This application is based on and claims priority under 35 U.S.C. 119 with respect to Japanese Application No. 2004-343744 filed on Nov. 29, 2004. The contents of that application are incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to a grinding method, and in particular, it relates to a workpiece grinding method which takes as an object to be ground a workpiece having a cylindrical portion and an end surface portion perpendicular thereto and which is practiced in removing a grinding allowance of a predetermined width at at least the end surface portion with a grinding wheel.
2. Discussion of the Related Art
A grinding method illustrated in
However, in the aforementioned grinding method, since shoulder portions 45 only of the grinding wheel 41 work to grind the end surface portions 43 of the workpiece W, the grinding amount per unit area which is removed by each of the shoulder portions 45 of the grinding wheel 41 is increased, whereby the shoulder portions 45 of the grinding wheel 41 suffer local wear as indicated for example by the two-dot-chain line. As a consequence, because the shoulder portions 45 of the grinding wheel 41 are large in wear, the grinding wheel 41 has to be trued frequently though a circumferential surface portion 46 thereof remains alive to serve yet. This results in shortening the service life of the grinding wheel 41.
To overcome the aforementioned problem, there has been proposed another grinding method illustrated in
However, in the latter mentioned prior art grinding method illustrated in
Further, the cooling performance is also lowered because the surface contact between the end surface portion 50 of the grinding wheel 48 and the end surface portion 43 of the workpiece W makes it difficult for coolant fluid reach the ground surface being heated. In other words, the deterioration in the cooling performance expedites the increase of the heat generation, so that it becomes difficult to enhance the grinding efficiency (the workpiece volume removed during a unit time period) by, for example, making the grinding speed faster. Where the truing interval is set to be shorter as alternative, it may become possible to suppress the grinding burn to some extent even in the case of a grinding operation at an enhanced grinding efficiency. However, the alternative undesirably results not only in a higher tool cost but also in work increase for the frequent grinding wheel exchanges.
Accordingly, it is a primary object of the present invention to provide an improved workpiece grinding method capable of efficiently grinding a workpiece having a cylindrical portion, a rounded corner and an end surface portion like crankshaft journals or crankpins.
Briefly, according to the present invention, there is provided a workpiece grinding method of removing a grinding allowance at at least an end surface portion of a workpiece having a cylindrical portion and the end surface portion perpendicular thereto with a grinding wheel by rotating the workpiece, by rotating the grinding wheel supported rotatably about an axis extending in parallel with the axis of the workpiece, and by moving the grinding wheel relatively to the workpiece. The method comprises a first grinding step of grinding the end surface portion to an approximately right triangle shape in section by feeding the grinding wheel from a grinding start position, where the grinding wheel overlaps the circumferential surface of the end surface portion through a width of the grinding allowance or a width narrower than the grinding allowance, toward an infeed end position on the side of the cylindrical portion in an oblique direction; and a second grinding step of removing a grinding allowance of the approximate right triangle shape in section left without being ground at the first grinding step, by feeding the grinding wheel in an approximately axial direction of the workpiece, whereby the end surface portion is ground to be approximately perpendicular to the cylindrical portion through the first and second grinding steps.
At the first grinding step, the grinding wheel is infed in the oblique direction from the grinding start position on the circumferential surface of the end surface portion toward the infeed end position on the side of the cylindrical portion. The ground surface of the end surface portion becomes an oblique surface, and the contact area thereof with the grinding wheel is decreased. This make it possible to heighten the performance of discharging grinding chips and, where coolant fluid is supplied, it becomes possible to make coolant fluid reach the grinding point reliably. Further, since the grinding wheel is fed in the oblique direction, the ground width in the axial direction of the workpiece becomes narrower as the grinding wheel comes closer to the axis of the workpiece. Accordingly, it can be realized to gradually decrease the amount ground by the shoulder portion of the grinding wheel, so that the wear of the shoulder portion of the grinding wheel can be reduced. At the second grinding step, the grinding allowance of the approximately right triangle shape left without being ground at the first grinding step is removed by the end surface portion and the shoulder portion of the grinding wheel. Therefore, although the end surface portion of the grinding wheel is brought into surface contact with the end surface portion of the workpiece during the grinding, the volume of the grinding allowance is small, and the grinding wheel contacts the end surface portion of the workpiece through a short arc in the rotational direction. Consequently, the performance of discharging the grinding chips can be prevented from being deteriorated, and the coolant fluid can reach the ground surface of the workpiece reliably.
