This invention relates to a desk or table, and more particularly to improvements in connection with providing power and/or communication capability for a desk or table and an adjustable height support assembly for use with a desk or table.
In accordance with a first aspect of the present invention, a desk or table unit includes a worksurface and leg structure that supports the worksurface above a supporting surface such as a floor. The worksurface defines a front and a rear. A wire management arrangement is located below the worksurface, and may be configured to extend between opposite sides defined by the worksurface. The wire management arrangement includes at least one wire support member and first and second covers, each of which is movable between an open position and a closed position. The first access cover is configured to provide access to the wire management member from the rear of the worksurface when the first access cover is in the open position. The second access cover is configured to provide access to the wire management member from the front of the worksurface when the second access cover is in the open position. The wire management arrangement preferably includes a pair of wire management members, in the form of an upper wire management member and a lower wire management member. At least the lower wire management member is preferably configured to define an upwardly facing trough or channel, to provide lay-in capability for cables or wires to be supported by the lower wire management member. The upper wire management member is also preferably formed to define an upwardly facing channel or trough, as well as an upstanding mounting wall. With this construction, wires or cables can be supported by the upper wire management member in a lay-in manner, or components of a rigid wireway power distribution system can be secured to the mounting wall of the upper wire management member. The first and second access covers may be mounted to the lower wire management member for movement between the open and closed positions. The first access cover is preferably configured to engage the upper wire management member when the first access cover is in the closed position. The first access cover and the upper wire management member are preferably configured such that a portion of the upper wire management member, which may be the mounting wall of the upper wire management member, is exposed between the underside of the worksurface and the upper end of the first access cover. With this construction, power outlets or receptacles may be secured to the exposed portion of the upper wire management member, to provide outwardly facing power outlets or receptacles that can be accessed from the rear of the worksurface.
In accordance with another aspect of the invention, the leg structure of the table or desk unit includes provisions for routing cables or wires from the lower end of the leg structure to the upper end, preferably for supplying power or communication wiring to a wire management arrangement located below the worksurface of the table or desk unit. The leg structure includes a foot member adapted to engage a supporting surface such as a floor, and a leg member that is mounted to and extends upwardly from the foot member. A worksurface support member is secured to the upper end of the leg member, and the worksurface is mounted to the worksurface support member. A wire cover member or wireway is releasably engageable with the leg member, and defines an internal passage within which wiring is adapted to be received. The wire cover member may have a channel configuration, defining spaced apart edges that engage an exterior surface of the leg member. The wire cover member is releasably engaged with the leg member via a clip member secured to the leg member, which is preferably configured to releasably engage the spaced apart edges of the wire cover member. The foot member preferably defines an upwardly facing recess within which a lower end of the wire cover member is received. The wire management arrangement, which is located below the worksurface, preferably includes an opening within which an upper end of the wire cover member is received. With this construction, the internal passage of the wire cover member establishes communication with an internal area of the wire management arrangement, to enable wires to be routed upwardly into the internal area of the wire management arrangement from a location adjacent the foot member. The wire cover member includes an opening located toward one of its ends, and can be reversed such that the opening is located either adjacent the foot member or adjacent the wire management arrangement. When the opening is located adjacent the foot member, wires can be passed through the opening and the internal passage of the wire cover member and into the internal area of the wire management arrangement. When there is no need for passing wires from the foot member into the internal area of the wire management arrangement, the wire cover member is reversed such that the opening is located adjacent the wire management arrangement, to conceal the opening in the wire cover member. The recess in the foot member has a shape that corresponds to the cross section of the wire cover member, to provide a finished appearance to the leg structure at the joint between the foot member and the leg member.
