Worn display system and method without requiring real time tracking for boresight precision

Information

  • Patent Grant
  • 9274339
  • Patent Number
    9,274,339
  • Date Filed
    Tuesday, December 17, 2013
    11 years ago
  • Date Issued
    Tuesday, March 1, 2016
    8 years ago
Abstract
A worn display, includes a projector and at least one wearable diffraction grating member. The member includes an input end for receiving an image from a projector and a combiner end for receiving light from a scene and providing the image received at the input end and the light received from the outside scene to the user. The worn display can be used in aircraft applications to provide guidance information to a pilot. The diffraction grating member can have periscopic characteristics.
Description
BACKGROUND OF THE INVENTION

The present specification relates to displays. More particularly, the present specification relates to a worn display, such as a head worn display (HWD) also known as a head-mounted display.


Display systems have been used to provide information to users for various applications. In aircraft applications, displays can provide precision guidance information to a pilot. For example, head-up displays (HUDs) superimpose images from two sources, the outside world and a second source for presentation to the pilot. Head-up displays are especially useful in aircraft because they allow the pilot to view information related to flight parameters without diverting attention from the view of the outside world through the windshield. Conventional head-up displays require optical components that can be heavy, expensive, and take up space in the cockpit.


Worn displays such as head worn displays have similarly been used in aircraft applications to allow a pilot to view precision guidance information without diverting attention from the real world scene. One type of head worn display is a helmet mounted display in which optical components are mounted to the operator's helmet. Helmet mounted displays are primarily used in military applications.


Worn displays often must maintain boresight accuracy when displaying precision guidance information. To achieve boresight accuracy, the worn display requires a tracking sensor that determines the position of the worn components of the worn display with respect to the boresight so that the differences in positions can be accommodated. For example, head worn displays including helmet-mounted displays used in the cockpit of an aircraft often require head tracking to determine the orientation of head worn portion of the display so that the displayed material can be offset to produce conformal alignment with the real world scene.


Head tracking is typically performed by magnetic, inertial and/or optical sensors that determine the position of the component worn by the pilot in six degrees of movement. Head tracking equipment increases the size and cost of head worn displays. In addition, head tracking requires connectivity between the magnetic, inertial and/or optical sensors and the non-worn portion of the display system.


Thus, there is a need for a lower cost, lighter, and smaller worn display. Further, there is a need for a worn display which does not require a helmet. Further still, there is a need for a worn display that does not require connectivity (mechanical and/or electrical) between the component worn by the user and the rest of the display system. Yet further still, there is a need for a worn display where the component that is worn is entirely passive and insensitive to all six degrees of movement, (e.g., six degrees of freedom invariant). Further still, there is a need for a worn display optimized for use in the constrained cockpit area of small aircraft. Even further still, there is a need for a worn display that utilizes periscopic principles to achieve six-degree-of-freedom insensitivity. Yet further, there is a need for a head worn display that does not require headtracking and yet provides precision guidance information conformally aligned with the real world scene.


Accordingly, it would be desirable to provide a display system and/or method that provides one or more of these or other advantageous features. Other features or advantages will be made apparent in the present specification. The teachings disclosed extend to those embodiments which fall within the scope of the appended claims, regardless of whether they accomplish one or more of the aforementioned advantages or features.


SUMMARY OF THE INVENTION

An exemplary embodiment relates to a worn display for a user having eyes. The worn display includes a projector and at least one diffraction grating member configured to be wearable and physically separate from the projector and physically free from the projector across rotational movement of the at least one diffraction grating member. The diffraction grating member having an input end for receiving a collimated image from the projector and a combiner end for providing the collimated image received at the input end to the eyes of the user. The light received from the outside scene is viewable through the combiner end. The at least one diffraction grating member extends from the input end to the combiner end. The input end is configured to be disposed to receive the image from the projector in a position unobstructed by the user. The combiner end is configured to be disposed in front of the eyes.


Another exemplary embodiment relates to a worn device for use with a display projector providing a collimated or near collimated image to eyes of the user. The worn device includes a diffraction grating member configured so that a first end of the diffraction grating member can be provided in front of an eye of a user and a second end of the diffracting grating member receives the collimated or near collimated image. The first end receives light from a real world scene. The second end is disposed in a position unobstructed by the user. The diffraction grating member is physically separate from the display projector and physically free from the display projector across rotational movement of the diffraction grating member and worn by the user.


