpenter et al. | Dec 2010 | A1 |
20110002346 | Wu | Jan 2011 | A1 |
20110022812 | van der Linden et al. | Jan 2011 | A1 |
20110113472 | Fung et al. | May 2011 | A1 |
20110154169 | Gopal et al. | Jun 2011 | A1 |
20110154329 | Arcese et al. | Jun 2011 | A1 |
20110181448 | Koratagere | Jul 2011 | A1 |
20110219181 | Hughes et al. | Sep 2011 | A1 |
20110225322 | Demidov et al. | Sep 2011 | A1 |
20110258049 | Ramer et al. | Oct 2011 | A1 |
20110261828 | Smith | Oct 2011 | A1 |
20110276963 | Wu et al. | Nov 2011 | A1 |
20110299537 | Saraiya et al. | Dec 2011 | A1 |
20120036325 | Mashtizadeh et al. | Feb 2012 | A1 |
20120069131 | Abelow | Mar 2012 | A1 |
20120173759 | Agarwal et al. | Jul 2012 | A1 |
20120218130 | Boettcher et al. | Aug 2012 | A1 |
20120221611 | Watanabe et al. | Aug 2012 | A1 |
20120230345 | Ovsiannikov | Sep 2012 | A1 |
20120239872 | Hughes et al. | Sep 2012 | A1 |
20130018722 | Libby | Jan 2013 | A1 |
20130018765 | Fork et al. | Jan 2013 | A1 |
20130031642 | Dwivedi et al. | Jan 2013 | A1 |
20130044751 | Casado et al. | Feb 2013 | A1 |
20130058354 | Casado | Mar 2013 | A1 |
20130080619 | Assuncao et al. | Mar 2013 | A1 |
20130086236 | Baucke et al. | Apr 2013 | A1 |
20130094501 | Hughes | Apr 2013 | A1 |
20130103655 | Fanghaenel et al. | Apr 2013 | A1 |
20130117494 | Hughes et al. | May 2013 | A1 |
20130121209 | Padmanabhan et al. | May 2013 | A1 |
20130141259 | Hazarika et al. | Jun 2013 | A1 |
20130163594 | Sharma et al. | Jun 2013 | A1 |
20130250951 | Koganti | Sep 2013 | A1 |
20130263125 | Shamsee et al. | Oct 2013 | A1 |
20130282970 | Hughes et al. | Oct 2013 | A1 |
20130343191 | Kim et al. | Dec 2013 | A1 |
20140052864 | Van Der Linden et al. | Feb 2014 | A1 |
20140075554 | Cooley | Mar 2014 | A1 |
20140101426 | Senthurpandi | Apr 2014 | A1 |
20140108360 | Kunath et al. | Apr 2014 | A1 |
20140114742 | Lamontagne et al. | Apr 2014 | A1 |
20140123213 | Vank et al. | May 2014 | A1 |
20140181381 | Hughes et al. | Jun 2014 | A1 |
20140269705 | DeCusatis et al. | Sep 2014 | A1 |
20140279078 | Nukala et al. | Sep 2014 | A1 |
20140379937 | Hughes et al. | Dec 2014 | A1 |
20150074291 | Hughes | Mar 2015 | A1 |
20150074361 | Hughes et al. | Mar 2015 | A1 |
20150078397 | Hughes et al. | Mar 2015 | A1 |
20150120663 | Le Scouarnec et al. | Apr 2015 | A1 |
20150170221 | Shah | Jun 2015 | A1 |
20150281099 | Banavalikar | Oct 2015 | A1 |
20150281391 | Hughes et al. | Oct 2015 | A1 |
20150334210 | Hughes | Nov 2015 | A1 |
20160014051 | Hughes et al. | Jan 2016 | A1 |
20160034305 | Shear et al. | Feb 2016 | A1 |
20160093193 | Silvers et al. | Mar 2016 | A1 |
20160218947 | Hughes et al. | Jul 2016 | A1 |
20160255542 | Hughes et al. | Sep 2016 | A1 |
20170111692 | An et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1507353 | Feb 2005 | EP |
H05-061964 | Mar 1993 | JP |
WO0135226 | May 2001 | WO |
Entry |
---|
Knutsson, Bjorn et al., “Transparent Proxy Signalling”, Journal of Communications and Networks, vol. 3, No. 2, Jun. 2001. |
“IPsec Anti-Replay Window: Expanding and Disabling,” Cisco IOS Security Configuration Guide. 2005-2006 Cisco Systems, Inc. Last updated: Sep. 12, 2006, 14pages (Previously cited as: Zhao et al.; “Analysis and Improvement on IPSEC Anti-Replay Window Protocol”; 2003; IEEE' pp. 553-558). |
Singh et al. ; “Future of Internet Security—IPSEC”; 2005; pp. 1-8. |
Muthitacharoen, Athicha et al., “A Low-bandwidth Network File System,” 2001, in Proc. of the 18th ACM Symposium on Operating Systems Principles, Banff, Canada, pp. 174-187. |
“Shared LAN Cache Datasheet”, 1996, http://www.lancache.com/slcdata.htm. |