In accordance with another aspect of the invention, an adjustable height support assembly is engaged with the leg structure of a table or desk unit, to adjust the height of the worksurface relative to a supporting surface such as a floor. The adjustable height support assembly includes an upper adjustment member, a lower adjustment member movably mounted to the upper adjustment member, and a support member such as a glide, which is secured to a lower end defined by the lower adjustment member. In one embodiment, the upper adjustment member is threadedly engaged within a receiver associated with the leg structure, which may be secured to a foot member associated with the leg structure. The lower adjustment member is engaged with the upper adjustment member via a threaded engagement arrangement, which enables the lower adjustment member to be moved inwardly and outwardly relative to the upper adjustment member upon rotation of the lower adjustment member. The upper adjustment member and the lower adjustment member include engagement structure which is operable to prevent rotation between the upper and lower adjustment members when the lower adjustment member is moved outwardly to a predetermined position relative to the upper adjustment member. The engagement structure may be in the form of an expanded section located toward an upper end of the lower adjustment member. The upper adjustment member may be in the form of a generally cylindrical sleeve defining an externally threaded outer wall and a lower wall having a threaded opening within which the lower adjustment member is engaged The expanded upper section of the lower adjustment member is engageable with the lower wall of the generally cylindrical sleeve when the lower adjustment member is moved outwardly to a predetermined position relative to the sleeve, to prevent rotation of the lower adjustment member relative to the upper adjustment member. Subsequent rotation of the lower adjustment member causes rotation of the upper adjustment member, to extend the upper adjustment member relative to the receiver. In this manner, the upper and lower adjustment members provide a dual telescoping arrangement to increase the range of height adjustment that can be attained within a relatively compact envelope occupied by the support assembly.
The various features of the invention may be utilized independently of each other, and each provides an advantage in the construction, assembly and operation of a table or desk unit. The features of the invention can also be used altogether or in various combinations, to provide a significant enhancement in the construction, assembly and operation of the table or desk unit.
Various other features, objects and advantages of the invention will be made apparent from the following description taken together with the drawings.
The drawings illustrate the best mode presently contemplated of carrying out the invention.
In the drawings:
Referring to
Table or desk unit 50 further includes a cable or wire management system 66 located below worksurface 52. Cable or wire management system 66 includes an upper wire management member 68 and a lower wire management member 70. A rear or outer access cover 72 is pivotably mounted to lower wire management member 70 and is selectively engageable with upper wire management member 68, for selectively providing access to lower wire management member 70 from the rear of table or desk unit 50. As shown in
Worksurface 52 may have any size and shape as desired, and may be configured according to user specifications. In a representative configuration as shown in
The components and construction of each leg assembly 54 are shown in
The construction of glide assembly 92 is shown in
Upper adjustment member 96 and lower adjustment member 104 include engagement structure that functions to prevent rotation between upper adjustment member 96 and lower adjustment member 104 when lower adjustment member 104 is extended to a predetermined position relative to upper adjustment member 96. In the illustrated embodiment, the engagement structure is in the form of an expanded or outwardly flared section 118 located at the upper end of the shank of extension member 104. Expanded section 118 has a diameter greater than the diameter of threaded passage 100 in the end wall of upper adjustment member 96. In this manner, extension member 104 cannot be screwed out of upper receiver 96, and engagement of expanded section 118 with the inner surface of the end wall of upper adjustment member 96 adjacent opening 100 functions to cause upper adjustment member 96 and lower adjustment member 104 to rotate together upon application of a rotational force to lower adjustment member 104.
With the arrangement of glide assembly 92 as shown and described, a telescoping action of extension member 104 is obtained when glide base 108 is rotated so as to level table or desk unit 50, to level worksurface 52 relative to the support surface such as a floor. Initial adjustment is provided by rotating lower adjustment member 104 relative to upper adjustment member 96. When lower adjustment member 104 is in its fully extended position, outwardly flared area 118 engages the edge of passage 100 so as to prevent further outward movement of extension member 104 relative to upper receiver 96. Continued rotation of lower adjustment member 104 results in engagement of outwardly flared section 118 with the inner edge of opening 100, which causes upper adjustment member 96 to rotate within the threaded passage of weld nut 90. Such rotation of upper adjustment member 96 causes additional downward movement of glide base 108 relative to weld nut 90. In this manner, lower adjustment member 104 and upper adjustment member 96 provide a dual action telescoping glide assembly for providing a significant range of vertical adjustment capability in a compact envelope. When it is desired to retract glide assembly 92, the user rotates either upper adjustment member 96 or lower adjustment member 104. When upper adjustment member 96 is fully seated, lower adjustment member 104 is rotated to extend into the passage or upper adjustment member 96 to provide telescoping retraction of glide assembly 92. The user employs the noncircular engagement areas of upper adjustment member 96 and lower adjustment member 104 to facilitate rotation of each in order to adjust the height of worksurface 52.
Referring to
As shown in
Base infeed cover 122 includes an opening 136 which is adapted to receive an elbow fitting 138 associated with a power infeed conduit 140.
