The present disclosure relates generally to workpiece securement systems. In particular, workpiece securement systems in the form of work tables are described.
Known workpiece securement systems are not entirely satisfactory for the range of applications in which they are employed. For example, existing workpiece securement systems typically have tabletops with round holes defining threaded ports for mounting blocks and clamps to the table. Round holes with threaded ports suffer from a number of drawbacks. For example, round threaded ports are difficult to repair, inaccurate, and unergonomic. Weld splatter is prone to stick to the threads in the ports and render the threads inoperable and/or require maintenance to address the corrupted threads. The round holes do not adequately resist rotational movement of hardware used to secure parts in position, which limits how accurately parts can be clamped in position.
Another limitation of conventional steel tables that are used to secure parts is that they rely on threaded studs and bolts to secure pieces to the table. Threaded studs and bolts are tedious to use because of all the twisting they require to secure them. Threaded studs and bolts tend to be less accurate than desirable because the significant torque needed to secure them tends to move the block, clamp, and/or piece being secured by them.
Conventional flat tables configured to mount parts for welding are labor and time intensive to use. One reason existing tables are labor and time intensive is because all the threaded fasteners take time and effort to use. Further, significant time and labor is necessary to repair known tables when weld splatters onto threaded ports. The tendency for conventional tables to not hold parts in position accurately requires more time and labor to readjust the position of the parts and/or to redo or repair an inaccurate weld resulting from the inaccurate position in which the part was secured.
Existing welding tables are a fixed size and unitary, which limits their applicability and increases costs for the end user. It is common for a machine shop to require larger welding tables over time as they receive requests to work on larger parts. A fixed size welding table limits the size of part that machine shops can handle. The fixed size of conventional weld tables forces machine shops to replace the tables outright with new, larger tables when larger tables are needed, which is a significant expense and wasteful. Further, shipping large, fixed size, unitary weld tables is cumbersome and expensive.
Another drawback of conventional weld tables is that they do not incorporate power supplies to conveniently power lights and tools. When working on a weld table, a user often uses power tools and needs good lighting to work accurately. With existing tables, the user must position the table close to a power supply or use extension cords to bring power near the table. Neither scenario is ideal as the former limits where the table may be positioned and the latter creates clutter and trip hazards.
Thus, there exists a need for workpiece securement systems that improve upon and advance the design of known workpiece securement systems. Examples of new and useful workpiece securement systems relevant to the needs existing in the field are discussed below.
United States patent filings with disclosure relevant to workpiece securement systems include U.S. Pat. Nos. 10,556,326, 7,753,350, 7,284,406, 6,439,561, 6,364,302, 5,931,726, 5,509,214, 5,421,566, 5,249,818, 5,040,716, and 4,645,391. The complete disclosures of these listed U.S. patent filings are herein incorporated by reference for all purposes.
The present disclosure is directed to workpiece securement systems for securing a workpiece in a desired position with a clamp. The workpiece securement systems include a worktable, an anchor, a shelf, and a block. The worktable includes a leg and a tabletop. The leg supports the worktable from the ground.
The tabletop is supported by the leg and includes a top surface facing away from the ground and a bottom surface facing the ground. The tabletop defines a plurality of shaped openings extending through the tabletop from the top surface to the bottom surface.
The anchor is disposed in a selected shaped opening of the plurality of shaped openings and is configured to threadingly engage a bolt. The shelf is configured to selectively couple to the tabletop in a desired position and to support the anchor from below the bottom surface of the tabletop in a position where the anchor extends through the selected shaped opening.
The block is supported on the top surface of the tabletop and secured in a selected position on the tabletop by selectively coupling with the anchor. The block defines a mount bore and a clamp receiver bore. The mount bore extends through the block and is aligned with the anchor.
The bolt passing through the mount bore and threadingly engaging with the anchor secures the position of the block on the top surface of the tabletop. The clamp receiver bore is configured to receive the clamp to fix the position of the workpiece.
In some examples, the workpiece securement system includes a shim. In selected examples, the workpiece securement system includes a bin. In selected examples, the workpiece securement system includes an electrical system. In some examples, the workpiece securement system includes an illumination device.