Spring et al., “A protocol-independent technique for eliminating redundant network traffic”, ACM SIGCOMM Computer Communication Review, vol. 30, Issue 4 (Oct. 2000) pp. 87-95, Year of Publication: 2000. |
Hong, B et al. “Duplicate data elimination in a SAN file system”, In Proceedings of the 21st Symposium on Mass Storage Systems (MSS '04), Goddard, MD, Apr. 2004. IEEE. |
You, L. L. and Karamanolis, C. 2004. “Evaluation of efficient archival storage techniques”, In Proceedings of the 21st IEEE Symposium on Mass Storage Systems and Technologies (MSST). |
Douglis, F. et al., “Application specific Delta-encoding via Resemblance Detection”, Published in the 2003 USENIX Annual Technical Conference. |
You, L. L. et al., “Deep Store an Archival Storage System Architecture” Data Engineering, 2005. ICDE 2005. Proceedings of the 21st. Intl. Conf. on Data Eng., Tokyo, Japan, Apr. 5-8, 2005, pp. 12. |
Manber, Udi, “Finding Similar Files in a Large File System”, TR 93-33 Oct. 1994, Department of Computer Science, University of Arizona. http://webglimpse.net/pubs/TR93-33.pdf. Also appears in the 1994 winter USENIX Technical Conference. |
Silver Peak Systems, “The Benefits of Byte-level WAN Deduplication” (2008). |
Definition memory (n), Webster'S Third New International Dictionary, Unabridged (1993), available at <http://lionreference.chadwyck.com> (Dictionaries/Webster's Dictionary). Copy not provided in proceedings. |
Definition appliance, 2c, Webster'S Third New International Dictionary, Unabridged (1993), available at <http://lionreference.chadwyck.com> (Dictionaries/Webster's Dictionary). Copy not provided in proceedings. |
Newton, “Newton's Telecom Dictionary”, 17th Ed., 2001, pp. 38, 201, and 714. |
Advisory Action, Mar. 5, 2015, U.S. Appl. No. 13/288,691, filed Nov. 3, 2011. |
Non-Final Office Action, Jun. 2, 2015, U.S. Appl. No. 13/288,691, filed Nov. 3, 2011. |
Final Office Action, Jan. 11, 2016, U.S. Appl. No. 13/288,691, filed Nov. 3, 2011. |
Advisory Action, Mar. 25, 2015, U.S. Appl. No. 13/274,162, filed Oct. 14, 2011. |
Notice of Allowance, May 21, 2015, U.S. Appl. No. 13/274,162, filed Oct. 14, 2011. |
Notice of Allowance, Mar. 16, 2015, U.S. Appl. No. 14/190,940, filed Feb. 26, 2014. |
Non-Final Office Action, Jun. 8, 2015, U.S. Appl. No. 14/248,167, filed Apr. 8, 2014. |
Corrected Notice of Allowability, Aug. 5, 2015, U.S. Appl. No. 14/248,188, filed Apr. 8, 2014. |
Notice of Allowance, Jun. 3, 2015, U.S. Appl. No. 14/548,195, filed Nov. 19, 2014. |
Non-Final Office Action, Mar. 11, 2015, U.S. Appl. No. 14/549,425, filed Nov. 20, 2014. |
Notice of Allowance, Jul. 27, 2015, U.S. Appl. No. 14/549,425, filed Nov. 20, 2014. |
Non-Final Office Action, May 6, 2015, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014. |
Final Office Action, Sep. 18, 2015, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014. |
Non-Final Office Action, May 18, 2015, U.S. Appl. No. 14/679,965, filed Apr. 6, 2015. |
Final Office Action, Dec. 21, 2015, U.S. Appl. No. 14/679,965, filed Apr. 6, 2015. |
Non-Final Office Action, Jul. 15, 2015, U.S. Appl. No. 14/734,949, filed Jun. 9, 2015. |
Non-Final Office Action, Aug. 11, 2015, U.S. Appl. No. 14/677,841, filed Apr. 2, 2015. |
Non-Final Office Action, Aug. 18, 2015, U.S. Appl. No. 14/543,781, filed Nov. 17, 2014. |
Notice of Allowance, Oct. 5, 2015, U.S. Appl. No. 14/734,949, filed Jun. 9, 2015. |
Non-Final Office Action, Dec. 15, 2015, U.S. Appl. No. 14/479,131, filed Sep. 5, 2014 |
Non-Final Office Action, Dec. 16, 2015. U.S. Appl. No. 14/859,179, filed Sep. 18, 2015. |
Non-Final Office Action, Jan. 12, 2016, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014. |
Notice of Allowance, Feb. 8, 2016, U.S. Appl. No. 14/543,781, Nov. 17, 2014. |