Lower wire management member 70 includes a pair of spaced openings 214 located toward its ends. The upper end of the vertical wireway 120 or base infeed cover 122 of each leg assembly 54 is adapted to be received within one of the openings 214 in lower wire management member 70, such that the passage defined by the vertical wireway 120 or base infeed cover 122 is accessible from above lower wire management member 70. In the event vertical wireway 120 is positioned such that its recess 132 is located at the upper end of wireway 20, lower wire management member 70 and outer access cover 72 are operable to visually conceal the presence of recess 132 so as to provide a finished external appearance for the rearward area of leg assembly 54.
Referring to
In operation, clip 124 functions as follows to releasably engage the upper end of vertical wire cover 120 or base infeed cover 122 in engagement with leg member 56. First, clip 124 is secured to leg member 56 by engaging clip 124 within leg member opening 142 by inserting base section 144 into opening 142 with a push-on motion. As base section 144 is inserted into opening 142, wings 148 engage the facing edges of opening 142, which causes legs 146 to deflect inwardly toward each other. The user is able to apply manual pressure to ramp walls 156 to pinch the upper ends of legs 146 together, to accommodate such inward movement of legs 146. This inward deflection of legs 146 results in the outwardmost portions of wings 148 being moved inwardly an amount sufficient to enable wings 148 to pass through opening 142, such that the lower surfaces of transverse base walls 154 engage the wall of leg member 56 adjacent opening 142. The user then releases engagement with ramp walls 156, which results in outward movement of legs 146 under the influence of an outward bias provided by the connection of legs 146 together at the inner end of base section 144. The areas of the wall of leg member 56 adjacent opening 142 are received within the space between wing upper surfaces 150 and the facing lower surfaces of base walls 154, such that clip 124 is releasably mounted within opening 142.
When it is desired to engage the upper end of wire cover 120 or base infeed cover 122 with clip 124, the user first inserts the upper end of wire cover 120 or base infeed cover 122 into and through opening 214 in upper wire management member 70. Wire cover 120 or base infeed cover 122 is then moved upwardly an amount sufficient to place the lower end of wire cover 120 or base infeed cover 122 above the upper surface of foot member 58. The user then moves wire cover 120 or base infeed cover 122 toward leg member 56 such that the lower end of wire cover 120 or base infeed cover 122 is located over the rearward portion of recess 86 on the upper surface of foot member 58. This movement of wire cover 120 or base infeed cover 122 causes wire cover 120 or base infeed cover 122 to engage clip 124. During such movement of wire cover 120 or base infeed cover 122, inner ends 130 of side walls 128 engage clip ramp walls 156, and continued movement of wire cover 120 or base infeed cover 122 toward leg member 56 results in side wall ends 130 moving inwardly along ramp walls 156 so as to move clip legs 146 together, until side wall inner ends 130 clear the inner ends of ramp walls 156 and are received within retainer notches 158. Wing upper surfaces 150 are configured such that, during movement of legs 146 together in this manner, wing upper surfaces 150 remain in engagement with the leg member wall adjacent opening 142, to maintain clip 124 in engagement with leg member 56. When side wall inner ends 130 are received within retainer notches 158, the outward bias of clip legs 146 functions to move clip retainer sections 152 outwardly, to releasably secure the upper portion of wire cover 120 or base infeed cover 122 to leg member 56. The user then lowers wire cover 120 or base infeed cover 122 so that its lower end is inserted into and foot member opening 86 rearwardly of leg member 56, which maintains wire cover 120 or base infeed cover 122 in releasable engagement with leg member 56. When it is desired to remove wire cover 120 or base infeed cover 122, the user reverses the above steps and applies an outward force on the upper end of wire cover 120 or base infeed cover 122, which causes inner ends 130 of side walls 128 to move along the curved surfaces of notches 158 so as to move legs 146 inwardly toward each other until inner ends 130 clear notches 158. Side wall inner ends 130 then move outwardly along ramp walls 156, and the outward bias of the interconnected area of legs 146 functions to return base section 144 to its original condition, engaged within leg opening 142 as described above.
As noted previously, wire management system 66 includes upper wire management member 68, lower wire management member 70, outer access cover 72 and inner access cover 74. The details of construction of wire management system 66 are shown in FIGS. 4 and 25–37.
Referring to
As shown, upper flange 164 is adapted for connection to the underside of worksurface 52 in any satisfactory manner, such as by threaded fasteners that extend through openings in upper flange 164 and into engagement with threaded receivers in the underside of worksurface 52. It is understood, however, that upper wire management member 68 may also be mounted to leg assemblies 54, such as to the rear of cantilevers 60 or to the rear surfaces of leg members 56. Any other satisfactory mounting arrangement may be provided for mounting upper wire management member 68 below worksurface 52.
