This application relates generally to gas regulators for firearms that utilize a gas flow to chamber a new round and rearm a firing mechanism, and in particular, the application relates to an adjustable gas flow volume control device.
Many semi-automatic and automatic rifles utilize a gas-driven reloading system. These systems are often tuned by the rifle manufacturer for optimal performance of the firearm. However, the addition of an accessory (e.g., a suppressor) or the wear of components due to usage alters the firing characteristics of the firearm.
To compensate for such changes, adjustable gas regulators were introduced that allow for the metering (i.e., increasing or decreasing) of the gas flow. The majority of adjustable gas regulators use a screw or piston of some type to partially obstruct a round gas hole in the gas block and gas tube of the firearm/rifle, such as an AR-15. The flaw in this design is that as the screw is turned in and begins to obstruct the gas flow, it has little effect and that effect gets more progressive as the screw approaches the apex/center of the gas hole, and then progressively less as the screw advances into the back side of the hole. This causes inconsistent gas metering as one turn or one click has different effect from the previous adjustment and is unpredictable. Additionally, the gasses on some designs cause the screw to work its way out, and the tip of the screw may be eroded by the flow of hot gasses during operation, or, fouling of the threads of the screw with carbon from the burning gasses and gun powder residue.
A device and system for the metering of gas into a gas driven reloading system of a rifle is provided. The device, in certain embodiments, is a gas plate that includes a plurality of openings of differing radii, and a plurality of positioning notches formed on an edge of the gas plate. The device also includes, in certain embodiments, a series of teeth formed on a surface of the gas plate, where the series of teeth are formed with a pitch configured to correspond with threads of a worm drive, and where at least a partial rotation of the worm drive slidingly positions the gas plate with respect to the adjustable gas regulator.
In certain embodiment, the worm drive further comprises an annular groove positioned adjacent a first end of the worm drive, and the threads of the worm drive are positioned adjacent a second end of the worm drive. In certain embodiments, the adjustable gas regulator includes a worm drive retention plate having a semi-circular ridge configured to engage the annular groove. The worm drive retention plate may be configured to be secured in an opening of the adjustable gas regulator.
In certain embodiments, the adjustable gas regulator comprises a bore extending longitudinally from a first end to a second end, and where the bore is configured to receive the worm drive. In certain embodiments, each of the plurality of positioning notches is formed with a semi-circular shape and configured to engage a positioning ball. The positioning ball may be biased by a spring plate coupled to an exterior surface of the adjustable regulator.
The system includes, in certain embodiments, the device and a body having an opening configured to receive a movable gas plate and a worm drive. A rifle is also provided that includes the adjustable gas regulator with a moveable gas plate as described above.
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
The subject matter of the present application has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available gas regulators. Accordingly, the subject matter of the present application has been developed to provide a firearm suppressor that overcomes at least some shortcomings of the prior art.
As will be described in greater detail below, the gas regulator includes an adjustable worm drive that drives a small narrow plate that moves over a gas port in the barrel and contains a series of precise holes for exact and predictable metering. The current disclosure illustrates a gas plate with precise holes in sequence. So, if a rifle barrel has a 0.082 gas port, then the user would obtain a gas plate that has the first hole in the sequence at 0.082 and then following holes in smaller sizes, for example, either 0.001 or 0.002 smaller. In one embodiment, a gas plate may go from 0.082, 0.081, 0.080, 0.079, 0.078, and 0.077. Alternatively, the openings may be reduced by 0.002, or even a custom plate with specific sizes for different ammo or suppressed use, etc.
The movable gas plate is narrow and small, therefore there is a much smaller opening for any gas to escape. Also, the opening that receives the worm drive is arranged co-linearly with the barrel (i.e., extending along the same longitudinal axis as the barrel), so that any gasses that might escape are vented in the same direction as the bore and do not affect the shooter. Beneficially, the below described worm drive system can be accessed from the end of the rifle and therefore can be used with almost any handguard. There may be six or more, adjustable positions on the plate.
In another embodiment, the depicted gas regulator includes detents or notches to signal when a port on the plate is in alignment with the barrel's port. In one embodiment, the openings in the gas plate run from largest to smallest, and a user can count the number of clicks to know which opening is in alignment with the port of the barrel. In another embodiment, the block includes indicator notches that coordinate with the worm drive to indicate which port is in use. The worm drive can be driven by hand, by using a coin, a flat blade screwdriver, a hex wrench, ¼″ nut driver, socket, etc.