The foregoing and other objects and many of the attendant advantages of the present invention may readily be appreciated as the same becomes better understood by reference to the preferred embodiments of the present invention when considered in connection with the accompanying drawings, wherein like reference numerals designate the same or corresponding parts throughout several views, and in which:
a) to 3(c) are explanatory views for explaining the flow of grinding steps in the grinding method in the first embodiment;
a) and 5(b) are explanatory views for explaining the wear at a shoulder portion of the grinding wheel;
a) to 6(c) are explanatory views for explaining the flow of grinding steps in the grinding method in the second embodiment;
a) and 7(b) are explanatory views for respectively showing another example of the grinding wheel and a modified form of a third grinding step; and
a) and 8(b) are explanatory views for respectively illustrating first and second prior art grinding methods.
Hereafter, a workpiece grinding method in a first embodiment according to the present invention and a cylindrical grinding machine used in practicing the method will be described with reference to
First of all, the cylindrical grinding machine will be described with reference to
The support table 5 is moved in the Z-axis direction by a drive device 6 such as servomotor or the like whose rotational angle can be indexed precisely, through a drive transmission mechanism 7 such as feed screw mechanism or the like. On the other hand, the wheel head 3 is drivingly moved in the X-axis direction by a drive device 8 such as servomotor or the like whose rotational angle can be indexed precisely, through a drive transmission mechanism 9 such as feed screw mechanism or the like. Thus, the wheel head 3 is movable in the Z-axis direction as well as in the X-axis direction relative to the table 4. Further, the wheel head 3 rotatably supports a disc-like grinding wheel 10 and mounts thereon a drive device 11 such as motor or the like for drivingly rotating the grinding wheel 10.
The table 4 is provided with a work head 12 at one end thereof and a foot stock 13 at the other end thereof. The work head 12 is provided with a work spindle 14 which is drivingly rotated by a drive device 17 such as servomotor or the like whose rotational angle can be indexed precisely. The workpiece W is supported over the table 4, having one end thereof gripped by a chuck 15 provided on the work spindle 14 and the other end thereof pushed by a center 16 provided on the foot stock 13, and is drivingly rotatable about a C-axis (arrow C) on the rotational axis of the work spindle 14.
In this particular embodiment, the workpiece W is illustrated as crankshaft, and grinding object surfaces such as crank journals W1, crankpins W2 and the like are ground with the grinding wheel 10 mounted on the wheel head 3. As shown in
On the other hand, the grinding wheel 10 whose longitudinal section is partly shown in
In the aforementioned cylindrical grinding machine 1, the support slide 5 is moved by the drive device 6 and the drive transmission mechanism 7 in the Z-axis direction to bring the grinding wheel 10 before a grinding object surface of the workpiece W, and then, the wheel head 3 is advanced by the drive device 8 and the drive transmission mechanism 9 toward the workpiece W, whereby the workpiece W being drivingly rotated by the drive device 17 is ground with the grinding wheel 10 being drivingly rotated by the drive device 11.
Next, the grinding method for the end surface portions 21 will be described. The left and right end surface portions 21 are ground in order in a similar grinding method. Therefore, the grinding operation will be described only for one of the end surface portions 21, and the description regarding the grinding operation for the other end surface portion 21 will be omitted for the sake of brevity.
As shown in
As described above, at the first grinding step, since the shoulder portion 26 of the grinding wheel 10 is infed into the end surface portion 21 of the workpiece W in the XZ-direction, the ground surface of the end surface portion 21 becomes an oblique surface and thus, is decreased in the contact area with the grinding wheel 10. That is, as shown in
Further, as shown in
When the grinding wheel 10 reaches the infeed end position (E) shown in
At the second grinding step, the grinding wheel 10 is fed from the infeed end position (E) in the axial direction (Z-axis direction). Thus, the grinding allowance of the approximately right triangle shape in longitudinal section which is left at the end surface portion 21 without being ground is removed by the end surface portion 25 and the shoulder portion 26 of the grinding wheel 10, and the rounded corner 22 is ground between the cylindrical portion 20 and the end surface portion 21, as shown in
At the second grinding step, the end surface portion 25 of the grinding wheel 10 is brought into surface contact with the end surface portion 21 of the workpiece W, but the grinding allowance at the end surface portion 21 is the approximately right angle shape in longitudinal section. Thus, a contact arc on which the grinding wheel 10 is brought into contact with the end surface portion 21 of the workpiece W is made shorter in the length in the rotational direction. That is, the area of the end surface portion 21 which is brought into contact with the grinding wheel 10 when the same is rotated through one turn is made to be smaller in comparison with that in the case that the end surface portion 21 is ground in flat contact with the grinding wheel 10. Accordingly, it can be realized to suppress the deterioration in the chip discharging performance, and it becomes easier to make coolant fluid reach the ground surface of the workpiece W.
