The present invention relates to a workpiece clamping fixture.
Generic clamping fixtures serve particularly to clamp in place workpieces precisely positioned for machining, the clamping fixture usually featuring a workpiece pallet to mount or clamp each workpiece.
The workpiece pallet can either be directly secured to the work table of the machine tool or by means of a chuck, the workpiece pallet in the latter case featuring means for locking in place to the chuck and means for defining the position precisely located at the chuck. Especially the latter means needs to ensure exact positioning in both the X and Y as well as the Z direction.
In series production the workpieces—blanks—to be machined are usually inserted directly into the machine tool, for example by a 6-axes robotic attachment. In small series production the workpieces to be machined are clamped on pallets manually or automatically changed in the machine tool, whereas in medium series production clamping the workpieces in place is either complicated or the clamping fixture or pallet is relatively expensive.
The object of the invention is thus to create a clamping fixture which is particularly suitable for medium series production whilst having a simple configuration and being cost-effective in production so that the workpieces to be machined can now be clamped in place thereby in the workpiece pallet both quickly, simply and reliably safe.
By the clamping fixture now featuring a workpiece pallet comprising at least two material-elastic excursionable clamping jaws for holding the workpieces, the basic requirement for a clamping fixture of simple configuration is satisfied, by means of which the workpieces to be machined can now be clamped in place quickly, simply and reliably safe.
By the clamping fixture now featuring a workpiece pallet comprising at least two material-elastic deflectable clamping jaws for holding the workpieces, the basic requirement for a clamping fixture of simple configuration is satisfied, by means of which the workpieces to be machined can now be clamped in place quickly, simply and reliably safe.
The invention will now be detailed by way of an example embodiment as shown in the drawings in which:
Referring now to
Machined in the main body 3 on both sides of the slot 6 is a conically tapered concavity 11, 12 each for insertion of a splaying tool or plug for splaying the two clamping jaws 4, 5. The two splaying tools form a component of the actuator as is detailed later on.
Referring now to
Where necessary, the two clamping jaws 4, 5 may be additionally connected to each other by a pull-rod. One such pull-rod is material-elastically extended in splaying the two clamping jaws 4, 5, it serving to increase the material-elastic restoring force of the two clamping jaws 4, 5 after removal of the splay tools which, of course, also correspondingly adds to the clamping force. It is understood that the material of the pull-rod as well as its dimensions can be selected and varied as required. When the main body 3 is correspondingly dimensioned it is possible, of course, to do away with a pull-rod.
In the present example, the workpiece mount is configured as a workpiece pallet 2 bottomed with supporting feet 17 and a centering disc 18. The centering disc 18 features four centering openings to precisely locate the workpiece pallet 2 on a chuck. The supporting feet 17 serve to secure the centering disc 18 to the main body 3. In addition, the supporting feet 17 act as a Z mount when clamping the workpiece pallet 2 to the chuck. The supporting feet 17 are directly threaded in the main body 3.
Referring now to
Furthermore evident are the set screws 20, 21 serving to adjust each of the fitted jaws 13, 14 on each of the clamping jaws 4, 5. Provided in each of the fitted jaws 13, 14 is a total of three set screws 20, 21 by means of which the fitted jaws 13, 14 can be shifted transversely to the slot. The set screws 20, 21 are preferably engineered self-locking so that each of the fitted jaws 13, 14 after being shifted into position is locked and remains in place even after repeated splaying of the clamping jaws 4, 5. It is understood, of course, that also separate locking means may be provided by means of which the set screws 20, 21 and/or the fitted jaws 13, 14 can be locked in place in each position.
Additionally evident is how the fitted jaws 13, 14 are provided with sharp protuberances 22, 23 in the form of spikes. These protuberances 22, 23 promote positively locking in place a workpiece by biting into the surface of each workpiece. The protuberances 22, 23 are preferably made of a very hard material. Lastly evident on the underside of the main body 3 is a chucking spigot 25 secured by means of a thread, by means of which the workpiece pallet 2 can be locked in place on the chuck (not shown).