The disclosed workpiece securement systems will become better understood through review of the following detailed description in conjunction with the figures. The detailed description and figures provide merely examples of the various inventions described herein. Those skilled in the art will understand that the disclosed examples may be varied, modified, and altered without departing from the scope of the inventions described herein. Many variations are contemplated for different applications and design considerations; however, for the sake of brevity, each and every contemplated variation is not individually described in the following detailed description.
Throughout the following detailed description, examples of various workpiece securement systems are provided. Related features in the examples may be identical, similar, or dissimilar in different examples. For the sake of brevity, related features will not be redundantly explained in each example. Instead, the use of related feature names will cue the reader that the feature with a related feature name may be similar to the related feature in an example explained previously. Features specific to a given example will be described in that particular example. The reader should understand that a given feature need not be the same or similar to the specific portrayal of a related feature in any given figure or example.
The following definitions apply herein, unless otherwise indicated.
“Substantially” means to be more-or-less conforming to the particular dimension, range, shape, concept, or other aspect modified by the term, such that a feature or component need not conform exactly. For example, a “substantially cylindrical” object means that the object resembles a cylinder, but may have one or more deviations from a true cylinder.
“Comprising,” “including,” and “having” (and conjugations thereof) are used interchangeably to mean including but not necessarily limited to, and are open-ended terms not intended to exclude additional elements or method steps not expressly recited.
Terms such as “first”, “second”, and “third” are used to distinguish or identify various members of a group, or the like, and are not intended to denote a serial, chronological, or numerical limitation.
“Coupled” means connected, either permanently or releasably, whether directly or indirectly through intervening components.
Workpiece Securement Systems
With reference to the figures, workpiece securement systems will now be described. The workpiece securement systems discussed herein function to secure workpieces in a desired position and orientation for welding and other operations in a fast, ergonomic, and accurate way.
The reader will appreciate from the figures and description below that the presently disclosed workpiece securement systems address many of the shortcomings of conventional workpiece securement systems. For example, the workpiece securement systems described herein do not rely on round holes defining threaded ports for mounting blocks and clamps to the table, but instead use shaped openings. The shaped openings are easier to repair, more accurate, and more ergonomic than round holes in conventional weld tables. Weld splatter is much less of a hazard with the workplace securement systems described below. The shaped openings better resist rotational movement of hardware used to secure parts in position, which allows the user to more accurately secure parts in position.
The workpiece securement systems below improve over conventional weld tables by not relying merely on threaded studs and bolts to secure pieces to the table. The systems below avoid the tedium associated with twisting a large number of threaded studs and bolts. By providing an alternative to threaded studs and bolts, the systems below are more accurate because the user does not need to apply significant torque to secure the pieces into place, which would tend to undesirably move the piece being secured.
The workpiece securement systems described herein are less labor and time intensive to use than conventional systems. Reduced time and labor is necessary with the systems below because they avoid the threaded fasteners of conventional systems. Significant time and labor is saved with the systems below by avoiding the need to repair threaded ports when weld splatters onto them as regularly occurs with conventional systems. Another source of time and labor savings results from holding parts in position more accurately and with less attention and effort required. The more accurate positioning of the parts with the systems below enables the user to more accurately and consistently weld parts without errors needing corrections.
Another improvement over existing welding tables is the modular nature of the systems below. By allowing the user to readily expand the size of the system without discarding the existing system, the systems below are more flexible and reduce costs for the end user. Not needing to replace the system outright when larger systems are needed is a significant cost saver and reduces waste. Shipping the modular systems below is more convenient and less expensive as well.
The systems described below incorporate electrically isolated power supplies to conveniently power lights and tools. With the systems below, the user can more flexibly position the system and reduce clutter and trip hazards.
Workpiece Securement System
With reference to
As depicted in
Worktable
Worktable 103 functions to provide a worksurface for working on workpieces. More particularly, worktable 103 cooperates with other components of system 100 to secure workpieces in desired positions.
