This invention relates to a welding process performed utilizing a high-density energy beam and an arc discharge.
Welding processes used for welding a workpiece in the form of a sheet, plate or the like includes: welding which utilizes a high-density energy beam such as a laser light and an electron beam, and arc welding such as MIG (Metal Inert Gas) welding and TIG (Tungsten Inert Gas) welding.
The welding with a high-density energy beam is a process in which density of energy applied to a workpiece is very high, and thus incorporates advantageous features such as a higher welding speed and a narrower width of a bead formed on the workpiece during the welding process.
In contrast, the arc welding is a process in which a larger amount of energy may be applied to a workpiece per unit of time, despite a lower welding speed, and may thus lend itself to welding of a thick plate. The arc welding also has the advantage of improved quality of a welded portion because a metal filler wire melts and thereby forms a collar on the welded portion.
In the welding utilizing a high-density energy beam, however, the ratio of spread versus penetration of the weld is smaller, and thus when thick plates were overlapped and welded together, a welded area of the workpieces would be so small that a desirable level of welding strength could not be secured on some occasions.
On the other hand, the arc welding would cause distortion of the weld to occur in some instances as a result of a great amount of energy applied; therefore, it should be noted that variations in the quality of welded surfaces might be produced by instability of arc discharge. Moreover, the arc welding also has the disadvantage of a lower welding speed.
Accordingly, it is an object of the present invention to provide a welding process that can weld a workpiece efficiently and securely irrespective of shape and material of the workpiece.
A workpiece welding process according to one exemplified aspect of the present invention is a welding process for welding a workpiece which forms a molten portion on the workpiece by emitting a high-density energy beam thereto, and thereafter generates an arc discharge while supplying a filler wire to the molten portion, to weld the workpiece.
This workpiece welding process is designed to accelerate a welding speed by welding with a high-density energy beam which is carried out in advance, while expanding the welded portion formed by the high-density energy beam, utilizing an arc discharge that follows, to obtain a higher welding strength.
In the above workpiece welding process, a distance between a central position of the molten portion formed by emitting the high-density energy beam thereto and a central position of a molten weld pool formed by the arc discharge may be longer than 0 mm, and may be 4 mm at the maximum, in a welding direction.
The workpiece welding process is designed to effectively utilize thermal energy contained in the high-density energy beam by controlling the above distance, and to reduce the amount of energy to be provided to an arc welding machine, so that energy efficiency as a whole may be enhanced.
a), (b), (c) are side views for explaining an exemplified arrangement of a laser light source and an arc welding machine.
A detailed description will be given of an embodiment of the present invention.
As shown in
The plates 1, 2 to be welded are made of iron, aluminum, other metal materials, or alloys such as stainless steel, and the material for the plate 1 may be different from that for the plate 2. Besides such a case as shown in
In
Among devices usable for the laser light source 3 are for example a YAG laser utilizing an yttrium-aluminum crystal having a garnet structure, and a CO2 laser utilizing carbon dioxide gas. The YAG laser can emit a laser light having several hundred watts of continuous-wave (CW) power at a fundamental wavelength of 1.06 micrometers. The CO2 laser can produce oscillation of a laser light having several tens of kilowatts of continuous-wave power at a wavelength of 10.6 micrometers. The high-density energy beam according to the present invention is not limited to the aforementioned laser lights L; rather, any other laser lights having different wavelengths as well as electron beams may be used. Laser lights operating in a pulsed mode may also be used.
The welding process utilizing an arc discharge is carried out by generating an arc discharge between an electrode wire 8 that extends from an arc welding machine 7 toward the plates 1, 2, and the plate 1, so as to melt the plates 1, 2. At this stage, an inert gas G is blown against the plate 1 from an opening 9 of the arc welding machine 7 formed around the electrode wire 8 in order to prevent faulty welding that could be caused by oxidation of the molten metal. Among welding machines usable for the arc welding machine 7 are for example a MIG (Metal Inert Gas) welding machine, a MAG (Metal Active Gas) welding machine, and a TIG (Tungsten Inert Gas) welding machine. When the MIG welding machine is used, the electrode wire 8 gets molten to serve as a filler wire; when the TIG welding machine is used, a filler wire is fed by a feeding mechanism (not shown) into plasma of the arc discharge.
As shown in
In such a combination welding process as described above, which is performed utilizing the laser light source 6 and the arc welding machine 7, the laser molten weld pool 3 formed by the laser light L is formed, in a relatively narrow region, deeply down to the plate 2 as shown in
Therefore, the present embodiment is designed to generate an arc discharge between the laser molten weld pool 3 formed by the laser light L as described above and the electrode wire 8 of the arc welding machine 7. The plates 1, 2 are further melted across a broadened area by heat associated with the arc discharge before the laser molten weld pool 3 is re-solidified (i.e., immediately after the laser molten weld pool 3 is formed), forming an arc molten weld pool 4. The arc molten weld pool 4 is formed by making use of the laser molten weld pool 3, and is thus formed across a broadened area even with a small quantity of heat generated. The thus-formed arc molten weld pool 4 increases an area welded to combine the plate 1 and the plate 2, and thus increases the welding strength.
When the MIG welding machine is used for the arc welding machine 7, the electrode wire 8 is melted and separated to fall in the form of a droplet onto the arc molten weld pool 4, so that a collar, i.e., the bead 5 can be formed on the plate 1. Consequently, the welded surface of the plate 1 is made convex, and thus stress concentration on the welded surface can be prevented.