Further, as shown in
Further, in the present embodiment, a high efficiency grinding is realized by setting the infeed rate of the grinding wheel at the first grinding step to a relatively high speed which allows grinding burn to be made on the surface of the workpiece W to some extent. On the other hand, the feed rate at the second grinding step is set to a relatively slow speed for securing a surface roughness for finish, so that it can be realized to remove any grinding burn layer at the second grinding step even if any such grinding burn layer is made at the first grinding step. As known in the art, the depth of the deteriorated layer in grinding relates to the contact arc length of the grinding wheel 10 with the workpiece W as well as to the grinding efficiency. Where the grinding wheel 10 is fed obliquely as is done in the present embodiment, the change of the contact arc length depending on the position of the grinding point in the radial direction can be neglected because an approximate point contact is made between the grinding wheel 10 and the workpiece W, but the grinding efficiency changes in dependence on the position of the grinding point in the radial direction. For this reason, in the present embodiment, the grinding efficiency is made to be constant by controlling the feed rate of the grinding wheel 10 to be slower when the grinding point remains at large radial positions and by controlling the feed rate of the grinding wheel 10 to be faster with the decrease in the radial position of the grinding point. In a modified form, the grinding efficiency may be controlled not by changing the feed rate, but by changing the rotational speed of the workpiece W.
The load on the abrasive grains is expressed by the value of g/a (g: the maximum infeed depth of the abrasive grains, a: an average grain-to-grain interval in the circumferential direction). Where the value is large, the abrasive grains are liable to be subjected to abrasion, fragmentation or fall thereby to bring about the wear of the grinding wheel. Where the value becomes small conversely, there occurs a slip phenomenon in which the abrasive grains are unable to be infeed into the workpiece W, so that the wear of the abrasive grains results from heat generation and the slip phenomenon. The value of g/a is calculated from the circumferential speeds of the workpiece and the grinding wheel at the grinding point, the radial position of the grinding point and the diameter of the grinding wheel. That is, the value of g/a varies in dependence on the radial position of the grinding point. Therefore, in the present invention, in order to keep the value of g/a constant irrespective of changes in the radial position of the grinding point, control is performed to make the rotational speed of the workpiece W slower when the grinding point remains at large positions in the radial direction and to make the rotational speed of the workpiece W faster with the decreases in the radial position of the grinding point. In an alternative form, the value of g/a is controllable by changing not the rotational speed of the workpiece W, but the feed rate of the grinding wheel 10.
At the third grinding step, the grinding wheel 10 is retracted in the X-axis direction. With this step, the grinding wheel 10 gradually decreases the pressuring force on the end surface portion 21 of the workpiece W while smoothening the finished surface of the end surface portion 21. This suppresses the spring-back of the end surface portion 21, so that it becomes possible to secure the perpendicularity of the end surface portion 21.
As described above, in the aforementioned grinding method, the wear of the grinding wheel layer is distributed by performing in turn the first and second grinding steps in which the feed directions are different from each other, so that it can be realized to suppress the local wear of the grinding wheel 10. Further, the contact area of the grinding wheel 10 is made smaller at either of the grinding steps, which results in enhancing the performance of discharging grinding chips and the cooling performance with coolant fluid or the like. Consequently, it becomes possible to heighten the grinding efficiency without frequent repetition of truing operations.
Particularly, the foregoing grinding method differs from the grinding method in which the grinding wheel is fixedly inclined as is the case of a so-called angle slide grinding. Thus, even where the workpiece W having the end surface portions 21 at the both ends of the cylindrical portion 20 is used as an object to be ground as is the case of the present embodiment, the first and second grinding steps can be executed by setting the width of the grinding wheel 10 taking the account of a space between the pair of the end surface portions 21, so that either of the end surface portions 21 can be ground to be substantially perpendicular to the cylindrical portion 20.