In a non-powered version of cable management system 66, cover members 176 (
Each rigid wireway assembly 180 may be secured to upper wire management member 68 in any satisfactory manner, such as by means of mounting brackets and threaded fasteners, in a known manner. In the powered version, power outlet receptacles are engageable with connector blocks 184, and openings 174 in upper wire management member web 166 are positioned such that the power outlet receptacles are exposed through openings 174. Power is communicated between adjacent table or desk units 50 by engaging a jumper with connector blocks 184 of the adjacent table or desk units 50.
In yet another alternative version, upper wire management member 68 may form the basis for a hardwired power distribution system 188, as shown in
In this manner, face plate assembly 190 cooperates with upper wire management member 68 to define an internal passage 202 adapted to receive power distribution wires. The trough structure defined by web 166, lower flange 168 and lip 170 of upper wire management member 68 functions to support wiring located within internal passage 202. In a conventional manner, such power distribution wiring is interconnected with outlet receptacles 194 via connector wires 204 which extend from outlet receptacles 194, to distribute power along the length of upper wire management member 68. For adjacent table or desk units 50, such power distribution wiring extends between aligned internal passages 202 defined by the upper wire management members 68 and face plate assemblies 190 of adjacent table or desk units 50, to distribute power along the length of a series of table or desk units 50.
Referring to
As noted previously, bottom wall 206 of lower wire management member 70 includes an opening 214 located slightly inwardly of each end of lower wire management member 70, which is adapted to receive the upper end of vertical wire cover 120 or base infeed cover 122. In addition, bottom wall 206 defines a recess 216 which opens onto the end of lower wire management member 70, which is configured to cooperate with the recess 216 of a lower wire management member 70 associated with an adjacent table or desk unit 50 to form an opening shaped similarly to opening 214, for receiving the upper end of vertical wireway 120 or base infeed cover 122 of the adjacent table or desk unit 50. In this manner, lower wire management member 70 is normally positioned such that, at one end of lower wire management member 70, the upper end of a vertical wire cover 120 or base infeed cover 122 is positioned within opening 214. At the opposite end of the table or desk unit 50, the other opening 214 is unoccupied and the vertical wire cover 120 or base infeed cover 122 is received within the opening defined by cooperating recesses 216 of lower wire management members 70 of adjacent table or desk units 50.
A series of outwardly extending mounting tabs 218 extend outwardly from each end of bottom wall 206. Mounting tabs 218 are formed by cut out areas of front and rear walls 208, 210, respectively. Representatively, lower wire management member 70 may be formed of a section of bent sheet metal, and mounting tabs 218 may be stamped out of front and rear walls 208, 210, respectively, and formed in the bending operation.
Front wall 208 of lower wire management member 70 is formed with a series of relatively large rectangular openings 220 as well as smaller rectangular openings 222 and 224. Lower wire management member 70 is normally adapted to support voice or data communication wires or cables, and openings 220, 222 and 224 are adapted to receive voice or data communication receptacles interconnected with the wires or cables of the voice or data communication system.
With the construction and arrangement of upper wire management member 68 and lower wire management member 70, the wiring associated with the power distribution system and the wiring associated with the communication distribution system are separate and isolated from each other. The open construction of both upper wire management member 68 and lower wire management member 70 provides lay-in wire capability, and also provides quick and easy access to the wiring or cabling for service, addition or removal of components, or any other operation which requires access to the power distribution or communication distribution components supported by upper wire management member 68 and lower wire management member 70.
Referring to FIGS. 4 and 33–35, outer access cover 72 and inner access cover 74 may be interconnected together to form a cover assembly located below worksurface 52 and enclosing lower wire management member 70 and the forwardly facing portion of upper wire management member 68. The rearwardly facing portion of upper wire management member 68, namely web 166, is normally left exposed to provide access to rearwardly facing outlets or receptacles associated with upper wire management member 68. It is understood, however, that outer access cover 72 may be constructed to fully enclose upper wire management member 68. For example, outer access cover 68 may be engageable with the upper area of upper wire management member 68 or with the underside of worksurface 52.
Outer access cover 72 generally includes an upper latch section 228, a main cover section 230, a mounting section 232 and an inner cover connection section 234.