To set the fitted jaws 13, 14 to the thickness of the workpiece to be clamped in place a reference element 26 is preferably inserted in the workpiece pallet 2 and the fitted jaws 13, 14 shifted by means of the set screws 20, 21 until they are in snug contact with the sides of the reference element 26. The reference element 26 is dimensioned such that the gap L between the two fitted jaws 13, 14 is adjusted to be less (by a few tenths of a millimeter) than the thickness of the workpiece to be clamped in place To clamp a workpiece in the workpiece pallet 2, the two clamping jaws 4, 5 must first be splayed by the cited amount of a few tenths of a millimeter so that the workpiece to be clamped in place can be inserted between the fitted jaws 13, 14. It is understood that reference elements are available differing in thickness for the workpieces likewise differing in thickness.
Additionally evident is how the fitted jaws 13, 14 are provided with sharp protuberances 22, 23 in the form of spikes. These protuberances 22, 23 promote positively locking in place a workpiece by biting into the surface of each workpiece. The protuberances 22, 23 are preferably made of a very hard material. The protuberances may be integrated with recesses 33, as shown in
Referring now to
Referring now to
Referring now to
Clamping a workpiece in the workpiece pallet 2 is usually done in tooling up, this station being provided for this purpose with the actuator 27 as described above for splaying the clamping jaws 4, 5. By splitting up the clamping fixture 1 into a passive workpiece pallet 2 and an active actuator 27 the clamping fixture 1 can be configured particularly simple.
The clamping fixture 1 configured in accordance with the invention is cost-effective to manufacture and permits workpieces to be locked in place both simply, speedily and precisely located. Splitting the clamping fixture 1 into a passive workpiece pallet 2 and an active actuator puts a ceiling on the costs of the clamping fixture, namely of each workpiece pallet 2. In addition to this, the adjustable fitted jaws ensure that workpieces differing in thickness are defined and held in place on the workpiece pallet 2.
Instead of the example embodiment as shown other variants of the clamping fixtures are, of course, feasible in the scope of the invention. For instance, the workpiece pallet 2 could be configured such that the two clamping jaws first need to be pressed together material-elastically so that a workpiece can be locked in place to the outer side of the clamping or fitted jaws. For this purpose the workpiece could feature, for example, a concavity for insertion of the clamping jaws. Instead of conical concavities the workpiece pallet could also be provided with protuberances for engaging by the actuator.
Where necessary, the slot 6 and/or the concavity 7 could be filled with an elastomer. This would, for one thing, reduce the tendency to soilage and, for another, the vibration response of the workpiece pallet 2 would be improved by the damping effect of the elastomer.
Making use of the material-elasticity of the main body, namely the material-elastic restoring force of the clamping jaws, for clamping in place a workpiece does away with the need of separate actuating elements for shifting and clamping the clamping jaws.
Although the clamping fixture in accordance with the invention is particularly suitable for medium series production, it can of course, because of its flexibility, also be used in small and large series production.
Number | Date | Country | Kind |
---|---|---|---|
151/08 | Feb 2008 | CH | national |
Number | Name | Date | Kind |
---|---|---|---|
114651 | Dick | May 1871 | A |
605855 | Colborne | Jun 1898 | A |
3199881 | Duxbury | Aug 1965 | A |
3587073 | Ghose et al. | Jun 1971 | A |
4188683 | Klunder | Feb 1980 | A |
4322065 | Doiron | Mar 1982 | A |
4660330 | Fuchs | Apr 1987 | A |
4969635 | Johansson et al. | Nov 1990 | A |
6079896 | Dellach | Jun 2000 | A |
6241231 | Schron, Jr. et al. | Jun 2001 | B1 |
6748841 | Fritz | Jun 2004 | B1 |
7029213 | Yerly | Apr 2006 | B2 |
7290760 | Lindsay | Nov 2007 | B1 |
20050248103 | Kramer | Nov 2005 | A1 |
20070063456 | Troxler | Mar 2007 | A1 |
20070267798 | Bonkowski | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
0229474 | Oct 1943 | CH |
4322589 | Dec 1995 | DE |
0181613 | Jun 1922 | GB |
2378409 | Dec 2003 | GB |
Number | Date | Country | |
---|---|---|---|
20090236787 A1 | Sep 2009 | US |