As depicted in
For example, some worktable examples do not include a second tabletop, a skirt, a spacer, a boundary anchor, or a bridge bracket. Examples with a single tabletop may be considered a single modular unit of the workpiece securement system.
As shown in
Leg
With reference to
In the present example, leg 104 is a tubular member was a base configured to be bolted to the ground, if desired. In some examples, the leg includes casters coupled to the base or in place of the base. As shown in
The leg may be any currently known or later developed type of leg. The reader will appreciate that a variety of leg types exist and could be used in place of the leg shown in the figures. In addition to the types of legs existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new types of legs developed in the future.
The size of the leg may be varied as needed for a given application. In some examples, the leg is larger relative to the other components than depicted in the figures. In other examples, the leg is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the leg and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
In the example shown in
In the present example, leg 104 is composed of steel. However, the leg may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
The shape of the leg may be adapted to be different than the specific examples shown in the figures to suit a given application. For example, the leg may include a face having the shape of a regular or irregular polygon, such as a circle, oval, triangle, square, rectangle pentagon, and the like. Additionally or alternatively, the leg may include a face having an irregular shape. In three dimensions, the shape of the leg may be a sphere, a pyramid, a cone, a cube, and variations thereof, such as a hemisphere or a frustoconical shape.
Tabletop
The role of tabletop 105 and second tabletop 132 is to provide a worksurface for working on workpieces. More particularly, tabletop 105 and second tabletop 132 cooperate with other components of system 100 to secure work-pieces in desired positions.
In the example shown in
The reader can see in
Given the modular nature of the tabletops, the discussion below will primarily describe tabletop 105 in detail. The reader should recognize that second tabletop 132 and any additional modular tabletops may be configured similarly or identically. As depicted in
The tabletops are configured to secure together to increase the worksurface provided by the worktable. Tabletop 105 and second tabletop 132 are welded together at defined interlock locations 160 shown in
With reference to
In the present example, the tabletops are each 24 inches wide. However, the size of the tabletop may be varied as needed for a given application. In some examples, the tabletop is larger relative to the other components than depicted in the figures. In other examples, the tabletop is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the tabletop and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
In the present example, tabletop 105 is composed of steel. However, the tabletop may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
The shape of the tabletop may be adapted to be different than the specific examples shown in the figures to suit a given application. For example, the tabletop may include a face having the shape of a regular or irregular polygon, such as a circle, oval, triangle, square, rectangle pentagon, and the like. Additionally or alternatively, the tabletop may include a face having an irregular shape.
Shaped Openings
The shaped openings receive components of workpiece securement system 100, such as anchor 109 and shelf 111, and help secure those components in position.
As shown in
The reader can see in
As depicted in
The size of the shaped openings may be varied as needed for a given application. In some examples, the shaped openings are larger relative to the other components than depicted in the figures. In other examples, the shaped openings are smaller relative to the other components than depicted in the figures. Further, the reader should understand that the shaped openings and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
In the present example, tabletop 105 defines a plurality of shaped openings 108. The number of shaped openings in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of shaped openings may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer shaped openings than described in the present example.
Spacer
Spacer 136 functions to establish adjacent spacing dimension 135 between tabletop 105 and second tabletop 132. As shown in
In the present example, spacer 136 is a hexagonal nut. However, the shape of the spacer may be adapted to be different than the specific examples shown in the figures to suit a given application. For example, the spacer may include a face having the shape of a regular or irregular polygon, such as a circle, oval, triangle, square, rectangle pentagon, and the like. Additionally or alternatively, the spacer may include a face having an irregular shape. In three dimensions, the shape of the spacer may be a sphere, a pyramid, a cone, a cube, and variations thereof, such as a hemisphere or a frustoconical shape.
As shown in
In the example shown in
The spacer may be any currently known or later developed type of spacer. The reader will appreciate that a variety of spacer types exist and could be used in place of the spacer shown in the figures. In addition to the types of spacers existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new tees of spacers developed in the future.