Upper latch section 228 includes a detent ridge 236 at its inner end, which extends upwardly from a wall 238. A hinge section 240 is located between latch section 228 and the upper end of main cover section 230, which enables latch section 228 to deflect relative to main cover section 230. A living hinge 242 is located at the lower end of main cover section 230, and is formed of a resilient material which enables main cover section 230 and latch section 228 to pivot relative to mounting section 232. In this manner, main cover section 230 is movable between an open position for providing access to lower wire management member 70, and a closed position in which latch section 228 is engaged with catch member 75 mounted to the underside of upper wire management member 68, to releasably maintain main cover section 230 in its closed position. Wall 238 of latch section 228 underlies lower flange 166 of upper wire management member 68, while an upwardly extending wall 244 engages the lower end of web 166 and detent ridge 236 extends upwardly from the inner extent of lower flange 168, to engage latch section 228 with upper wire management member 68. Application of a manual outward force on outer access cover 72, in the vicinity of hinge section 240, functions to deflect latch section 228 downwardly so as to enable detent ridge 236 to pass below upper wire management member 68, to allow outer access cover 72 to be moved to its open position by pivoting movement about living hinge 242.
Mounting section 232 is configured to engage the underside of lower wire management member 70, such that outer access cover 72 is supported by lower wire management member 70. It is understood that this is but one convenient way of mounting outer and inner access covers 72, 74 below worksurface 52, and that other mounting arrangements may be employed. For example, access covers 72, 74 may be mounted to and between leg assemblies 54. In addition, while mounting section 232 has been illustrated as forming a part of outer access cover 72, it is also understood that mounting section 232 may be formed integrally with inner access cover 74.
Mounting section 232 includes an outer flange 244 having a hook 246 at its outer end, supported by a rib 248. Outer access cover 72 is preferably formed in an extrusion process, such that the various components as illustrated are formed throughout the length of outer access cover 72. In addition, mounting section 232 includes a pair of ribs 250, 252, and a flange 254 extends laterally from the upper end of rib 252. Flanges 244 and 254, as well as the upper end of rib 250, are adapted to engage the underside of bottom wall 206 of lower wire management member 70, while hook 246 is adapted to engage the rear set of mounting tabs 218 extending from the rear edge of bottom wall 206. A finger 256 having a latch 258 at its upper end extends upwardly at a location forwardly of rib 252, and latch section 258 is adapted to engage the front set of mounting tabs 218 extending from the front edge of bottom wall 206. In this manner, mounting section 232 is engageable with lower wire management member 70 with a snap-on engagement arrangement, without the need for tools. This allows access covers 72, 74 to be quickly and easily mounted to and removed from lower wire management member 70.
A T-slot 260 is formed between ribs 250 and 252, and may be employed for mounting additional components or the like to the underside of outer access cover 72.
Inner cover connection section 234 includes spaced apart wall sections 262, 264, which define a slot 266 therebetween. Wall section 264 is configured so as to extend upwardly at its inner end, to form an L-shape for slot 266.
The ends of outer access cover 72 have notches 268, to accommodate leg members 56. An end trim member 270 is engageable with each end edge of outer access cover 72 above notch 268, for providing a finished appearance to the ends of outer access cover 72.
Inner access cover 74 has an L-shaped connection section 272 at its lower end, which is adapted to be received within L-shaped slot 266 forming a part of connection section 234 of outer access cover 72. An adhesive, sonic welding or the like is employed to secure connection section 272 within slot 266, such that inner access cover 74 and outer access cover 72 are connected together.
Inner access cover 74 further includes a main cover section 274, and a living hinge 276 located at the lower end of main cover section 274 adjacent connection section 272. A finger grip section 278 extends outwardly from the upper end of main cover section 274, and a latch section 280 extends inwardly from the upper end of main cover section 274.
As noted previously, catch member 75 is mounted to the underside of worksurface 252, and latch section 280 is selectively engageable with catch member 75 to selectively maintain inner access cover 74 in its closed position. The user grips finger grip section 272 and applies an outward force, to disengage latch section 280 from catch member 75 and to pivot main cover section 274 about living hinge 276, to move inner access cover 74 to its open position. When inner access cover 74 is in its open position, the user has full access to the inner area of upper wire management member 68 as well as to lower wire management member 70. In this manner, the user is able to manipulate cables, wires, power distribution components, receptacles, etc., and to connect or disconnect cables or wires associated with equipment supported by worksurface 52.
The side edges of inner access cover 74 have cut out areas 282 to accommodate leg members 56.