Final Written Decision, Jun. 9, 2015, Inter Partes Review Case No. IPR2014-00245. |
“Business Wire, ”“Silver Peak Systems Delivers Family of Appliances for Enterprise-Wide Centralization of Branch Office Infrastructure; Innovative Local Instance Networking Approach Overcomes Traditional Application Acceleration Pitfalls” (available at http://www.businesswire.com/news/home/20050919005450/en/Silver-Peak-Systems-Delivers-Family-Appliances-Enterprise-Wide#.UVzkPk7u-1 (last visited Aug. 8, 2014)). |
Riverbed, “Riverbed Introduces Market-Leading WDS Solutions for Disaster Recovery and Business Application Acceleration” (available at http://www.riverbed.com/about/news-articles/pressreleases/riverbed-introduces-market-leading-wds-solutions-fordisaster-recovery-and-business-application-acceleration.html (last visited Aug. 8, 2014)). |
Tseng, Josh, “When accelerating secure traffic is not secure” (available at http://www.riverbed.com/blogs/whenaccelerati.html?&isSearch=true&pageSize=3&page=2 (last visited Aug. 8, 2014)). |
Riverbed, “The Riverbed Optimization System (RiOS) v4.0: A Technical Overview” (explaining “Data Security” through segmentation) (available at http://mediacms.riverbed.com/documents/TechOverview-Riverbed-RiOS—4—0.pdf (last visited Aug. 8, 2014)). |
Riverbed, “Riverbed Awarded Patent on Core WDS Technology” (available at: http://www.riverbed.com/about/news-articles/pressreleases/riverbed-awarded-patent-on-core-wds-technology.html (last visited Aug. 8, 2014)). |
Final Written Decision, Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00403. |
Final Written Decision, Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00402. |
Notice of Allowance, Nov. 16, 2016, U.S. Appl. No. 13/288,691, filed Nov. 3, 2011. |
Final Office Action, Nov. 21, 2016, U.S. Appl. No. 14/447,505, filed Jul. 30, 2015. |
Notice of Allowance, Nov. 23, 2016, U.S. Appl. No. 14/067,619, filed Oct. 30, 2013. |
Notice of Allowance, Dec. 5, 2016, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014. |
Advisory Action, Jan. 9, 2017, U.S. Appl. No. 15/091,533, filed Apr. 5, 2016. |
Corrected Notice of Allowability, Mar. 7, 2016, U.S. Appl. No. 14/543,781, filed Nov. 17, 2014. |
Notice of Allowance, Feb. 16, 2016, U.S. Appl. No. 14/248,167, filed Apr. 8, 2014. |
Notice of Allowance, Mar. 2, 2016, U.S. Appl. No. 14/677,841, filed Apr. 2, 2015. |
Corrected Notice of Allowability, Mar. 14, 2016, U.S. Appl. No. 14/677,841, filed Apr. 2, 2015. |
Advisory Action, Mar. 21, 2016, U.S. Appl. No. 14/679,965, filed Apr. 6, 2015. |
Non-Final Office Action, May 3, 2016, U.S. Appl. No. 14/679,965, filed Apr. 6, 2015. |
Non-Final Office Action, May 6, 2016, U.S. Appl. No. 13/288,691, filed Nov. 3, 2011. |
Notice of Allowance, Jun. 3, 2016, U.S. Appl. No. 14/859,179, filed Sep. 18, 2015. |
Non-Final Office Action, Jun. 15, 2016, U.S. Appl. No. 15/091,533, filed Apr. 5, 2016. |
Non-Final Office Action, Jun. 22, 2016, U.S. Appl. No. 14/447,505, filed Jul. 30, 2014. |
Final Office Action, Jul. 19, 2016, U.S. Appl. No. 14/479,131, filed Sep. 5, 2014. |
Non-Final Office Action, Jul. 25, 2016, U.S. Appl. No. 14/067,619, filed Oct. 30, 2013. |
Final Office Action, Jul. 26, 2016, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014. |
Final Office Action, Feb. 17, 2017, U.S. Appl. No. 15/148,933, filed May 6, 2016. |
Notice of Allowance, Mar. 23, 2017, U.S. Appl. No. 15/091,533, filed Apr. 5, 2016. |
Non-Final Office Action, Apr. 27, 2017, U.S. Appl. No. 14/447,505, filed Jul. 30, 2014. |
Final Office Action, May 3, 2017, U.S. Appl. No. 14/479,131, filed Sep. 5, 2014. |
Non-Final Office Action, May 4, 2017, U.S. Appl. No. 14/811,482, filed Jul. 28, 2015. |