Another exemplary embodiment relates to a method of providing guidance information to a pilot of an aircraft. The method includes providing collimated or near collimated light indicative of the guidance information from a display to a passive element configured to be worn by the pilot. The passive element is electrically and physically free from the display. The passive element is a light weight waveguide including a pair of diffraction gratings. The waveguide is configured to have periscopic characteristics. The method also includes combining light from a real world scene with the collimated or near collimated light using the element.


An exemplary embodiment relates to a worn display, such as a head worn display. The worn display includes a projector and a periscopic system. The periscopic system is configured to be wearable. The periscope system includes at least one diffraction grating member. The diffraction grating member has an input end for receiving an image from the projector and a combiner end for receiving light from a scene. The diffraction grating member provides the image received at the input end and the light received from the outside scene to the user at the combiner end.


An exemplary embodiment relates to a head-mounted device for use with a display. The display provides a collimated or near collimated image. The head mounted device includes a first diffraction grating member and a second diffraction grating member. The first diffraction grating member and the second diffraction grating member are configured so that a first end of each of the diffraction grating members can be provided in front of a respective eye of a user and a second end of each of the first and second diffraction grating members receives the collimated or near collimated image. The first end receives light from a real world scene.


Yet another exemplary embodiment relates to a method of providing guidance information to a pilot of an aircraft. The method includes providing collimated or near collimated light indicative of the guidance information from a display to a passive element configured to be worn by the pilot. The passive element is electrically unconnected to the display. The method also includes combining light from a real world scene with the collimated or near collimated light using the element. The element includes a diffraction grating.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments are hereinafter described with reference to the accompanying drawings, wherein like numerals refer to like elements, and:



FIG. 1 is a general block diagram of a display system including at least one worn component in accordance with an exemplary embodiment;



FIG. 2 is a more detailed block diagram of a display system similar to the system illustrated in FIG. 1 and including two waveguides in accordance with another exemplary embodiment;



FIG. 3 is a perspective view schematic drawing of the system illustrated in FIG. 2 in accordance with a further exemplary embodiment;



FIG. 4 is another perspective view schematic drawing showing the system illustrated in FIG. 2 with a user in accordance with yet another exemplary embodiment;



FIG. 5 is a side planar view schematic drawing of the system illustrated in FIG. 4;



FIG. 6 is a front planar view schematic drawing of the system illustrated in FIG. 4;



FIG. 7 is a front planar view schematic drawing of the periscopic system illustrated in FIG. 2 attached to a hat in accordance with still another exemplary embodiment;



FIG. 8 is a front planar view schematic drawing of the periscopic system illustrated in FIG. 2 configured to be worn by a user as glasses in accordance with another exemplary embodiment; and



FIG. 9 is a more detailed block diagram of one of the waveguides illustrated in FIG. 2, in accordance with another exemplary embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before describing in detail the particular improved system and method, it should be observed that the invention includes, but is not limited to, a novel structural combination of optical components and not in the particular detailed configurations thereof. Accordingly, the structure, methods, functions, control, and arrangement of components have been illustrated in the drawings by readily understandable block representations and schematic drawings, in order not to obscure the disclosure with structural details which will be readily apparent to those skilled in the art, having the benefit of the description herein. The Figures are not drawn to scale. Further, the invention is not limited to the particular embodiments depicted in the exemplary diagrams, but should be construed in accordance with the language in the claims.


With reference to FIG. 1, a wearable display system 10 is preferably configured as a head worn display (HWD). System 10 is described below for use in a cockpit of aircraft. However, system 10 can be utilized in a variety of applications, including driving applications, military applications, medical applications, targeting applications, etc. without departing from the scope of the invention.


System 10 preferably includes a periscopic system 50 and a collimated light display 60. Periscopic system 20 is preferably a wearable component of system 10 and can be attached to or worn by user 20 as represented by dashed line 22 in FIG. 1. Although preferably wearable on the head of user 20, system 50 can be coupled to user 20 in other fashions or onto other body parts.


Collimated light display 60 provides collimated light or a near collimated light 46 to periscopic system 50. Periscopic system 50 combines the near collimated or collimated light 46 with light 44 from a real world scene (preferably light is received through a windshield). The combined light is provided as light 42 to user 20.