In the present example, spacer 136 is composed of metal. However, the spacer may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
Boundary Anchor
As depicted in
Another function of boundary anchor 138 is to selectively secure block 112 to skirt 128 when disposed in a selected skirt shaped opening 129. Securing block 112 to skirt 128 extends the worksurface of tabletop 105 by having block 112 extend beyond the periphery of tabletop 105. By mounting blocks to skirt 128, the user can secure clamps to blocks in positions beyond the periphery of tabletop 105 when needed.
In the present example, boundary anchor 138 is composed of metal. However, the boundary anchor may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
In the present example, workpiece securement system 100 includes four boundary anchors. However, the number of boundary anchors in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of boundary anchors may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer boundary anchors than described in the present example.
The shape of the boundary anchor may be adapted to be different than the specific examples shown in the figures to suit a given application. For example, the boundary anchor may include a face having the shape of a regular or irregular polygon, such as a circle, oval, triangle, square, rectangle pentagon, and the like. Additionally or alternatively, the boundary anchor may include a face having an irregular shape. In three dimensions, the shape of the boundary anchor may be a sphere, a pyramid, a cone, a cube, and variations thereof, such as a hemisphere or a frustoconical shape.
The size of the boundary anchor may be varied as needed for a given application. In some examples, the boundary anchor is larger relative to the other components than depicted in the figures. In other examples, the boundary anchor is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the boundary anchor and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
Bridge Bracket
As depicted in
In the present example, workpiece securement system 100 includes four bridge brackets. However, the number of boundary anchors in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of boundary anchors may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer boundary anchors than described in the present example.
In the present example, bridge brackets 139 are composed of metal. However, the bridge brackets may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
The shape of the bridge brackets may be adapted to be different than the specific examples shown in the figures to suit a given application. Further, the size of the bridge brackets may be varied as needed for a given application. In some examples, the bridge brackets is larger relative to the other components than depicted in the figures. In other examples, the bridge brackets is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the bridge brackets and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
Skirt
Skirt 128 functions to provide a vertical surface with which to mount accessory items, such as a bin. The vertical surface of skirt 128 additionally or alternatively functions to couple together modular tabletops.
With reference to
In the present example, skirt 128 is composed of metal. However, the skirt may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
The size of the skirt may be varied as needed for a given application. In some examples, the skirt is larger relative to the other components than depicted in the figures. In other examples, the skirt is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the skirt and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
Skirt Shaped Openings
Skirt shaped openings 129 serve to receive components of workpiece securement system 100, such as boundary anchor 138, and help secure those components in position.
The reader can see in
The size of the skirt shaped openings may be varied as needed for a given application. In some examples, the skirt shaped openings are larger relative to the other components than depicted in the figures. In other examples, the skirt shaped openings are smaller relative to the other components than depicted in the figures. Further, the reader should understand that the skirt shaped openings and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
The number of skirt shaped openings in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of skirt shaped openings may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer skirt shaped openings than described in the present example.
Anchor
Anchor 109 serves to retain blocks 112 in a desired position on worktable 103. As shown in
The reader can see in
Anchor 109 being disposed below the surface of tabletop 105 conceals the mounting hardware from view above the tabletop. This provides a cleaner worksurface and protects the mounting hardware from weld splatter.
The shape of the anchor may be adapted to be different than the specific examples shown in the figures to suit a given application. In many, but not necessary all examples, the size and shape of the anchor will complement the size and shape of the shaped openings.
The size of the anchor may be varied as needed for a given application. In some examples, the anchor is larger relative to the other components than depicted in the figures. In other examples, the anchor is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the anchor and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
The number of anchors in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of anchors may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer anchors than described in the present example.
In the present example, anchor 109 is composed of metal. However, the anchor may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
Bolt
The role of bolt 110 is to selectively couple block 112 to anchor 109 by passing through mount bore 113 of block 112. The bolt may be any currently known or later developed type of bolt. The reader will appreciate that a variety of bolt types exist and could be used in place of the bolt shown in the figures. In addition to the types of bolts existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new type of bolts developed in the future.
The size of the bolt may be varied as needed fora given application. In some examples, the bolt is larger relative to the other components than depicted in the figures. In other examples, the bolt is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the bolt and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
The number of bolts in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of bolts may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer bolts than described in the present example.
