1. Field of the Invention
The present invention relates in general to power distribution for electronic devices, and more particularly, but not exclusively, to automatic transfer switches for use in computing environments.
2. Description of the Related Art
An automatic transfer switch (ATS) is a circuit that automatically connects one of two alternating current (AC) line sources to an electrical load. Transfer switches may be seen where emergency power generators are used to provide back up power from the utility source. The transfer switch allows switching from utility power to emergency generator power during main line outages. An automatic transfer switch must totally isolate the two input sources.
In order to switch over from one input source to another, an ATS must either actively monitor the conditions of the two input lines and makes a disconnect and connect decision, or be designed such that it reactively connects the correct input source based on its circuitry's relative response to the changing states of the competing input sources.
The first, active monitoring option generally uses microcontrollers for the purpose of monitoring and control. Such active monitoring ATS devices generally use microcontroller-based “smart” electronic control circuits to drive low voltage coils for the purpose of opening and closing power contacts. The active monitoring and control approach provides repeatable operation at any line voltage. Supporting the microcontroller, however, requires house keeping power supplies, voltage sensors, signal condition circuitries, and control firmware. These additional requirements add to the system cost and complexity. The added complexity, in turn, degrades reliability.
The second, reflexive option is often a simple design based on interlocking mechanical contactors that open or close based on the voltage applied to their driving coils. This second option is much simpler and less expensive to implement but suffers from a major weakness as described below.
Different regions in the world have different power characteristics, more specifically the AC input voltages vary from country to country. As in most electrical designs, the ATS devices should not be region-specific; otherwise separate part numbers must be specified on a per-region, or worse, on a per-country basis. In the case of the reflexive design, even though a number of contactors of differing part numbers can be used to cover the worldwide power requirements, these part numbers do not correspond to line cord options for larger areas, such as Europe and/or the United States. In other words, there is not a single part number for a contactor that can fully cover Europe as is the case with line cord options.
In light of the foregoing, a need exists for a simple reflexive mechanical Automatic Transfer Switch (ATS) design that is implementable across multiple world regions using a same part number. Such a design would reduce system cost, complexity, and points of failure.
Accordingly, in one embodiment, by way of example only, a multi-coil automatic transfer switch (ATS) adapted for automatically switching an appropriately rated component to render the ATS operational over a worldwide voltage range is provided. A low voltage contactor includes a low voltage coil magnetically linked with a normally open low voltage main contact. A high voltage contactor is coupled in parallel with the low voltage contactor. The high voltage contactor includes a high voltage coil magnetically linked with a normally open high voltage main contact. A normally closed high voltage auxiliary contact is magnetically linked with the high voltage coil. The normally closed high voltage auxiliary contact has a phase opposite the normally open high voltage main contact. The high voltage contactor opens the normally closed high voltage auxiliary contact to disconnect the low voltage coil.
In an additional embodiment, again by way of example only, a worldwide adaptive multi-coil automatic transfer switch (ATS) is provided. An input is coupled to a low voltage main contact. A high voltage main contact is coupled in parallel with the low voltage main contact. A low voltage coil is coupled in series with the high voltage auxiliary contact. The low voltage coil is mechanically linked to the low voltage main contact. A high voltage main contact is coupled in parallel with the high voltage auxiliary contact. A high voltage coil is mechanically linked to both the high voltage auxiliary contact and the high voltage main contact. The high voltage main contact and the high voltage auxiliary contact are configured in opposite phase. The high voltage relay opens the high voltage auxiliary contact to disconnect the low voltage coil when the high voltage coil is energized.
In still another embodiment, again by way of example only, a method of manufacturing a multi-coil automatic transfer switch (ATS) adapted for automatically switching an appropriately rated component to render the ATS operational over a worldwide voltage range is provided. The method includes providing a low voltage contactor including a low voltage coil magnetically linked with a normally open low voltage main contact, providing a high voltage contactor coupled in parallel with the low voltage contactor, the high voltage contactor including a high voltage coil magnetically linked with a normally open high voltage main contact, and providing a normally closed high voltage auxiliary contact magnetically linked with the high voltage coil, the normally closed high voltage auxiliary contact having a phase opposite the normally open high voltage main contact, wherein the high voltage contactor opens the normally closed high voltage auxiliary contact to disconnect the low voltage coil.