Advantageously, according to one embodiment, system 10 does not require head tracking equipment and electrical connectivity is not required between periscopic system 50 worn by user 20 and collimated light display 60 or other parts of the aircraft. In a preferred embodiment, periscopic system 50 is preferably entirely passive and insensitive to movements in all six degrees of freedom. Advantageously, periscopic system 50 is configured so that rays of light 42 exiting periscopic system 60 to user 20 are parallel and in a reverse direction to rays of light 46 entering periscopic system 50 from display 60 according to a periscopic effect. Alternatively, system 50 can be arranged such that rays of light 42 exiting system 50 travel in a same direction and are parallel to rays of light 46.


Various optical components can be utilized to cause to the periscopic effect. For example, the periscope effect can be implemented by wave guides, mirrors, prisms, or other optical components. System 50 can also include additional optic components without departing from the invention.


Light 46 from collimated light display 60 preferably provides information to user 20. The information can be any type of information useful to user 20. In an aircraft application and according to one exemplary embodiment, the information can be flight parameters, such as, precision guidance information, navigation information, aircraft instrumentation information, or other flight information or warnings used when flying an aircraft. Alternatively, other types of information can be provided by collimated light display 60 depending upon system criteria and application parameters. For example, display 60 can be used to provide targeting information in military applications or guidance information in surgical applications. Advantageously, the combination of collimated light display 60 and periscopic system 50 provides a virtual image at optical infinity or near optical infinity of the information associated with light 46 for user 20 similar to an image produced by a conventional head-up display (HUD).


According to a preferred embodiment, periscopic system 50 is a waveguide that operates both as a guide for collimated light 46 from display 60 and a combiner for combining light 46 with light 44 for viewing by user 20. In one embodiment, periscopic system 50 utilizes a waveguide with diffraction gratings to achieve the periscopic effect. The waveguide is preferably lighter than more conventional optics such as mirrors, prisms, lenses, etc. Alternatively, other optical light weight components suitable for wearing by user 20 can be used (e.g., lenses, filters, coatings, etc.).


Unlike conventional HUDs, light 46 from display 60 is preferably transmitted through a waveguide rather than entirely through free space. The use of a waveguide and diffraction gratings allows periscopic system 50 to operate as an extremely compact and lightweight periscope. Such compactness is advantageous in aircraft, especially aircraft with smaller cockpits.


System 10 preferably has a 10-25 millimeter exit pupil. The use of the diffraction gratings advantageously enables pupil expansion in which a small collimated beam (e.g., light 46) is expanded in diameter to allow more range of eye motion while seeing the entire image from display system 60. Advantageously, the nature of periscopic system 50 allows it to be handheld and allows the display of the information to be extremely stable while the diffraction grating is rotated over large ranges. The boresight angle remains parallel as collimated light source 60 is fixed with respect to the boresight angle.


With reference to FIG. 2, collimated light display 60 preferably includes a display 64 and optics 66. Optics 66 can include projection optics, mirrors, prisms, collimating optics, lenses (e.g., a field flattener lens), etc. Alternatively, display 64 can provide collimated light without requiring additional optics such as optics 66. Display 60 is preferably aligned with the boresight of the aircraft during installation. Preferably, collimated light display 60 is provided as an overhead mounted collimator. Alternatively, display system 60 can be a binocular collimator (e.g., one for each eye).


Display 64 can be a display of any type including a micro-display, an active matrix LCD display, a CRT, an OLED display, a fixed display, or any type of device for providing collimated light to periscopic system 50. System 60 can be a projector used in conventional HUD.


Advantageously, periscopic system 50 can eliminate the requirement for expensive combiner stow and breakaway mechanisms. Further, system 50 can eliminate the need for combiner alignment detection and associated integrity monitoring. In one embodiment, system 50 is used with electronics and projectors associated with conventional head worn displays (e.g., HMDs), and/or conventional HUDs.


Contrary to the operation of conventional HMDs, system 10 has a fixed field of view. If user 20 rotates his or her head farther than the field of view collimated light display 60, the display image is entirely lost. Preferably, user 20 is located at the design eye associated with system 10. The eyebox of system 10 can have reasonably similar tolerances to conventional HUD technologies.


Periscopic system 50 preferably includes at least one diffraction grating member. In a preferred embodiment, system 50 includes a pair of waveguides 54 and 56, each including a set of diffraction gratings for diffracting light in accordance with a periscopic effect. Preferably, waveguides 54 and 56 operate as a pair of waveguides, one for each eye that couples light 46 from display 60 into the eyes of user 20 and also provides adequate field of view and adequate eyebox for viewing comfort. The light weight associated with waveguides 54 and 56 allow them to be easily worn by user 20. For example, wearing waveguides 54 and 56 can be as comfortable as wearing sunglasses.