According to the welding process of the present embodiment, the welding strength can be made greater in comparison with that achieved when laser welding is performed singly. Moreover, an amount of energy required for welding can be reduced in comparison with that required when arc welding is performed singly; therefore, distortion in the weld between the plates 1, 2 can be reduced, a weld crack is prevented from occurring, and a welding speed can be improved.
The aforementioned effects can considerably be achieved by appropriately setting a distance d as shown in
One reason therefor is for example like the following: if the distance d between the irradiation position of the laser light L and the central position of the arc molten weld pool 4 were not longer than 0 mm, i.e., if the arc discharge were performed at a position ahead of the irradiation position of the laser light in the welding direction H, a welding operation utilizing an arc discharge would resultantly precede all others, and thus the amount of energy required for welding could not be reduced. Another reason is as follows: if the distance d were not longer than 0 mm, thermal energy of the laser light L would be scattered and absorbed by the arc molten weld pool 4 formed by melting with the arc discharge, and thus the thermal energy derived from the laser light L disadvantageously could not effectively utilized. On the other hand, if the distance d were longer than 4 mm, the plates 1, 2 which were melted once would unfavorably get solidified again.
The distance d may also be considered in light of the welding speed, and it is thus to be understood that the distance d is not subject to the welding speed on the premises that the output of the laser light L is constant and that the amount of electric power supplied for the arc discharge is constant. One reason therefor is for instance like the following: if welding is performed at an increased speed, the amount of energy provided per unit area of the plates 1, 2 and per unit time decreases, and the molten plates 1, 2 are thus more likely to get re-solidified, but the time which elapses since melting takes place by the laser light L until the arc discharge is carried out becomes shorter, with the result that the both effects cancel each other out. Another reason, on the other hand, is as follows: if welding is performed at a reduced speed, the amount of energy provided per unit area of the plates 1, 2 and per unit time increases, but the time which elapses since melting takes place by the laser light L until the arc discharge is carried out becomes longer, with the result that the both effects cancel each other out.
As one example of the present embodiment, lap-joint welding of thick plates (2 mm in thickness) made of aluminum of 5XXX alloy was performed with the distance d being set at 2 mm, using a YAG laser as the laser light source 6 and a MIG welding machine as the arc welding machine 7. The welding strength of 200 MPa or greater was obtained at a speed of 3 m/minute, and reduced welding distortion and prevention of occurrence of a weld crack were observed. This welding speed is adequately high in comparison with that achieved when arc welding is performed singly, while this welding strength is adequately great in comparison with that achieved when laser welding is performed for thick plates. Hereupon, the laser light L outputted 4 kW of continuous-wave power, with a spot diameter of φ 0.6–0.8 mm. The MIG welding was performed at current values of 100–250 A and voltage values of 10–25V, and the inert gas G used therefor was argon gas.
Moreover, the present invention is not limited to the above embodiments, and a wide range of various other embodiments may be put into practice.
For example, as shown in
Moreover, an irradiation position of the laser light L and a generation position of arc discharge do not necessarily have to be placed on one and the same line parallel to the welding direction H, and a trajectory of the irradiation position and a trajectory of the arc discharge may be made parallel—if each approximated to a straight line—to each other. In this instance, a component in the welding direction between the irradiation position of the laser light L and the central position of the arc molten weld pool 4 formed by arc discharge corresponds to the distance d as described above.
Further, the distance d does not always have to be kept constant during the welding process, but may be varied within the range as defined above.
Furthermore, instead of continuously welding the plates 1, 2 as shown in
According to the workpiece welding process of the present invention, a preceding high-density energy beam and a following arc welding process are used to weld a workpiece, and thus a welding speed can be improved, while a welding strength can be enhanced.
In addition, the welding process provides a predetermined value to which a distance in a welding direction between a central position of a molten portion formed by emitting the high-energy beam thereto and a position of a tip of an electrode wire of the workpiece welding machine for generating arc discharge is set; therefore energy can be utilized effectively, and energy efficiency as a whole can be enhanced.
Number | Date | Country | Kind |
---|---|---|---|
2001-281725 | Sep 2001 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP02/09433 | 9/13/2002 | WO | 00 | 4/28/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/024658 | 3/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4507540 | Hamasaki | Mar 1985 | A |
5821493 | Beyer et al. | Oct 1998 | A |
5859402 | Maier | Jan 1999 | A |
5866870 | Walduck | Feb 1999 | A |
6034343 | Hashimoto et al. | Mar 2000 | A |
6191379 | Offer et al. | Feb 2001 | B1 |
6608285 | Lefebvre et al. | Aug 2003 | B1 |
20020008094 | Briand et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
196 08 074 | Sep 1997 | DE |
199 16 831 | Oct 2000 | DE |
1-241392 | Sep 1989 | JP |
1-241392 | Sep 1989 | JP |
6-254689 | Sep 1994 | JP |
10-272578 | Oct 1998 | JP |
10-272578 | Oct 1998 | JP |
2000-280080 | Oct 2000 | JP |
2001-246465 | Sep 2001 | JP |
2001-246465 | Sep 2001 | JP |
2002-144064 | May 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20040000539 A1 | Jan 2004 | US |