Worksurface openings 76 are positioned so as to be located inwardly of upper wire management member 68, and rearwardly of catch member 75 with which inner access cover latch section 280 is engaged, such that cables or wires from equipment supported on worksurface 52 can be fed downwardly through worksurface openings 76 and into an internal space between outer and inner access covers 72, 74, respectively, forward of upper wire management member 68 and above lower wire management member 70. In this manner, such wires or cables can be plugged into receptacles associated with the power supply distribution system of upper wire management member 68 and with the voice and data communication receptacles associated with lower wire management member 70.
Referring to
Various alternatives and embodiments are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subject matter regarded as the invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/353,696, filed Feb. 1, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3674230 | Propst | Jul 1972 | A |
3883202 | Konig | May 1975 | A |
3921539 | Berger | Nov 1975 | A |
4060294 | Haworth et al. | Nov 1977 | A |
4066305 | Gazarek | Jan 1978 | A |
4094256 | Holper et al. | Jun 1978 | A |
4224769 | Ball et al. | Sep 1980 | A |
4296981 | Hildebrandt et al. | Oct 1981 | A |
D263189 | Beals | Mar 1982 | S |
4323291 | Ball | Apr 1982 | A |
4370008 | Haaworth et al. | Jan 1983 | A |
4372629 | Propst et al. | Feb 1983 | A |
4382642 | Burdick | May 1983 | A |
4422385 | Rutsche et al. | Dec 1983 | A |
4433884 | Edwards et al. | Feb 1984 | A |
RE31733 | Haworth et al. | Nov 1984 | E |
4535703 | Henriott et al. | Aug 1985 | A |
4627364 | Klein et al. | Dec 1986 | A |
4734826 | Wilson et al. | Mar 1988 | A |
4748913 | Favaretto et al. | Jun 1988 | A |
4762072 | Boundy et al. | Aug 1988 | A |
4792881 | Wilson et al. | Dec 1988 | A |
4828513 | Morrison et al. | May 1989 | A |
4852500 | Ryburg et al. | Aug 1989 | A |
4883330 | Armstrong et al. | Nov 1989 | A |
5024167 | Hayward | Jun 1991 | A |
5050267 | Quest | Sep 1991 | A |
5094174 | Grund et al. | Mar 1992 | A |
5103741 | Grund et al. | Apr 1992 | A |
5144896 | Fortsch | Sep 1992 | A |
5186425 | Keusch et al. | Feb 1993 | A |
5220871 | Grund et al. | Jun 1993 | A |
5226705 | Rorke et al. | Jul 1993 | A |
5230552 | Schipper et al. | Jul 1993 | A |
5231562 | Pierce et al. | Jul 1993 | A |
5237935 | Newhouse et al. | Aug 1993 | A |
5272988 | Kelley et al. | Dec 1993 | A |
5277131 | Fortsch | Jan 1994 | A |
5279233 | Cox | Jan 1994 | A |
5337657 | Diffrient | Aug 1994 | A |
5354027 | Cox | Oct 1994 | A |
D352845 | Hellwig et al. | Nov 1994 | S |
5533457 | Cox | Jul 1996 | A |
5606920 | Meyer et al. | Mar 1997 | A |
5878673 | Kramer et al. | Mar 1999 | A |
5901513 | Mollenkopf et al. | May 1999 | A |
5934201 | Diffrient | Aug 1999 | A |
5957062 | Cox et al. | Sep 1999 | A |
5971509 | Deimen et al. | Oct 1999 | A |
5988076 | Vander Park | Nov 1999 | A |
6003447 | Cox et al. | Dec 1999 | A |
D422813 | Kane et al. | Apr 2000 | S |
D423832 | Kane et al. | May 2000 | S |
6202567 | Funk et al. | Mar 2001 | B1 |
D450564 | Kane et al. | Nov 2001 | S |
6435106 | Funk et al. | Aug 2002 | B1 |
6448498 | King et al. | Sep 2002 | B1 |
Number | Date | Country |
---|---|---|
7825906 | Jan 1979 | DE |
3506381 | Aug 1986 | DE |
0006707 | Jan 1980 | EP |
0145410 | Jun 1985 | EP |
563850 | Oct 1993 | EP |
2130877 | Jun 1984 | GB |
2172197 | Sep 1986 | GB |
WO 9013239 | Nov 1990 | WO |
Number | Date | Country | |
---|---|---|---|
20040149177 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60353696 | Feb 2002 | US |