With reference to FIG. 7, the waveguides 54 and 56 can be attached to a cap, helmet or hat 66. With reference to FIG. 8, waveguides 54 and 56 can be worn as glasses. Temple arms 60 can be utilized to situate waveguides in front of a user's eyes. Frame members 75 and 76 can provide stability. Member 76 can rest on a user's nose.


The alignment of waveguides 54 and 56 to each other is not critical because waveguides 54 and 56 are preferably optically rotationally invariant. In a preferred embodiment, optical invariance to rotation can be achieved using the periscopic principles associated with periscopic system 50. System 50 is preferably configured so that rays entering system 50 exit system 50 along new paths exactly parallel to original paths, regardless of orientation of system 50. System 50 is configured for this characteristic for all six degrees of freedom of orientation of system 50 in accordance with operational principles of a periscopic device. In addition, alignment with hat 66 or frame members 76 is not critical. Waveguides 54 and 56 can be provided as a unitary piece or be mechanically connected to each other in a variety of fashions. Preferably, waveguides 54 and 56 are oriented at 20 to 40 degrees to the pilot's line of sight along the boresight.


Although shown as two distinct waveguides 54 and 56, waveguides 54 and 56 can be combined as a single waveguide. Preferably, waveguides 54 and 56 are manufactured with relatively low cost material, such as, plastic, glass, etc. Waveguides 54 and 56 preferably do not include expensive coatings and could even be considered disposable items or items to be issued to aircraft pilots rather than as aircraft equipment.


In an alternative embodiment, system 10 can be a helmet mounted display such as for military helmets where head tracking is already accepted. In such an embodiment, there are no alignment restrictions other than boresighting of the head tracker because the alignment of waveguides 54 and 56 is insensitive. In this embodiment, the need for precision interfaces for helmet visors can be eliminated, thereby substantially reducing costs of the helmet assembly.


With reference to FIG. 3 and according to a preferred embodiment, waveguides 54 and 56 include sets of diffraction gratings 72 and 74, respectively. Preferably, gratings 72 and 74 have a spatial frequency of 2000 to 4000 lines per millimeter. Diffraction gratings 72 and 74 can be many manufactured according to a variety of techniques. As shown in FIGS. 3-6, projector 60 can be provided above and behind the head of the user in certain embodiments.


Gratings 72 and 74 can be formed by etching, cutting, printing, wet chemical, dry chemical, ion etching, laser etching, electron bean etching, staining, holographic exposure, etc. Waveguides 54 and 56 are preferably manufactured from any suitable material including, but not limited to transparent or translucent materials, such as, dielectric materials with high permittivity and high index of refraction (e.g., glass or plastic). Waveguides 54 and 56 can also be a laminate material and can be shaded or coated for filtering light.


Waveguides 54 and 56 preferably have a rectangular prismatic shape having a length larger than its width and a thickness smaller than its width. The dimensions of waveguides can be 10×2×0.125 inches. In a preferred embodiment, waveguides 54 and 56 are flat and flexible.


Diffraction gratings 72 and 74 can be providing only on a first-end (input end) and a second end (output or combiner end) of waveguides 54 and 56 for effecting the periscopic effect. The intermediate portion between the first end and second end is preferably free of diffraction gratings and operates as a waveguide between the input and output.


System criteria and application parameters may affect the size and type of spacing for gratings 72 and 74. Preferably, the area associated with the input of light 46 is larger than the area associated with the output of light 42. The difference in area results in an effective compression rather than expansion of beams incident on waveguide 54. The areas can be at any ratios depending upon design criteria and system applications. For example, the use of a smaller display and design criteria of a larger pupil would result in a larger area ratio. In one embodiment, such a compression can be limited by the need to have an exit pupil large enough to allow a degree of freedom of movement of the pilot's head without loss of display.


With reference to FIG. 9, waveguide 54 is similar to waveguide 56 and includes a diffraction grating 72a and diffraction grating 72b. Light 46 from display system 60 enters waveguide 54 at a first side 106 at end 114 with combined light 42 on a first end 104 and is diffracted by grating 72 downward towards a second end 114 and towards a side 108.


Light 46 is reflected by total internal reflection from side 108 to side 106 and from side 106 to side 108 as it travels across intermediate portion 112. Light 46 travels through waveguide 54 until it eventually strikes diffraction grating 72b where it is diffracted toward side 106 and exits substrate 54 on side 106. Combined light 42 includes light 46 and light 44 from side 108.


