This is a non-provisional application based upon U.S. provisional patent application Ser. No. 60/371,310, entitled “WORKSURFACE POWER MODULES POWERED BY FUEL CELLS”, filed Apr. 10, 2002 and U.S. provisional patent application Ser. No. 60/376,134, entitled “WORKSURFACE POWER MODULES POWERED BY FUEL CELLS”, filed Apr. 29, 2002.
1. Field of the Invention
The present invention relates to worksurface power modules, and, more particularly, to worksurface power modules powered by fuel cells.
2. Description of the Related Art
A typical worksurface requires convenient access to electrical power. In an office setting, electrical power is typically provided in the form of electrical receptacles connected to utility power. The electrical receptacles power office equipment such as computers, calculators, facsimile machines, copiers, printers, clocks, lamps and the like. In an industrial or laboratory setting, electrical power is also typically provided in the form of electrical receptacles connected to utility power, and in addition to office and other previously discussed equipment, the electrical receptacles can be used to power other industrial or laboratory equipment, tools and the like.
Utility power is subject to voltage, and/or current, surges and/or spikes, brownouts and blackouts. All of these anomalies in the utility power can render any equipment connected to the utility power inoperable or can damage or destroy such equipment. Vital equipment that requires continuous, highly reliable power may not have its power needs satisfied in these categories by utility power. Utilities often rely on fossil fuels for power generation with the corresponding pollution as a result of such use. Utility power has recently seen significant price increases.
Utility power is typically brought into a building at a service entrance and then distributed throughout the building via an electrical circuit breaker box and circuit conductors, attached to the electrical circuit breakers, which have been installed and pulled through the building structure. The conductors are attached to receptacles, lights and the like. A circuit providing power to a part of the building has limited capacity depending on the size of the circuit breaker, which depends on the conductor size and voltage used in the circuit. The service entrance for a building has a power limitation which can be upgraded for a given cost. Likewise the electrical circuit breaker box has a limited capacity in terms of both maximum power and the maximum number of circuit breakers that can fit into a box, the box capacity being also upgradeable at a cost. To provide additional power to a given section of a building, typically another circuit is pulled through the building at a cost and potential disruption of work in the areas in which the circuit is pulled. All of the upgrades discussed previously have the additional disadvantages of requiring substantial time, and the need for a skilled electrician, to implement.
Buildings not near the existing utility power grid require additional cost to bring the grid to the building.
Electrical generators for temporary power or backup power in the form of gas combustion electrical generators have the disadvantages of being noisy and vibration prone, can be costly to operate due to inefficiencies and produce pollution through the combustion process. Batteries for temporary power or backup power need recharging which requires a source of electricity.
Office and industrial worksurfaces, particularly modular furniture worksurfaces, are easily configurable to meet the changing needs of the business. Worksurfaces require access to electricity, and the existing circuits and receptacles in a building may limit the inherent flexibility of a modular furniture worksurface by requiring the worksurface to be located near the existing circuits and receptacles.
A fuel cell is an electrochemical energy conversion device that converts hydrogen, or other hydrogen compound gases through suitable conversion to hydrogen, and oxygen into water, producing electricity and heat in the process. Hydrogen is explosive and not readily available to most typical work environments or worksurfaces.
What is needed in the art is a power module that does not require connection to utility power, is cost efficient to operate, is suitable for typical work environments and is environmentally friendly.
The present invention provides a worksurface power module powered by fuel cells.
The invention comprises, in one form thereof, a fuel cell and a jumper connected to the fuel cell. The jumper includes a first end and a second end. The first end of the jumper is connected to the fuel cell, the second end of the jumper is configured for providing electrical power to a worksurface.
An advantage of the present invention is that it provides an electrical power module that is independent of utility power.
Another advantage of the present invention is that it provides an electrical power module that is cost efficient to operate.
Yet another advantage of the present invention is that it removes the restriction of having to position worksurfaces next to an outlet to obtain power.
A further advantage of the present invention is that it removes the restriction of having to to hardwire the modular office panels into the building power.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate one preferred embodiment of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Modular wall panel 12 includes at least one worksurface 36 attached therewith. A plurality of modular wall panels 12 can be interconnected as shown in
Power module 16 includes at least one fuel cell 18 and jumper 20. Fuel cell 18 is an electrochemical energy conversion device that converts hydrogen, or other hydrogen compound gases through suitable conversion to hydrogen, and oxygen into water, producing electricity and heat in the process, the aforementioned gases being fuel gases. Fuel cells 18 can be coupled together in parallel or series as appropriate. Jumper 20 electrically connects power module 16 to other electrical devices via conductors (not shown) and includes first end 22 electrically connected to fuel cell 18 and second end 24 configured for providing electrical power to worksurface 36. Second end 24 can be hardwired (
When power module 16 does not include an internal source of fuel gas, or if additional fuel gas capacity is needed, fuel gas source 46 can be in fluid communication with power module 16 through inlet 44. Fuel gas source can be explosion proofed by the proper design and the use of explosion proof fittings, controls, valves and the like. Fuel gas source 46 can be located outside the immediate area of power module 16 and/or worksurface 36, for example, outside the building or in a separate room. Likewise, power module 16 can be located outside the immediate area of worksurface 36.
Referring now to
In use, powering of modular furniture unit 10, modular wall panels 12 and worksurface 36 is accomplished by installing panels 10 and/or worksurface 36, electrically powering worksurface 36 with power module 16 by connection of jumper 20, either hardwired or plug connected, to electrical distribution unit 14, individual or temporary power tap device 30 and/or a plurality of power taps 32.
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Date | Country | |
---|---|---|---|
60371310 | Apr 2002 | US | |
60376134 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10410539 | Apr 2003 | US |
Child | 11337211 | Jan 2006 | US |