In order that the advantages of the invention will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
The illustrated embodiments below implement a simple, single-design automatic transfer switch (ATS) using relay coils. The illustrated embodiments automatically adapt to worldwide voltage operations without the need for components such as a smart controller, built-in AC/DC power supplies, and control code. For a particular embodiment, a single part number representative of the ATS may be utilized to cover worldwide operation. Such an implementation simplifies manufacturing and field service. In addition, the ATS provides more reliable operation as potential failure points are eliminated.
As seen in the illustrated embodiments below, the contacts of two relays or contactors are connected in parallel. One relay uses a coil rated at a higher voltage, and the other relay uses a coil rated at a lower voltage. The coils have overlapping operating tolerances that will cover the lowest to the highest worldwide power grid voltage range. For example, the tolerances of both coils may be adapted to be plus ten percent (+10%) and minus fifteen percent (−15%) of rating. To prevent the lower voltage coil rating from being exceeded, a high voltage relay may be adapted to, when connected, disconnect the low voltage relay via an auxiliary contact.
Turning to
ATS 10 also includes a high voltage relay 26, having a high voltage coil 30 coupled to ground 32, and magnetically linked to high voltage main contact 28. In the instant embodiment, the high voltage coil 30 is rated at 240V, with a pickup voltage (Vpickup) of 204V and a maximum voltage (Vmax) of 264V. High voltage main contact 28 is also configured to be normally open (N.O.). High voltage relay 26 is coupled in parallel with low voltage relay 16 as shown, as high voltage contact 28 is coupled in parallel with low voltage contact 16.
A high voltage auxiliary contact 20 is coupled between the input 12 and the low voltage coil 22. A high voltage auxiliary contact 20 is linked to main contact 28. In this case, however, the high voltage auxiliary contact is configured in opposite phase to the high voltage contact 28. As a result, the high voltage auxiliary contact is configured to be normally closed (N.C.). When the high voltage coil 30 is energized, the magnetic flux from the high voltage coil 30 causes the high voltage contact 28 to close, and causes the high voltage auxiliary contact 20 to open, disconnecting the power path to the low voltage coil 22. As a result, the low voltage coil 22 is de-energized, and the low voltage contact 16 opens.
Turning to
The functionality of ATS 10 may be considered in light of the following. The low voltage relay may be selected to have an operating voltage rating range defined as Va-Vb and a pickup voltage defined as VpLV. The high voltage relay may be selected to have an operating voltage rating Vc-Vd, and a high voltage pickup voltage VpHV. In view of these definitions, the operation of the ATS may be characterized by Vc>Va, Vc≦Vb, Vd>Vb, and VpHV>VpLV.
Turning to
LV Main 56 is open from 0V to the pickup voltage for the low voltage coil (about 170V). From about 170 volts to about 204V, the LV Main 56 is closed, although a gray area of several volts (represented by the dotted line) may exist where the pickup voltage for the high voltage coil is exceeded and the LV Main 56 has not yet opened. From voltages of about 204V to voltages greater than 260V, the LV Main is opened.
HV Main 58 is open from about 0V to the pickup voltage of the high voltage coil (about 204V). From this pickup voltage to voltages above 260V, the HV Main 58 is closed.
As one skilled in the art will anticipate, the ATS 10 may be configured with coils of equal tolerances, but with ratings varying from the exemplary embodiments described above for a particular situation. In each case, the ATS 10 provides automatic transfer functionality across international variations in power grid voltages using a simple, cost-effective, and robust design.
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2828846 | Viguers et al. | Apr 1958 | A |
3646355 | Ireland et al. | Feb 1972 | A |
3922559 | Migeon | Nov 1975 | A |
4239978 | Kofink | Dec 1980 | A |
4780805 | Chewuk et al. | Oct 1988 | A |
4843301 | Belanger | Jun 1989 | A |
5001623 | Magid | Mar 1991 | A |
6091596 | Godfrey et al. | Jul 2000 | A |
6223296 | Lin | Apr 2001 | B1 |
6330176 | Thrap et al. | Dec 2001 | B1 |
6501196 | Lo | Dec 2002 | B1 |
6538345 | Maller | Mar 2003 | B1 |
6614671 | Thrap | Sep 2003 | B2 |
20040004853 | Na | Jan 2004 | A1 |
20060072262 | Paik et al. | Apr 2006 | A1 |
20060214512 | Iwata | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
20 2007 005 700 | Sep 2007 | DE |
1 806 758 | Jul 2007 | EP |
60102893 | Jun 1985 | JP |
Number | Date | Country | |
---|---|---|---|
20100033275 A1 | Feb 2010 | US |