Grating 72a is preferably more efficient than grating 72b. In one embodiment, gratings 72B is approximately 10 percent efficient so that a large portion of light 46 can travel through grating 72b to side 106. The portion of light 46 diffracted by grating 72b travels through the waveguide and is eventually lost to absorption. Grating 72a preferably has an efficiency of more than 90 percent (most preferably as efficient as possible so light 46 from display system 60 does not unnecessarily escape waveguide 54).


The specific configuration of FIG. 9 is shown by way of example only. The angle of incidence, number of reflections, etc., are shown for purposes of discussion only. For example, a multitude of reflections occur as light travels across portion 112 from end 104 toward end 114, according to one embodiment. The present invention is not limited to the detail shown in Figure


Various geometries and placement of the display system 60 are possible and can be configured for specific cockpit geometries. System 60 can utilize a reflective device utilized by conventional substrate guided HUD systems. Expense can be saved using molded optics and more simplistic coatings in system 10.


It is understood that while the detailed drawings, specific examples, material types, thicknesses, dimensions, and particular values given provide a preferred exemplary embodiment of the present invention, the preferred exemplary embodiment is for the purpose of illustration only. The method and apparatus of the invention is not limited to the precise details and conditions disclosed. For example, although specific types of materials, dimensions, and processes are mentioned, other materials, dimensions, and process steps can be utilized. Various changes may be made to the details disclosed without departing from the spirit of the invention which is defined by the following claims.

Claims
  • 1. A worn display for a user having eyes, the worn display comprising: a projector; andat least one diffraction grating member configured to be wearable and physically separate from the projector and physically free from the projector across rotational movement of the at least one diffraction grating member, the diffraction grating member having an input end for receiving a collimated image from the projector, and a combiner end for providing the collimated image received at the input end to the eyes of the user and wherein the light received from an outside scene is viewable through the combiner end, the at least one diffraction grating member extending from the input end to the combiner end, wherein the input end is configured to be disposed to receive the collimated image from the projector in a position unobstructed by the user and the combiner end is configured to be disposed in front of the eyes.
  • 2. The display of claim 1, wherein the diffraction grating member is a periscopic system comprising two separate diffraction grating members, each diffraction grating member being disposed in front of a respective one of the eyes at the combiner end; wherein the diffraction grating members are elongated rectangles extending longitudinally from the input end to the combiner end.
  • 3. The display of claim 2, wherein each diffraction grating member comprises at least one diffraction grating having a spatial frequency of 2000-4000 gratings per millimeter.
  • 4. The display of claim 3, wherein the diffraction grating is etched or printed.
  • 5. The display of claim 4, wherein the diffraction grating members are each a unitary piece of plastic material.
  • 6. The display of claim 5, wherein the diffraction grating members are bendable.
  • 7. The display of claim 6, wherein the diffraction grating members have a thin rectangular prismatic shape.
  • 8. The display of claim 7, wherein the projector is a micro display.
  • 9. The display of claim 2, wherein an intermediate section of the diffraction grating members is disposed between the combiner end and the input end and does not include a grating.
  • 10. A worn device for use with a display projector providing a collimated or near collimated image to at least one eye of a user, the worn device comprises: a diffraction grating member configured so that a first end of the diffraction grating member can be provided in front of an eye of a user and a second end of the diffraction grating member receives the collimated or near collimated image, wherein the first end receives light from a real world scene, wherein the second end is disposed in a position unobstructed by the user, wherein the diffraction grating member is physically separate from the display projector and physically free from the display projector across rotational movement of the diffraction grating member when worn by the user.
  • 11. The worn device of claim 10, wherein the diffraction grating member provides a periscopic effect.
  • 12. The worn device of claim 11, wherein the diffraction grating member includes markings at a spatial frequency between 2000 and 4000 gratings per millimeter.
  • 13. The worn device of claim 12, wherein the member is a unitary piece comprised of flexible plastic material.
  • 14. The worn device of claim 10, wherein the diffraction grating member has a first flat planar side and a second flat planar side, where the first side is opposite the second side and is closer to the respective eye than the second side and the collimated or near collimated image is received from the display projector on the first side, and the light from the real world scene is received on the second side.
  • 15. The worn device of claim 10, wherein the diffraction grating member is flat and flexible.
  • 16. The worn device of claim 15, wherein the display for providing the collimator or near collimated image is provided behind a user.
  • 17. A method of providing guidance information to at least one eye of a user using a display projector comprising a display and a worn device, the method comprising: providing a collimated or near collimated image indicative of the guidance information from the display using a diffraction grating member of the worn device configured so that a first end of the diffraction grating member of the worn device can be provided in front of the eye of the user and a second end of the diffraction grating member receives the collimated or near collimated image, wherein the first end receives light from a real world scene, wherein the second end is disposed in a position unobstructed by the user, wherein the diffraction grating member is physically separate from the display projector and physically free from the display projector across rotational movement of the diffraction grating member when worn by the user; andcombining light received from a real world scene at the first end with the collimated or near collimated light using the diffraction grating member.
  • 18. The method of claim 17, wherein the diffraction grating member comprises a pair of passive elements.
  • 19. The method of claim 17, wherein the diffraction grating member comprises a thin plastic waveguide substrate.
  • 20. The method of claim 17, wherein the diffraction grating member is attached to a hat or to temple frames.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of and claims priority to U.S. application Ser. No. 12/700,557, filed Feb. 4, 2010, by Brown, et al., assigned to assignee of the present application and incorporated herein by reference in its entirety.

