WOU-MMA: Gravitational Radiation and Relativistic Astrophysics

Information

  • NSF Award
  • 2309211
Owner
  • Award Id
    2309211
  • Award Effective Date
    9/1/2023 - a year ago
  • Award Expiration Date
    8/31/2026 - a year from now
  • Award Amount
    $ 1,075,500.00
  • Award Instrument
    Standard Grant

WOU-MMA: Gravitational Radiation and Relativistic Astrophysics

This award supports research in relativity and relativistic astrophysics, and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. Since 2019, NSF's Laser Interferometer Gravitational-Wave Observatory (LIGO) has been regularly detecting gravitational waves (GWs) (ripples in space and time) emitted by the collision of compact objects that are billions of light-years from Earth. Most of these objects have been black holes, others have been neutron stars. From the GWs, scientists can measure properties (locations, masses, spins) of the objects and learn about how they might have formed and how they warp space and time as they collide; for neutron stars, the collision also produces gamma-rays and other electromagnetic radiation, and together with the GWs this teaches scientists how matter behaves at ultra-high densities and how some chemical elements were formed. But these studies require comparing the detected GWs with detailed predictions of the waves. The predictions are made using the equations of General Relativity, written down by Einstein in 1915 but unsolvable (for colliding compact objects) until about 2005 with the development of advanced methods and powerful supercomputers. This project supports theoretical work designed to underpin and improve LIGO's ability to extract from observed GWs the rich information that the waves carry, and to improve the interpretation of LIGO events with electromagnetic counterparts. This includes the improvement and use of the Spectral Einstein Code (SpEC), currently the most accurate computer code for solving Einstein's equations for black hole binaries. SpEC will be used to carry out numerical solutions of black-hole collisions to further develop a public catalog of GW predictions for the purpose of analyzing LIGO data. In addition, a next-generation public computer code SpECTRE, under development, will be used to predict GWs from two colliding neutron stars, from a black hole colliding with a neutron star, and from supernova explosions. This program will also serve as a training ground for young physicists and astrophysicists. The group members will reach out to the general public through lectures, interactive web pages, and YouTube videos.<br/><br/>By combining analytical techniques and numerical simulations with the Spectral Einstein Code (SpEC), the team will: (i) improved gravitational waveforms for Binary Black Holes (BBH) will be generated for use in LIGO data analysis in poorly-explored regions of the BBH parameter space, and will be used to produce surrogate models that are improved in accuracy, parameter-space coverage, and included physics (e.g. eccentricity, gravitational memory); and (ii) the dynamical behavior of highly curved spacetime will be explored via analytic, perturbative, and numerical approaches, which will include studies of quasinormal mode excitations and nonlinearities in ringdowns, and investigations of beyond-Einstein theories of gravitation and testing them using LIGO observations.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

  • Program Officer
    Pedro Marronettipmarrone@nsf.gov7032927372
  • Min Amd Letter Date
    8/25/2023 - a year ago
  • Max Amd Letter Date
    8/25/2023 - a year ago
  • ARRA Amount

Institutions

  • Name
    California Institute of Technology
  • City
    PASADENA
  • State
    CA
  • Country
    United States
  • Address
    1200 E CALIFORNIA BLVD
  • Postal Code
    911250001
  • Phone Number
    6263956219

Investigators

  • First Name
    Mark
  • Last Name
    Scheel
  • Email Address
    scheel@tapir.caltech.edu
  • Start Date
    8/25/2023 12:00:00 AM
  • First Name
    Yanbei
  • Last Name
    Chen
  • Email Address
    yanbei@caltech.edu
  • Start Date
    8/25/2023 12:00:00 AM

Program Element

  • Text
    WoU-Windows on the Universe: T
  • Text
    Gravity Theory
  • Code
    1244

Program Reference

  • Text
    Windows on the Universe (WoU)
  • Text
    CYBERINFRASTRUCTURE/SCIENCE
  • Code
    7569