(Second Embodiment)
Next, a workpiece grinding method in the second embodiment according to the present invention will be described with reference to
At the first grinding step, as shown in
As described above, at the first grinding step, the shoulder portion 26 is infed relative to the end surface portion 21 in the XZ-direction, and the grinding is terminated immediately before the grinding wheel 10 comes into contact with the external surface of the cylindrical portion 20. Therefore, in the second embodiment, it can be realized in addition to the functions and advantages of the grinding method in the first embodiment, to enhance the feed rate of the grinding wheel 10 at all times, so that it becomes possible to realize a high efficiency grinding. Namely, in the grinding method of the first embodiment, a problem arises in that the entire grinding time is extended because the infeed rate of the grinding wheel 10 has to be lowered at the time point when the grinding of the cylindrical portion 20 begins, to avoid the large increase of the grinding load in grinding the external surface of the cylindrical portion 20, whereas in the second embodiment, it becomes possible to infeed the grinding wheel 10 at the high feed rate until the time point when the first grinding step is terminated (i.e., throughout the first grinding step).
At the second grinding step, on the other hand, the grinding wheel 10 is fed from the infeed end position (E) in a direction inclined at an acute angle with respect to the axial direction (i.e., an inclined Z-axis direction: Z′-direction). Thus, simultaneous grindings are performed on the end surface portion 21 having a grounding allowance of the approximately right triangular shape in longitudinal section which is left without being ground at the first grinding step, as well as on the external surface of the cylindrical portion 20, and a grinding is further performed on the rounded corner 22 between the cylindrical portion 20 and the end surface portion 21, as shown in
(Other Embodiments or Modifications)
Although the grinding methods of the first and second embodiments are described as the method wherein the grinding wheel 10 is fed along a straight line when fed in the XZ-direction at the first grinding step, it may be fed along either one of curved lines (U) and (D) defined by quadratic functions, as indicated by the two-dot-chain lines in
Further, although the grinding methods of the first and second embodiments are described as the example which uses the grinding wheel 10 having the end surface portions 25 formed to be perpendicular to the circumferential surface portion 24, there may be used a grinding wheel 32 whose each end surface portion 34 is formed to have a back tapered surface (a surface inwardly inclined toward the rotational axis of the grinding wheel 32) relative to a circumferential surface portion 33, as shown in
In addition, although the grinding methods of the first and second embodiments are described as one in which the grinding wheel 10 is retracted in the X-axis direction at the third grinding step, the methods may be modified to retract the grinding wheel 10 in an inclined direction (i.e., XZ-direction) without moving the grinding wheel 10 along the surface of the end surface portion 21, as shown in
Various features and many of the attendant advantages in the foregoing embodiments will be summarized as follows:
In the workpiece grinding method in the first embodiment typically shown in
At the second grinding step, the grinding allowance of the approximately right triangle shape left without being ground at the first grinding step is removed by the end surface portion 25 and the shoulder portion 26 of the grinding wheel 10. Where the grinding start position (S) at the first grinding step is set to remove the grinding allowance of a shorter (or shallower) width on the circumferential surface of the end surface portion 21 than the predetermined width (T) (i.e., the width defining a finished end surface), that is, where an allowance is left also on the circumferential surface of the end surface portion 21, the grinding at the second grinding step is performed to remove such an allowance at the same time.
At the second grinding step, the grinding allowance is the approximately right triangle shape in longitudinal section. Therefore, although the end surface portion 25 of the grinding wheel 10 is brought into surface contact with the end surface portion 21 of the workpiece W during the grinding, the volume of the grinding allowance is small, and the grinding wheel 10 contacts the end surface portion 21 of the workpiece W through a short arc in the rotational direction. Consequently, the performance of discharging the grinding chips can be prevented from being deteriorated, and the coolant fluid can reach the ground surface of the workpiece W reliably.
Further, since the directions in which the grindings proceed at the first and second grinding steps become opposite, the wear of the grinding layer of the grinding wheel 10 is distributed to suppress the local wear on the grinding wheel 10.
The “grinding wheel” as employed in the present invention may be one which has grinding layers at least at the shoulder portion 26 and the end surface portion 25 thereof. The shoulder portion 26 may take the shape of a right angle or a rounded (R) corner. Further, the first grinding step may be performed to grind both of the end surface portion 21 and the cylindrical portion 20 of the workpiece W or to grind the end surface portion 21 only. The “approximately axial direction” means a roughly axial direction, and in its scope, encompasses the oblique direction which is slightly inclined with respect to the axis of the workpiece W.
In addition, when fed in the oblique direction at the first grinding step, the grinding wheel 10 may be fed along the straight line (XZ) or may be fed along the arc (D or U). That is, so far as the grinding wheel 10 is infed relative to the workpiece W to gradually decrease the grinding width (T) in the axial direction, it does not matter whether the variation in the relative infeed amount may be constant or may be changed.