US Referenced Citations (508)
Number Name Date Kind
2141884 Sonnefeld Dec 1938 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4309070 St. Leger Searle Jan 1982 A
4647967 Kirschner et al. Mar 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4775218 Wood et al. Oct 1988 A
4854688 Hayford et al. Aug 1989 A
4928301 Smoot May 1990 A
4946245 Chamberlin et al. Aug 1990 A
5035734 Honkanen et al. Jul 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5117285 Nelson et al. May 1992 A
5124821 Antier et al. Jun 1992 A
5148302 Nagano et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5243413 Gitlin et al. Sep 1993 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5317405 Kuriki et al. May 1994 A
5341230 Smith Aug 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5369511 Amos Nov 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissel et al. Apr 1995 A
5418584 Larson May 1995 A
5438357 McNelley Aug 1995 A
5455693 Wreede et al. Oct 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5496621 Makita et al. Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5537232 Biles Jul 1996 A
5572248 Allen et al. Nov 1996 A
5579026 Tabata Nov 1996 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5682255 Friesem et al. Oct 1997 A
5694230 Welch Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5751452 Tanaka et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5790288 Jager et al. Aug 1998 A
5812608 Valimaki et al. Sep 1998 A
5822127 Chen et al. Oct 1998 A
5856842 Tedesco Jan 1999 A
5868951 Schuck et al. Feb 1999 A
5892598 Asakawa et al. Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5903395 Rallison et al. May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5966223 Friesem et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5991087 Rallison Nov 1999 A
5999314 Asakura et al. Dec 1999 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6115152 Popovich et al. Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6169613 Amitai et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6195206 Yona et al. Feb 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366378 Tervonen et al. Apr 2002 B1
6392812 Howard May 2002 B1
6409687 Foxlin Jun 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6524771 Maeda et al. Feb 2003 B2
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6580529 Amitai et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6598987 Parikka Jul 2003 B1
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6646810 Harter et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6674578 Sugiyama et al. Jan 2004 B2
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6721096 Bruzzone et al. Apr 2004 B2
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6805490 Levola Oct 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6853491 Ruhle et al. Feb 2005 B1
6864861 Schehrer et al. Mar 2005 B2
6864927 Cathey Mar 2005 B1
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6940361 Jokio et al. Sep 2005 B1
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6987908 Bond et al. Jan 2006 B2
7003187 Frick et al. Feb 2006 B2
7018744 Otaki et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7053735 Salmela et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7095562 Peng et al. Aug 2006 B1
7101048 Travis Sep 2006 B2
7110184 Yona et al. Sep 2006 B1
7123418 Weber et al. Oct 2006 B2
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184615 Levola Feb 2007 B2
7190849 Katase Mar 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7230767 Walck et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7259906 Islam Aug 2007 B1
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7289069 Ranta Oct 2007 B2
7299983 Piikivi Nov 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7375870 Schorpp May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7415173 Kassamakov et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7433116 Islam Oct 2008 B1
7436568 Kuykendall, Jr. Oct 2008 B1
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7500104 Goland Mar 2009 B2
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7567372 Schorpp Jul 2009 B2
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 DeJong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7618750 Ueda et al. Nov 2009 B2
7629086 Otaki et al. Dec 2009 B2