Shelf
Shelf 111 and shelf 180 function to support anchor 109 from below bottom surface 107 of tabletop 105 in a position where anchor 109 extends through the selected shaped opening. With reference to
The reader can see in
As depicted in
The reader can see in
Shifting attention to shelf 180, which is configured differently than shelf 111, the reader can see in
The upper ends of sidewalls 122 are welded to bottom surface 107 to fix the position of shelf 180. In other examples, the shelf is fastened to the bottom surface by mechanical fasteners, adhesives, or magnetic couplers.
The number of shelves in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of shelves may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer shelves than described in the present example.
The shape of the shelf may be adapted to be different than the specific examples shown in the figures to suit a given application. For example, the shelf may include a face having the shape of a regular or irregular polygon, such as a circle, oval, triangle, square, rectangle pentagon, and the like. Additionally or alternatively, the shelf may include a face having an irregular shape. In three dimensions, the shape of the shelf may be a sphere, a pyramid, a cone, a cube, and variations thereof, such as a hemisphere or a frustoconical shape.
The size of the shelf may be varied as needed for a given application. In some examples, the shelf is larger relative to the other components than depicted in the figures. In other examples, the shelf is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the shelf and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
In the present example, shelf 111 and shelf 180 are composed of metal. However, the shelf may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
Block
Block 112 serves as a mounting point for clamp 102 to secure workpiece 101 in a desired position. As shown in
The reader can see in
With reference to
In the present example, block 112 is composed of metal. However, the block may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
The size of the block may be varied as needed for a given application. In some examples, the block is larger relative to the other components than depicted in the figures. In other examples, the block is smaller relative to the other component than depicted in the figures. Further, the reader should understand that the block and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
In the present example, the blocks are precision milled and configured to be installed in multiple orientations, stacked and couple with flush mount shims to create 90-degree ledges and varying plane heights for fixturing. The block may be any currently known or later developed type of block. The reader will appreciate that a variety of block types exist and could be used in place of the block shown in the figures. In addition to the types of blocks existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new types of blocks developed in the future.
The number of blocks in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of blocks may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer blocks than described in the present example.
Mount Bore
The role of mount bore 113 is to cooperate with bolt 110 to mount block 110 to tabletop 105. With reference to
As shown in
The number of mount bores in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of mount bores may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer mount bores than described in the present example.
Clamp Receiver Bore
Clamp receiver bore 114 functions to cooperate with a bolt of clamp 102 to couple clamp 102 to block 112. As depicted in
The number of clamp receiver bores in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of clamp receiver bores may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer clamp receiver bores than described in the present example.
Block Coupler Bore
Block coupler bore 119 cooperates with a bolt and a shim coupler bore 121 to selectively couple shim 120 to block 112. As depicted in
Shim
Shim 120 functions to laterally extend the clamping coupling region from block 112. Shim accommodates securing clamp 102 to a position laterally extended from block 112 when it would be helpful to clamp a workpiece in a position laterally beyond the reach of clamp receiver bores 114 defined in block 112. In the present examples, the shims mount flush to the blocks to create 90-degree ledges and varying plane heights for fixturing.
As shown in
The size of the shim may be varied as needed for a given application. In some examples, the shim is larger relative to the other components than depicted in the figures. In other examples, the shim is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the shim and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
In the present example, shim 120 is composed of metal. However, the shim may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
The shape of the shim may be adapted to be different than the specific examples shown in the figures to suit a given application. For example, the shun may include a face having the shape of a regular or irregular polygon, such as a circle, oval, triangle, square, rectangle pentagon, and the like. Additionally or alternatively, the shim may include a face having an irregular shape. In three dimensions, the shape of the shim may be a sphere, a pyramid, a cone, a cube, and variations thereof, such as a hemisphere or a frustoconical shape.
The shim may be any currently known or later developed type of shim. The reader will appreciate that a variety of shim types exist and could be used in place of the shim shown in the figures. In addition to the types of shims existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new types of shims developed in the future.
The number of shims in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of shims may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer shims than described in the present example.