Also in the workpiece grinding method in the first embodiment typically shown in
In the grinding method for grinding the end surface portion 21 and the external surface of the cylindrical portion 20 at the first grinding step, since the grinding load during the grinding of the end surface portion 21 is relatively low, it becomes possible to realize a high efficiency grinding by increasing the infeed rate of the grinding wheel 10. On the other hand, since the ground width on the external surface of the cylindrical portion 20 is large, the grinding load increases greatly upon the grinding starting on the cylindrical portion 20, so that it is difficult to heighten the feed rate of the grinding wheel 10. For this reason, at the first grinding step, it is likely that the entire grinding time may be elongated because the feed rate of the grinding wheel 10 has to be lowered at the time point when the cylindrical portion 20 begins to be ground.
To solve this problem, in the workpiece grinding method in the second embodiment typically shown in
In either of the first and second embodiments, it is preferable that the workpiece W to be ground has the rounded corner 22 between the end surface portion 21 and the cylindrical portion 20 and that the grinding wheel 10 has the shoulder portion 26 which corresponds in sectional shape to the rounded corner 22. In this case, the grinding wheel 10 having at its shoulder portion 26 a grinding layer which corresponds in sectional shape to the rounded corner 22 is used to grind the rounded corner 22 at the second grinding step. Thus, it can be realized to grind the cylindrical portion 20 and the end surface portion 21 and to grind the rounded corner 22 to a smooth surface.
At the first grinding step in each of the first and second embodiments, the grinding is performed by the shoulder portion 26 whose shape in section corresponds to the rounded corner 22, and the shoulder portion 26 is liable to be worn because, of the shoulder portion 26, the part (b) on the circumferential surface side is fewer in the number of the effective abrasive grains than the part (a) on the end surface side. However, as shown in
In either of the first and second embodiments, it is preferable that the workpiece W to be ground has the pair of end surface potions 21 at both ends of the cylindrical portion 20 and that the first and second grinding steps are performed in order for each of the end surface portions 21. In this case, the “workpiece” W is not limited to any particular one, but may be exemplified as a crankshaft.
In these embodiments, the first and second grinding steps are performed in order for each of the end surface portions 21, and each of the end surface portions 21 can be ground to be approximately perpendicular to the cylindrical portion 20. Being different from a grinding wheel which is set with the rotational axis inclined for use in angle slide grinding, the grinding wheel 10 in the embodiments can be used in practicing the first and second grinding steps between the pair of the end surface portions 21 narrow in axial space where the width of the grinding wheel 10 is set taking account of the narrow space between the end surface portions 21.
Also in either of the first and second embodiments, it is preferable that the feed rate of the grinding wheel 10 at the first grinding step is set to be faster than the feed rate of the grinding wheel 10 at the second grinding step. In this case, although the feed rate of the grinding wheel 10 at the second grinding step is restricted to secure a surface roughness for finish, a high efficiency grinding can be realized by increasing the feed rate at the first grinding step. Since the whole part of the end surface portion 21 is ground to be finished at the second grinding step, any grinding burn layer which may be generated at the first grinding step can be removed at the second grinding step.
Also in either of the first and second embodiments, as shown in
Also in either of the first and second embodiments, as shown in
As described above, in the workpiece grinding method according to the present invention, the contact area of the grinding wheel 10 with the workpiece W at the first and second grinding steps is made smaller, so that it can be realized to enhance the performance of discharging the grinding chips and the cooling performance using coolant fluid or the like. Accordingly, it can be realized to heighten the grinding efficiency without repetitively performing frequent truing operations on the grinding wheel 10. In addition, by successively performing the first and second grinding steps at which the feed directions of the grinding wheel 10 are different from each other, the wear of the grinding wheel layer is distributed, so that the wear of the grinding wheel 10 can be suppressed.
Obviously, further numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2004-343744 | Nov 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4603514 | Suzuki et al. | Aug 1986 | A |
4619083 | Akabane et al. | Oct 1986 | A |
6306018 | Coverdale et al. | Oct 2001 | B1 |
6511364 | Ido et al. | Jan 2003 | B1 |
Number | Date | Country |
---|---|---|
2 320 339 | Oct 1974 | DE |
54-296 | Jan 1979 | JP |
Number | Date | Country | |
---|---|---|---|
20060116052 A1 | Jun 2006 | US |