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733572 Brown et al. Jun 2010 B1
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7872804 Moon et al. Jan 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7944428 Travis May 2011 B2
7969644 Tilleman et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7999982 Endo et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8016475 Travis Sep 2011 B2
8022942 Bathiche et al. Sep 2011 B2
RE42992 David Dec 2011 E
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8186874 Sinbar et al. May 2012 B2
8188925 Dejean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8321810 Heintze Nov 2012 B2
8335040 Mukawa et al. Dec 2012 B2
8351744 Travis et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8477261 Travis et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
8633786 Ermolov et al. Jan 2014 B2
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8767294 Chen et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8830584 Saarikko et al. Sep 2014 B2
8913324 Schrader Dec 2014 B2
8938141 Magnusson Jan 2015 B2
20020021461 Ono et al. Feb 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040089842 Sutherland et al. May 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050269481 David et al. Dec 2005 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080106775 Amitai et al. May 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186604 Amitai Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080278812 Amitai Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080309586 Vitale Dec 2008 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100039796 Mukawa Feb 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100214659 Levola Aug 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20130069850 Mukawa et al. Mar 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20150010265 Popovich et al. Jan 2015 A1
Foreign Referenced Citations (28)
Number Date Country
101881936 Nov 2010 CN
1020060 03 785 Jul 2007 DE
2 110 701 Oct 2009 EP
2 225 592 Sep 2010 EP
2 381 290 Oct 2011 EP
2 733 517 May 2014 EP
2677463 Dec 1992 FR
2115178 Sep 1983 GB
2004-157245 Jun 2004 JP
WO-9952002 Oct 1999 WO
WO-03081320 Oct 2003 WO
WO-2006002870 Jan 2006 WO
WO-2007130130 Nov 2007 WO
WO-2007130130 Nov 2007 WO
WO-2009013597 Jan 2009 WO
WO-2009077802 Jun 2009 WO
WO-2010067114 Jun 2010 WO
WO-2010067117 Jun 2010 WO
WO-2010125337 Nov 2010 WO
WO-2010125337 Nov 2010 WO
WO-2011012825 Feb 2011 WO
WO-2011051660 May 2011 WO
WO-2011055109 May 2011 WO
WO-2011107831 Sep 2011 WO
WO-2013027006 Feb 2013 WO
WO-2013033274 Mar 2013 WO
WO-2013163347 Oct 2013 WO
WO-2014091200 Jun 2014 WO
Non-Patent Literature Citations (63)
Entry
Final Office Action on U.S. Appl. No. 13/250,940 Dated Oct. 17, 2014, 15 pages.
Irie, Masahiro, Photochromic diarylethenes for photonic devices, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Non-Final Office Action on U.S. Appl. No. 13/864,991 Dated Oct. 22, 2014, 16 pages.
Office Action on U.S. Appl. No. 13/892,026 Dated Dec. 8, 2014, 19 pages.
Final Office Action on U.S. Appl. No. 13/250,858 Dated Feb. 4, 2015, 18 pages.
Non-Final Office Action on U.S. Appl. No. 14/038,400 Dated Feb. 5, 2015, 18 pages.
Final Office Action on U.S. Appl. No. 13/892,057 Dated Mar. 5, 2015, 21 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858 Dated Sep. 15, 2014, 16 pages.
Notice of Allowance on U.S. Appl. No. 13/250,970 dated Sep. 16, 2014, 7 pages.
Notice of Allowance on U.S. Appl. No. 13/251,087 Dated Jul. 17, 2014, 8 pages.
Office Action on U.S. Appl. No. 13/250,940 Dated Mar. 25, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/251,087 Dated Mar. 28, 2014, 12 pages.
Ayras et al., Exit Pupil Expander with a Large Field of View Based on Diffractive Optics, Journal of the SID, 2009, 6 pages.
Restriction Requirement for U.S. Appl. No. 12/700,557, mail date Oct. 17, 2012, 5 pages.
Office Action for U.S. Appl. No. 12/700,557, mail date Feb. 4, 2013, 11 pages.
Office Action for U.S. Appl. No. 12/700,557, mail date Aug. 9, 2013, 12 pages.
Notice of Allowance for U.S. Appl. No. 12/700,557, mail date Oct. 22, 2013, 9 pages.
Cameron, A., The Application of Holographic Optical Waveguide Technology to Q-Sight Family of Helmet Mounted Displays, Proc. of SPIE, vol. 7326, 7326OH-1, 2009, 11 pages.