With reference to
Turning attention to
A distinction between workpiece securement system 200 and workpiece securement system 100 is that worktable 203 includes four tabletops instead of two as with worktable 103. Of note, worktable 203 includes the same number of legs, four, as worktable 103.
Additional distinctions between system 200 and system 100 result from the additional features that system 200 includes. The additional features are described below.
Bin
The role of bin 230 is to store items in a convenient location for a user to access while using workpiece securement system 200. With reference to
Bin 230 defines a bin mount bore complementarily is configured with a bolt used to selectively couple bin 230 to an anchor coupled to skirt 228. In
In the present example, bin 230 is composed of metal. However, the bin may be composed of any currently known or later developed material suitable for the applications described herein for which it is used. Suitable materials include metals, polymers, ceramics, wood, and composite materials.
The number of bins in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of bins may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer bins than described in the present example.
The shape of the bin may be adapted to be different than the specific examples shown in the figures to suit a given application. Some bin examples have more or fewer compartments while certain bin examples have a single compartment.
The size of the bin may be varied as needed for a given application. In some examples, the bin is larger relative to the other components than depicted in the figures. In other examples, the bin is smaller relative to the other components than depicted in the figures. Further, the reader should understand that the bin and the other components may all be larger or smaller than described herein while maintaining their relative proportions.
The bin may be any currently known or later developed type of bin. The reader will appreciate that a variety of bin types exist and could be used in place of the bin shown in the figures. In addition to the types of bins existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new types of bins developed in the future.
Electrical System
Electrical system 240 functions to provide a source of power to worktable 203 accessible to a user. As shown in
Power Distribution System
Power distribution system 241 serves to distribute electrical power to different locations of worktable 203. Power distribution system 241 also electrically couples electrical system 240 with a utility power source. However, in some examples, the electrical system relies on an onboard power source, such as a battery or fuel cell, rather than electrically coupling to a utility power source. In those examples, the power distribution system electrically couples to the onboard power source.
The number of power distribution systems in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of power distribution systems may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer power distribution systems than described in the present example.
The power distribution system may be any currently known or later developed type of power distribution system. The reader will appreciate that a variety of power distribution system types exist and could be used in place of the power distribution system shown in the figures. In addition to the types of power distribution systems existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new types of power distribution systems developed in the future.
Power Socket
The role of power socket 242 is to provide a user with access to the electrical power distributed by power distribution system 241. As depicted in
The power socket may be any currently known or later developed type of power socket. The reader will appreciate that a variety of power socket types exist and could be used in place of the power socket shown in the figures. In addition to the types of power sockets existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new types of power sockets developed in the future.
Power Plug
The power plug may be any currently known or later developed type of power plug. The reader will appreciate that a variety of power plug types exist and could be used in place of the power plug shown in the figures. In addition to the types of power plugs existing currently, it is contemplated that the workpiece securement systems described herein could incorporate new types of power plugs developed in the future.
Power Tool
In the
Illumination Device
Illumination device 245 functions to illuminate worktable 203. Some system examples include an illumination device positioned to illuminate a bin so that contents stored in the bin are easier to see. As shown in
In the
The number of illumination devices in the workpiece securement system may be selected to meet the needs of a given application. The reader should understand that the number of illumination devices may be different in other examples than is shown in the figures. For instance, some workpiece securement system examples include additional or fewer illumination devices than described in the present example.
The disclosure above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in a particular form, the specific embodiments disclosed and illustrated above are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed above and inherent to those skilled in the art pertaining to such inventions. Where the disclosure or subsequently filed claims recite “a” element, “a first” element, or any such equivalent term, the disclosure or claims should be understood to incorporate one or more such elements, neither requiring nor excluding two or more such elements.
Applicant(s) reserves the right to submit claims directed to combinations and subcombinations of the disclosed inventions that are believed to be novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of those claims or presentation of new claims in the present application or in a related application. Such amended or new claims, whether they are directed to the same invention or a different invention and whether they are different, broader, narrower or equal in scope to the original claims, are to be considered within the subject matter of the inventions described herein.