The description of elements in each figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements. Similar elements may be referred to with a number and a letter, such as “102a” and “102b”, when identified individually, and when referred to jointly by the number only (i.e., “102” without that “a” or “b”).
The gas regulator 100 is also configured with an opening 105 for receiving a position indicator, which in one embodiment, may be a ball 114 that engages a series of detents 107 or notches in the gas plate 106. A spring plate 116 provides a biasing force to the ball 114 and maintains the ball 114 at least partially within the opening. The spring plate 116 may be rigidly mounted at one end to the regulator 100. The spring plate 116 may be formed of a thing sheet of metal that is capable of flexing enough to allow the ball 114 to move in to and out of position within the detents 107.
Also depicted is the engagement of the ball 114 to the notches or detents 107 formed in the side of the gas plate. The ball moving in to and out of engagement with the notches causes the ball retention plate 116 to move in and out. This visual indication allows a user to know the position of the gas plate 106 within the body 102. Stated differently, a user is able to identify that an opening in the gas plate is properly aligned with the gas port of the barrel. In another embodiment, an aural click may be heard, also indicative of the position.
The gas plate 106 also includes a series of openings 302 with varying radii, as depicted. The radii may be modified to suit a particular application. In one embodiment, the sizes of the openings sequentially increase or decrease, as described above. This beneficially aids in adjustment, as the user will know that the next opening will be either slightly larger or slightly smaller than the currently positioned opening. Notches may be formed in one edge of the gas plate to indicate a position. Counting the “clicks” or number of times the ball engages the notch allows the user to take note of the position of the gas plate. Alternatively, the visual indicator of
As described above, the pitch of the worm drive may be selected to advance the gas plate with a small turn of the turnable head. In the depicted embodiment, a sixth of a full rotation will advance the gas plate from one position to the adjacent position. Also depicted are the different mechanisms that may be used for turning the turnable head, such as a hex-shaped opening for receiving a hex drive, a slot for receiving a screwdriver, or a knurled outer surface for engaging a user's thumb and index finger.
If a silencer 902 is attached to the barrel 904, gas flow (indicated by the arrows) exiting the barrel may be inhibited causing back pressure that creates a greater or less than optimal pressure on the gas-driven system. Beneficially, the different diameter openings in the gas plate 106 can increase or decrease the gas pressure on the gas-driven system. A receiver 906 (graphically depicting an upper and lower receiver) houses all of the components necessary to fire a round of ammunition. The barrel 904 couples to the receiver 906, and the regulator 100 couples to the barrel to align with the gas port 910 of the rifle 900.
A gas tube 912 (or gas piston, depending upon the system utilized by the rifle) is fluidly coupled with the gas port 910. As a round of ammunition travels down the barrel 904, gasses are forced through the gas port 910 and in to the gas tube 912. The gasses travel through the gas tube 912 back to the receiver 906 and cause the rifle to eject the spent ammunition casing and load a new round, as is known to those of skill in the art. The worm drive 108, as is described above in greater detail, may be rotated to position the gas plate 106 such that one of the openings of the gas plate 106 aligns with the gas port 910 to meter the flow of gas through the gas tube 912. In one embodiment, a channel is formed in the interior of the regulator 100 to fluidly couple the gas port 910 with the gas tube 912.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the subject matter of the present disclosure should be or are in any single embodiment. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present disclosure. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the subject matter of the present disclosure may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the subject matter may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments. These features and advantages will become more fully apparent from the following description and appended claims, or may be learned by the practice of the subject matter as set forth hereinafter.
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment. The terms “including,” “comprising,” “having,” and variations thereof mean “including but not limited to” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive and/or mutually inclusive, unless expressly specified otherwise. The terms “a,” “an,” and “the” also refer to “one or more” unless expressly specified otherwise.
Additionally, instances in this specification where one element is “coupled” to another element can include direct and indirect coupling. Direct coupling can be defined as one element coupled to and in some contact with another element. Indirect coupling can be defined as coupling between two elements not in direct contact with each other, but having one or more additional elements between the coupled elements. Further, as used herein, securing one element to another element can include direct securing and indirect securing. Additionally, as used herein, “adjacent” does not necessarily denote contact. For example, one element can be adjacent another element without being in contact with that element.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of U.S. Provisional Patent Application No. 62/447,398 entitled “ULTRA-PRECISION WORM DRIVE GAS REGULATOR” and filed on Jan. 17, 2017 for Ernest Bray, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62447398 | Jan 2017 | US |