Office Action for U.S. Appl. No. 13/250,621, mail date May 21, 2013, 10 pages.
Office Action for U.S. Appl. No. 13/250,858 mail date Feb. 19, 2014, 13 pages.
Office Action for U.S. Appl. No. 13/250,858, mail date Oct. 28, 2013, 9 pages.
Office Action for U.S. Appl. No. 13/250,940, mail date Aug. 28, 2013, 15 pages.
Office Action for U.S. Appl. No. 13/250,940, mail date Mar. 12, 2013, 11 pages.
Office Action for U.S. Appl. No. 13/250,970, mail date Jul. 30, 2013, 4 pages.
Office Action for U.S. Appl. No. 13/250,994, mail date Sep. 16, 2013, 11 pages.
Wisely, P.L., Head up and head mounted display performance improvements through advanced techniques in the manipulation of light, Proc. of SPIE vol. 7327, 732706-1, 2009, 10 pages.
Amendment and Reply for U.S. Appl. No. 12/571,262, mail date Dec. 16, 2011, 7 pages.
Amitai, Y., et al. “Visor-display design based on planar holographic optics,” Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Ayras, et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the Society for Information Display, 17/8, 2009, pp. 659-664.
Caputo, R. et al., POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application; Journal of Display Technology, vol. 2, No. 1, Mar. 2006, pp. 38-51, 14 pages.
Crawford, “Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59.
Extended European Search Report for EP Application No. 13192383, dated Apr. 2, 2014, 7 pages.
Final Office Action in U.S. Appl. No. 13/864,991, dated Apr. 2, 2015, 16 pages.
Final Office Action on U.S. Appl. No. 13/892,026 Dated Apr. 3, 2015, 17 pages.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pages.
International Search Report and Written Opinion regarding PCT/US2013/038070, mail date Aug. 14, 2013, 14 pages.
Levola, et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light” Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet at http://www.kirkmoffitt.com/hmd—image—configurations.pdf on Dec. 19, 2014, dated May 2008, 25 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Jun. 12, 2015, 20 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,940 Dated Mar. 18, 2015, 17 pages.
Non-Final Office Action on U.S. Appl. No. 13/432,662 Dated May 27, 2015, 15 ages.
Non-Final Office Action on U.S. Appl. No. 13/844,456 Apr. 1, 2015, XX Pages.
Non-Final Office Action on U.S. Appl. No. 13/869,866 Dated May 28, 2014, 16 pages.
Non-Final Office Action on U.S. Appl. No. 14/044,676 Dated Apr. 9, 2015, 13 pages.
Non-Final Office Action on U.S. Appl. No. 14/225,062 Dated May 21, 2015, 11 pages.
Nordin, G., et al., Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217, 12 pages.
Office Action for U.S. Appl. No. 12/571,262, mail date Sep. 28, 2011, 5 pages.
Office Action for U.S. Appl. No. 13/355,360, mail date Sep. 12, 2013, 7 pages.
Press Release, “USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, SBG Labs—DigiLens, Apr. 2013, 1 page.
Press Release: “Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2, retrieved from the internet at http://www.digilens.com/pr10-2012.2.php. 2 pages.
Requirement for Restriction/Election on U.S. Appl. No. 13/844,456 Dated Sep. 12, 2014, 23 pages.
Schechter, et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Urey, “Diffractive exit pupil expander for display applications” Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
Non-Final Office Action on U.S. Appl. No. 14/152,756, mail date Aug. 25, 2015, 39 pages.
Final Office Action on U.S. Appl. No. 13/869,866 Dated Oct. 3, 2014, 17 pages.
Final Office Action on U.S. Appl. No. 14/038,400 Dated Aug. 10, 2015, 32 pages.
First office action received in Chinese patent application No. 201380001530.1, dated Jun. 30, 2015, 9 pages with English translation.
Non-Final Office Action on U.S. Appl. No. 13/869,866 Dated Jul. 22, 2015, 28 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,026 Dates Aug. 6, 2015, 22 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,057 dated Jul. 30, 2015, 29 pages.
Non-Final Office Action on U.S. Appl. No. 14/168,173 Dated Jun. 22, 2015, 14 pages.
Notice of Allowance on U.S. Appl. No. 13/355,360 Dated Apr. 10, 2014, 7 pages.
Office Action, U.S. Appl. No. 10/696,507, mailed on Nov. 13, 2008 (CTX-290US), 15 pages.
Continuations (1)
Number Date Country
Parent 12700557 Feb 2010 US
Child 14109551 US